dcsimg

Brief Summary

provided by EOL authors

The Asian giant hornet, Vespa mandarinia, a species native to temperate and tropical Eastern Asia, is the world's largest hornet. Adults can be up to 4.5 cm (1.8 inches) long (queens reach 5.5 cm long) and have a 6mm (0.25 inches) sting which injects a large amount of potent venom.

The Asian giant hornet is a relentless hunter that preys on other large insects, such as bees, other hornet species, and mantises.Asian giant hornets often and very effectively attack honey bee (genus Apis) hives.A single V. mandarinia scout, sometimes two or three, will cautiously approach the nest, giving off pheromones which will lead other hornets to the hive's location.Asian giant hornets, which are five times the size and 20 times the weight of a honey bee, can devastate a honey bee colony in a very short time: a single hornet can kill as many as 40 honey bees per minute thanks to its large mandibles. Once a hive is emptied of all defending bees, the hornets feed on the honey and carry the larvae back to feed to their own larvae.Adult Asian giant hornets cannot digest solid protein, so they do not eat their prey, but chew them into a paste and feed them to their larvae. Like many other vespid wasp species, adults themselves consume a clear liquid, Vespa amino acid mixture, which is produced by their own larvae.

The European honeybee (Apis mellifora), which has been imported for honey farming in Asia, has no natural defenses against giant Asian hornets and their hives are especially vulnerable to attack.However, Apis species native to Asia (for example Apis cerana japonica) have evolved strategies for defeating Vespa mandarinia attacks: if they detect a attacker in time the bee colony can form a “bee ball”, surrounding the hornet to very effectively suffocate it.

Humans can get a powerful and intensely painful sting from V. mandarina.The venom it injects is powerful, and about 40 deaths per year are reported as a result of stings that cause kidney and liver failure if not treated fast enough.Although it usually does not attack unless threatened or disturbed, the giant hornet can attack quickly and fiercely, flying up to 40 km (25 miles)/hour.

In Japan, Asian giant hornets are sometimes eaten raw or fried. Recently, several companies in Asia and Europe have begun to manufacture dietary supplements and energy drinks which contain synthetic versions of Vespa mandarinia larval amino acid secretion. The manufacturers of these products make claims that consuming the larval hornet secretions (marketed as "hornet juice") will enhance human endurance. (Handwerk 2002; Sugahara and Sakamoto 2009; Ono et al. 1995; Wikipedia 2011(a); Wikipedia 2011(b))

license
cc-by-sa-3.0
copyright
Dana Campbell
original
visit source
partner site
EOL authors

Predation

provided by EOL authors
Giant hornets prey on Japanese honeybees (Apis cerana japonica). However, the bees respond by forming a swarm around the body of an invading hornet. A combination of high temperature and high carbon dioxide levels (which lower the hornet's tolerance to high temperature) can kill the hornet and not harm the bees.
license
cc-by-nc
original
visit source
partner site
EOL authors

描述

provided by Taiwan Encyclopedia of Life
中名為中華大虎頭蜂。別名為中國大虎頭蜂、大虎頭蜂、臺灣大虎頭蜂、土蜂仔、大土蜂(台語)、金環胡蜂。后蜂體長40mm,雄蜂35mm,工蜂28-36mm。本種為世界體型最大的虎頭蜂。頭部及臉部橙黃色,觸角暗褐色,臉頰特別寬而發達。胸部黑褐色,前胸兩側有暗紅色班點,六足暗褐色。腹部暗紅褐色,末節橙黃色,各節末端有極細的黃圈。
license
cc-by-nc
copyright
葉文琪
author
葉文琪
project
臺灣生命大百科(TaiEOL)

棲地

provided by Taiwan Encyclopedia of Life
本種廣泛分布於台灣低、中海拔山區。
license
cc-by-nc
copyright
葉文琪
author
葉文琪
project
臺灣生命大百科(TaiEOL)

生物學

provided by Taiwan Encyclopedia of Life
本種因築窩於地底,而俗稱土蜂;巢位不易被發現,常導致人員家畜不慎誤觸而引起大量傷亡。本種攻擊性強,是蜂場常見的捕蜂害蟲,往往導致整窩蜂群死亡。
license
cc-by-nc
copyright
葉文琪
author
葉文琪
project
臺灣生命大百科(TaiEOL)

Vespa mandarinia ( Asturian )

provided by wikipedia AST
 src=
Tártagu xigante asiáticu.

El tártagu xigante asiáticu xigante (Vespa mandarinia) ye una especie d'inseutu himenópteru de la familia Vespidae.[1] Tien un llargor de 5 cm y un valumbu alar de 7,5 cm. Ye bien trabada y tien un potente venenu capaz d'eslleir los texíos. Ye agresiva y, a diferencia de los babarones, nun tolera la cautividá. Amás, dispon d'unos quexales potentes, armadures protectores y uñes tarsales para suxetar a la víctima.

Anatomía

Ye de color naranxa y abondo grande en comparanza con otres especies d'aviespes. Los sos güeyos compuestos y ocelos son de color marrón escuru, y les antenes son de color marrón escuru con paisaxes anaranxaos. El clipeu (placa d'escudu na parte frontera de la cabeza) ye de color naranxa; el llau posterior del clipeu tien lóbulos arrondaos estrechos. El quexal ye grande y de color naranxa con un diente negru (superficie de taragañada interior). El tórax y propodéu del tártagu xigante asiáticu tien un tinte doráu característicu y un ampliu escutelu (escala d'escudu nel tórax) que tien una llinia medial fonda; la placa detrás del escutelo sobresal y apodera el propodéu. Les pates delanteres del tártagu son de color naranxa, con tarsos de color marrón escuru; los miembros posteriores son de color marrón escuru. Les ales son d'un color marrón-gris escuru. El gáster ye de color marrón escuru con blancu, con bandes marielles estreches nos marxes posteriores del tergo, el sestu segmentu ye dafechu mariellu. Ye similar n'apariencia al tártagu européu (Vespa crabro).

Comportamientu

En primavera, dempués de seis meses d'envernía, apaez la reina, atópase afamiada y precisa comer. Para reponer fuercies llambe la cazumbre de la castañal, yá que nun puede dixerir proteínes sólides.

Añera en llurigues o furacos debaxo de los árboles. Lléva-y díes faer el so nial. Mazca la madera en pequeños cachos y forma una magaya pegañosa que se convierte nun papel fuerte, flexible y llixeru, ideal para una guardería. De siguío pon los güevos, que se van desenvolviendo nel nial.

Los sos estadios son:

  1. Güevos.
  2. Bárabos.
  3. Crisálides en forma de brotu.
  4. Imagu.

De primeres son toes femes obreres (al igual qu'asocede coles abeyes). Tarden menos d'una selmana en pasar al estáu de bárabu. Cuando nacen, éstes empiecen a gatuñar el nial colos sos quexales, provocando na reina'l deséu de matar. Precisen ser alimentaes.

La reina caza y tulle a les sos preses con precisión quirúrxica. Nun puede comer les preses, asina que taraza los apéndices, y mazca'l cuerpu hasta formar una pasta húmedo que lleva al nial para los sos bárabos (papiella de carne blando).

Tolos tártago que nacen son femes, y hermanes. La so vida dura un mes, asina que son sustituyíes. Les recién nacíes llamben y esmordigañen a la reina (la so madre), para reconocela. Acaldía que pasa, precisen más carne. Les cazadores traen la comida, pero como nun pueden comer, faen un intercambiu. Los bárabos agasáyenles con un potente cóctel enerxéticu (la so cuspia), que ye unu amiestu d'aminoácidos de avispones o VAAM, lo cual-yos fai percorrer 100 km/día, a una velocidá de 40 km/h. Esto da-yos a los tártagos una enerxía escepcional.[cita [ensin referencies]

A mediaos del branu, los niales empiecen a crecer; hai munchos, y d'una gran valumbu. Nesta fecha son yá doscientos individuos (diez vegaes más que va selmanes). Acaldía hai munchos más. En dos selmanes, lleguen a cuatrocientos. El nial conviértese nun palaciu cavernosu d'un metro de diámetru, formáu por nueve niveles distintos (una especie de pirámide).[cita [ensin referencies]

Dichu nial conviértese nun motor magníficu, una estensión viva del so reinu, que provoca un fame voraz. La reina pon miles de güevos.

Más críes, precisen más caza, y tienen más fame. Los bárabos inxeren hasta mil inseutos al día.[cita [ensin referencies]

Problemes que causa

En Nagano, Xapón, morrieron munches persones por causa de los tártagu. El so venenu ye bien potente, y la so picadura bien doliosa. Los tártagos faen incursionen na apicultura. Les abeyes naturales xaponeses nun ellaboren muncha cantidá de miel, asina que, en Xapón importen abeyes europees que nun desenvolvieron defenses contra'l tártagu xigante.

Cuando'l nial ta nel cénit, y la población ye máxima, les obreres busquen fontes más grandes d'enerxía. Antes les cazadores actuaben en solitariu, pero agora nun dulden n'atacar en grupu.

Primero, ataquen al so pariente'l tártagu mariellu (Vespa simillima xanthoptera), que'l so botín supón miles d'individuos, y de 3000 a 7000 bárabos y crisálides. Son la metá de pequeños y nun son presa fácil, pero los tártagos xigantes son más fuertes y más grandes. Acaben con ellos, y los que queden fuxen abandonando a les sos críes. La so forma de comer ye estazar a les víctimes y estrayer l'interior. Pueden consumir 400 bárabos de avispón mariellu al día.

Darréu, ataquen tamién a l'abeya importada europea. El avispón ye cinco vegaes más grande qu'ella. Les defensores superen en númberu a los tártagos, pero nun consiguen salvase, gracies a la fuercia d'esti depredadores. En cuestión d'hores trenta tártagos maten 30.000 abeyes . Al igual que colos tártagos mariellos, tarácenles pela metá, dexándoles morrebundes. Los pocos soldaos que queden nun son torga pa los tártagos, asina que lleguen hasta'l miel, les crisálides y los bárabos, que los sirven d'alimentu mientres selmanes.

Los paisanos abargana de Nagano, veneren los espíritos de les víctimes. El sustentu d'estes persones depende de les abeyes y saben que cada seronda la población d'abeyes vese amenaciada por cuenta de los tártagos. Millones d'individuos muerren cada añu, y ye por esto, que-yos faen una ceremonia de respetu y honor.

Ataquen tamién, a l'abeya nativa xaponesa, pero estes desenvolvieron un sistema increíble para poder combatir con elles, tantu a los tártagos mariellos, como a los xigantes.

Cuando llega l'avanzadura (el avispón esplorador) les abeyes convídenlu a entrar al nial. Él avanza para marcalo cola so feromona, porque asina ye como ta visible olorosamente a los sos conxéneres. Les abeyes, entós, bancien los sos abdomes para comunicase la estratexa, y de secute, el avispón vese arrodiáu por centenares d'abeyes, que nun la piquen, sinón qu'empiecen a cimblar aumentando la temperatura colectivo hasta los 47 ºC. Les abeyes xaponeses soporten temperatures d'hasta 48 ºC. La llende del avispón ye de 46 ºC, asina que el avispón esplorador muerre por afuega.

La naturaleza, llinda l'imperiu cola llegada del iviernu. La reina entra nun estáu de gran debilidá. Nesta fase pon güevos ensin fertilizar, que se converten en machos qu'apurren espelma. Dellos bárabos desenvuélvense como reines.

Los machos vuelen para fecundar a otres reines d'otros niales. Son aceptaos namái a mediudía mientres unes hores, sicasí, namái unu consigue apariase. Los machos muerren a los pocos díes.

Les reines fertilizaes busquen onde envernar. La naturaleza y el fríu causen la muerte d'estos animales, quien vencen por inanición

Especie invasora n'España

Por cuenta de el so potencial colonizador y constituyir una amenaza grave pa les especies autóctones, los hábitats o los ecosistemes, esta especie foi incluyida nel Catálogu Español d'Especies exótiques Invasores, aprobáu por Real Decretu 630/2013, de 2 d'agostu.[2][3]

Subespecies

Reconócense les siguientes subespecies:

  • Vespa mandarinia bellona
  • Vespa mandarinia magnifica
  • Vespa mandarinia nobilis
  • Vespa mandarinia japonica

Referencies

  1. Bisby F., Roskov Y., Culham A., Orrell T., Nicolson D., Paglinawan L., Bailly N., Appeltans W., Kirk P., Bourgoin T., Baillargeon G., Ouvrard D., eds (2012). «Species 2000 & ITIS Catalogue of Life, 2012 Annual Checklist» (inglés). Consultáu'l 15 de octubre de 2012.
  2. Real Decreto 630/2013, de 2 d'agostu, por el que se regula el Catálogo español de especies exóticas invasoras.. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-8565.
  3. Avispón japonés en España, Procaen
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia AST

Vespa mandarinia: Brief Summary ( Asturian )

provided by wikipedia AST
 src= Tártagu xigante asiáticu.

El tártagu xigante asiáticu xigante (Vespa mandarinia) ye una especie d'inseutu himenópteru de la familia Vespidae. Tien un llargor de 5 cm y un valumbu alar de 7,5 cm. Ye bien trabada y tien un potente venenu capaz d'eslleir los texíos. Ye agresiva y, a diferencia de los babarones, nun tolera la cautividá. Amás, dispon d'unos quexales potentes, armadures protectores y uñes tarsales para suxetar a la víctima.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia AST

Sršeň mandarínská ( Czech )

provided by wikipedia CZ

Sršeň mandarínská (Vespa mandarinia) je druh jedovatého sociálního blanokřídlého hmyzu z čeledi sršňovitých a rodu Vespa (sršeň). Žije v jižní, jihovýchodní a hlavně ve východní Asii. Jako biotop preferuje lesy ve středních nadmořských výškách. Je to největší druh sršně na Zemi, dělnice dosahují délky přes 30 mm a královny mohou měřit až 55 mm a mít rozpětí křídel i více než 76 mm. Hlava je relativně masivní a celá tmavě žlutá až oranžová (kromě očí). Žihadlo měří 6 mm a disponuje velkým množstvím poměrně silného jedu (ale slabšího než má včela).[1] Žije v organizovaných společenstvech, které zakládá a vede královna. Hnízda si staví nejčastěji pod zemí v kořenovém systému stromů. Dospělý jedinec se živí mízou, nektarem a jinými sladkými šťávami, pro své larvy pak loví různé bezobratlé. Sršně mandarínské často napadají kolonie jiného sociálního hmyzu, například včel, vos nebo jiných sršní včetně svého vlastního druhu. V místech svého výskytu jsou považováni za škůdce, protože jsou během krátké doby schopny vyplenit včelí úl a kompletně vybít jeho osazenstvo.[2][3] Můžou být nebezpečné i člověku, každoročně zemře v Japonsku a v Číně několik desítek lidí po útoku těchto sršní.[4][5]

Taxonomie

Sršeň mandarínská patří mezi 22 druhů sršní rodu Vespa (sršeň), což je jeden za čtyř rodů podčeledi Vespinae, jedné z osmi podčeledí tvořících čeleď Vespidae (sršňovití).[6] Druh popsal v roce 1852 britský entomolog Frederick Smith. Jiný britský vědec, specialista na sršňovité, Michael Archer zařadil v roce 1993 sršeň mandarínskou do skupiny tropica a do kladu společně se sršní Vespa soror.[7] Genetická a morfologická studie z roku 2013 toto rozdělení v zásadě potvrdila. Skupinu tropica tvoří dva klady: klad skládající se ze sršní V. philippinensis, V. tropica a V. ducalis a klad sršní V. mandarinia a V. soror.[6] Obě posledně jmenované sršně jsou od ostatních poměrně dobře rozeznatelné díky velké spánkové části hlavy, rýčovitě tvarovanému čelnímu štítku (clypeus), a také na základě svých velkých rozměrů (ačkoliv Vespa ducalis je jen o málo menší).

Poddruhy

Sršeň mandarínská vytváří 5 poddruhů. Jsou to:[8]

  • Vespa mandarinia bellona Smith, 1871
  • Vespa mandarinia japonica Radoszkowski, 1857
  • Vespa mandarinia magnifica Smith, 1852
  • Vespa mandarinia mandarinia Smith, 1852
  • Vespa mandarinia nobilis Sonan, 1929

Synonyma

V anglicky mluvících zemích se sršeň mandarínská nazývá „asijská obří sršeň“ (Asian giant hornet), což může vést ke zmatku, neboť jako „asijská sršeň“ je někdy označována i sršeň druhu Vespa velutina.[9] Totéž platí i v českém prostředí, kde obě sršně mají jako jedno z oficiálních jmen sršeň asijská a i z toho důvodu jsou občas zaměňovány.[8][10][11] V Korei se nazývá 장수말벌, což znamená „sršeň generál“, v Číně pak 虎头蜂 resp. 虎頭蜂, což lze přeložit jako „včela s tygří hlavou“. V Japonsku je známá jako ōsuzumebachi (大雀蜂), neboli „obří vrabčí včela/vosa“.

Popis

Přední pohled na hlavu sršně mandarínské
Morfologie hlavy sršně mandarínské

Sršeň mandarínská je největším představitelem rodu Vespa. Královny dosahují délky průměrně 4 až 4,5 cm, nicméně obzvláště velké exempláře mohou měřit okolo 5 cm či dokonce až 5,5 cm, při rozpětí křídel přes 7,6 cm. Hmotnost královen je 2 až 3 gramy. Dělnice a samci bývají podstatně menší. Měří 2,7 až 4 cm a váží 1 až 1,5 gramu. Celkově je sršeň mandarínská asi o 40 % větší a o 60 % těžší než sršeň obecná.[2][3][12][13] Velikostí se jí blíží sršně Vespa ducalis a především Vespa soror,[14] v rámci čeledi Vespidae pak dosahuje podobných rozměrů obří vosík Polistes gigas, jehož samci, jenž jsou větší než samice, mohou měřit i přes 5 cm.[15]

Samec sršně mandarínské z boku
Samec sršně mandarínské

Královny a dělnice mají stejnou stavbu těla, rozdíl je pouze ve velikosti. Obě kasty mají funkční pohlavní orgány, avšak dělnice je většinou nevyužívají. Jak královny, tak dělnice disponují žihadlem. Samec žihadlo postrádá, má kulatější konec zadečku a delší tykadla. Rozpoznávacím znakem této sršně a sršně Vespa soror je velká hlava s velmi širokými spánky (tempora) a lícemi (genae). Stavbou těla se Vespa mandarinia a Vespa soror velmi podobají, nicméně obě sršně jsou rozlišitelné na základě zbarvení, především zadečku.[16] Hlava je u každé barevné varianty sršně mandarínské zpravidla výrazně žlutá nebo světle oranžová. Složené oči mandlovitého tvaru s vykrojením na vnitřní straně mají tmavě hnědou až černou barvu. Velikostně jsou srovnatelné s očima sršně obecné a tedy vzhledem k velikosti hlavy relativně malé. Mezi nimi jsou tři malá očka zvaná ocelli. Kusadla dorůstají značných rozměrů a jsou hnědá až černá. Hruď má tmavou barvu, výrazná je pak velikost štítku (scutellum). Zadeček je pruhovaný, střídají se žluto-oranžová a tmavě hnědá (někdy až téměř černá) barva, přičemž výrazně nebo méně výrazně převažuje barva tmavá (neplatí to ale vždy). Oranžové pruhy jsou u kořene zadečku velmi tenké a tvoří někdy i nezřetelné čáry, ve středu zadečku přerušené. Špička zadečku (6. zadečkový článek) je vždy žlutá nebo oranžová. Zadeček sršně Vespa soror nemá žlutou špičku, nýbrž žluté jsou články 1 a 2. Nohy sršně mandarínské mají hnědou barvu v různých odstínech. Křídla dosahují značné velikosti a jsou zbarvené šedě či šedohnědě.[2][3]

Jed

Jed sršně mandarinské je směsí mnoha látek. Obsahuje cytolytické peptidy, mastoparany, které poškozují tkáň v místě a okolí vpichu žihadla a stimulují účinek dalších toxických složek jedu, zejména enzymu fosfolipázy. Tyto složky jedu způsobují krvácení a nekrózy. Na bolestivosti vpichu žihadla se podílí acetylcholin, který je přítomen v jedu ve vysoké koncentraci – asi 5 % sušiny (velkým množstvím této látky disponuje i jed dalších sršní). Nejnebezpečnější složkou jedu sršně mandarinské je peptidický neurotoxin nazvaný mandarotoxin. Místem toxického působení jedu je zejména kardiovaskulární systém. Jed zvyšuje srdeční frekvenci a změnu srdečního nervového systému vzruchů. Jed obsahuje rovněž poplašné feromony. Jakmile zachytí sršní dělnice jejich pach, okamžitě přispěchají na pomoc a vrhají se na protivníka. Vůně těchto látek vyvolává u vos silnou defenzivní reakci, jež se dá přirovnat k zuřivosti. Protože tyto látky voní i lidem, přidávají se i do některých kosmetických přípravků. Zachytí-li sršeň mandarínská tuto pachovou stopu, působí na ni podobně jako feromon a zvýší její agresivitu.[17]

Jedna dělnice sršně mandarínské disponuje v průměru 4,1 μl jedu, což činí asi 1,1 mg sušiny na jedince. Průměrná poloviční smrtelná dávka jedu neboli LD50 je 4,1 mg/kg. Ačkoliv jde v říši hmyzu o dosti silný jed, je asi 2,5x méně účinný, než jed nejjedovatější známé sršně Vespa luctuosa (1,6 mg/kg) či asi 1,5x méně účinný než jed včely medonosné (2,8 mg/kg). Jedový aparát sršně mandarínské obsahuje nicméně více jedu, jedno žihadlo má poloviční smrtnou kapacitu asi 270 g a průměrná kolonie okolo 64 kg.[18][19]

Výskyt

Sršeň mandarínská se vyskytuje v jižní, jihovýchodní a východní Asii. Konkrétně žije ve státech Indie (severovýchodní), Nepál, Bhútán, Myanmar, Laos, Malajsie (pevninská), Čína (zvláště jihovýchodní), Taiwan, Jižní Korea, Rusko (Přímoří) a Japonsko.[16] Asi nejběžnější je v Japonsku, odkud také pocházejí nejpřesnější a nejpodrobnější studie o životě tohoto hmyzu.[3] Typickým biotopem je smíšený les středních nadmořských výšek, nejhojnější je v kopcovitém terénu nízkých pohoří. Ve vyloženě horských oblastech nežije, vzácná je na rovinatých územích.[2][3]

Všechny v poplašném duchu psané zprávy o tom, že sršně mandarínské pronikly jako invazní druh i do Evropy,[20][21][22][23][24] jsou nepravdivé a vznikly novinářskou neznalostí a záměnou sršně mandarínské za sršeň asijskou (Vespa velutina) (tato informace reflektuje stav k roku 2018).

Ekologie a chování

Královny

Oplodněné i neoplodněné samice přečkávají zimu v zevnitř uzavřené podzemní komůrce (nebo méně často v kupách slámy) v utlumeném spánkovém režimu. Z hibernace se probouzejí v mírných oblastech v dubnu (Japonsko), v teplejších oblastech to může být dříve. Během hibernace ztrácejí okolo 40 % své váhy. Zpočátku se živí téměř výhradně mízou stromů, například dubu špičatolistého.[12] Neoplodněné samice se rovněž živí mízou, ale někdy do začátku července umírají.[2]

Hnízdo

Hnízdo sršní mandarínských zakládá vždy jedna samice – královna (nedochází ke kooperaci jako například u vosíků). Se stavbou začíná zhruba v polovině května.[12] V naprosté většině případů buduje hnízdo pod zemí, často v norách po hlodavcích či hadech, mnohdy v kořenovém systému borovic. Někdy si pro stavbu hnízda zvolí i dutinu stromu. Místo si pečlivě vybírá, mnohdy zkoumá různé možnosti.[12] K hnízdu vede 2 až 60 cm dlouhý přístupový otvor.[2] Budování začíná tím, že královna připevní stopku z rozžvýkané papíroviny na (mnohdy odumřelý) kořen stromu. Poté vystaví první plástev s buňkami a celou stavbu zakryje papírovou stříškou. Samotná královna vybuduje celkem asi 35 až 60 buněk.[12] Po vylíhnutí prvních dělnic začínají tyto s rozšiřování hnízdního prostoru a následně se zvětšováním celého hnízda. Dělnice vyhazují půdu před hnízdo a můžou zde vytvořit hromádku až dva metry dlouhou. Hnízdo sršní mandarínských nemá tak precizní strukturu jako hnízda sršní žlutavých nebo sršní obecných. Spodek hnízda je vždy více otevřený než u zmiňovaných příbuzných. Plásty jsou mezi sebou spojeny jedním hlavním a 2 až 50 pomocnými sloupky. Počet pláství je nejméně 4 a nejvýše 7. Plástve mají kónický tvar s tím, že prostřední buňky jsou položeny nejvýše. Každý plást obsahuje několik desítek až mnoho stovek buněk (největší měl 1192 buněk). Velikost buněk se liší. Nejmenší jsou buňky, které postaví královna jako první. Ty měří v průměru 9,1 až 12 mm a jsou 26,7 až 35 mm hluboké. Z toho vyplývá, že první dělnice, jež se z nich vylíhnou, jsou zároveň nejmenšími dospělci. Buňky, které následně staví dělnice pro larvy a kukly dalších dělnic, měří 11,2 až 14,2 mm v průměru a jsou 31,6 až 36,6 mm hluboké. Buňky samců měří v průměru 14 až 15,3 mm a jsou hluboké 39,3 až 40,3 mm. Buňky plodných samiček a tedy potenciálních královen měří 14 až 15,5 mm v průměru a dosahují hloubky 39,2 až 43,8 mm. Hnízdo obsahuje v průměru kolem 2800 buněk (rozptyl 1326 až 4661) z toho přibližně 80 % je alespoň jednou využito. Většina buněk je využita 2 až 3 krát.[2]

Cyklus hnízda

Sršeň mandarínská za letu z boku čelem k listu stromu
Sršeň mandarínská za letu

Počet dělnic, které vychová pouze královna, bývá asi 40. Jejich vývoj trvá mírně přes měsíc. Po vylíhnutí se nejprve živí trofalaxí (jsou krmeny královnou či larvami) a samovolně zpevňují svá těla. Po asi třech dnech vylétají z hnízda a zapojují se do jeho chodu. Aktivita těchto dělnic startuje obvykle začátkem července. Zároveň s tím královna začne omezovat své aktivity mimo hnízdo a nakonec ho přestane úplně opouštět (cca polovina července). Věnuje se pouze kladení vajíček a obživu jí zcela zajišťují dělnice a larvy. Přibližně v polovině září přestává královna klást vajíčka, z nichž se líhnou dělnice, a klade už pouze vajíčka samců a samic. Královna přežívá zhruba do konce října, kdy je buď usmrcena dělnicemi nebo zemře přirozenou smrtí. Hnízdo se poté ocitne v mírném chaosu, dělnice mezi sebou někdy bojují, ale stále většinou krmí zbývající nové královny a samce. Někdy se situace v hnízdě dočasně uklidní. Poslední zbylé larvy tou dobou chřadnou a umírají, neboť jsou do značné míry vysávány trofalaxí. Zbylé dělnice umírají většinou v listopadu, nebo nejpozději začátkem zimy.[2][12]

Rozmnožování

Rozmnožování probíhá v říjnu nebo v listopadu, nejčastěji za pěkných dní. Samci, kteří odlétají z hnízda dříve než samice, formují roje a čekají, až samice opustí hnízdo. Ke kopulaci dochází obvykle u vstupu do hnízda nebo nedaleko od něj. Samci nalétávají na letící či po zemi se pohybující samice a na zemi spolu kopulují. Akt trvá 8 až 45 sekund, což je v porovnání s jinými sršněmi krátká doba. Samci se snaží kopulovat postupně s více samicemi. Některé samice se naopak samců zbavují tím, že je setřesou, a nejsou oplodněny. Procento neoplodněných samic je poměrně velké (cca 2/3). Všechny samice se následně vydají hledat místo k přezimování, což je nejčastěji komůrka (dutina) v zemi.[2][3][12]

Video zachycující let a pohyb tohoto druhu sršně (prvních 7 vteřin je nicméně záběr na sršeň druhu Vespa ducalis)

Komunikace

Pro orientaci za letu využívá sršeň mandarínská zrak. Pachová stopa a feromony jí slouží například při označování hnízd své kořisti a k přípravě hromadného útoku.[3] Larvy využívají zvukovou komunikaci. Škrábou svými kusadly o stěny buňky a vynucují si tím nakrmení. Dospělci rovněž cvakají kusadly, zřejmě tím ukazují odhodlání bránit se případnému útoku.[3] Zvláštním druhem komunikace je tzv. královský dvůr, kdy dělnice obklíčí královnu a vytvoří jakýsi hrozen hlavami směřujíc směrem k tělu královny. Lížou a koušou jí, čímž dostávají do těla feromony, které zřejmě potlačují vývoj jejich pohlavních orgánů. Toto chování dělnic je častější a přechází až v mírnou agresi s tím, jak se hnízdo postupně vyvíjí a počet jeho členů roste. Předpokládá se, že za lysá těla královen může právě jejich okusování dělnicemi.[12][25]

Potrava

Vespa mandarinia japonica porcující kořist na zemi
Vespa mandarinia japonica porcující kořist

Dospělí jedinci se živí nektarem, šťávou z ovoce a mízou a zároveň jsou aktivními predátory lovícími pro své larvy různé druhy bezobratlých. Loví nejčastěji ve vzdálenosti 1 až 2 kilometry od hnízda, ve výjimečných případech až 8 kilometrů.[2] Kořist zabíjí ve většině případů svými kusadly, žihadlo používají spíše výjimečně. Sršně mandarínské se řadí mezi semispecialisty, což znamená, že sice loví široké spektrum kořisti, ale přeci jen se zaměřují na určitý typ. V jejich případě jde o hmyz řádu Coleoptera tedy o brouky. Dále loví různé housenky (především rodu Manduca), kudlanky a další pomalejší zástupce hmyzu. Mezi oblíbenou kořist této sršně patří i příbuzné druhy z řádu blanokřídlí, především vosy, včely a jiné druhy sršní. Své příbuzné buď napadají jednotlivě nebo na ně pořádají hromadné útoky a to téměř výhradně mezi koncem léta a polovinou podzimu, kdy si rozrostlé hnízdo právě produkující pohlavní jedince žádá masivní přísun proteinů. Zaměřují se při tom na úly včel medonosných, a dále na hnízda sršní žlutavých, sršní Vespa analis, vos Vespula flaviceps a vosíků Polistes testaceicolor. Nicméně ani další sympatrické druhy sršní a vos před nimi nejsou v bezpečí (např. sršeň obecná, Vespa tropica či Vespa ducalis). Někdy napadnou i konkurenční hnízdo svého vlastního druhu. Spolu se svou příbuznou sršní Vespa soror jsou jediné druhy, které takovéto hromadné útoky provádějí.[2][12][26] Občas se stává, že útočníci jsou obránci napadené kolonie odraženi, přičemž mohou v boji ztratit i několik desítek dělnic.[2]

Konzumace kořisti vypadá tak, že z ní odstraní hlavu, křídla, zadeček a nohy a z hrudníku vytvoří proteinovou kuličku, kterou podávají larvám. Larvy recipročně produkují tekutinu bohatou na cukry a aminokyseliny (někdy nazývanou sršní nektar), kterou se pak živí dělnice, královna i noví samečci a samičky. Tomuto způsobu obživy se říká trofalaxe.[3][12][25]

Hromadné útoky na včely

Vyhledávanou kořistí sršní mandarínských jsou včely medonosné, na něž mnohdy páchají masové nálety. Útoky na včely se odehrávají vždy v období mezi polovinou srpna a koncem října.[2] Sršně mají své zvědy, kteří včely vyhledávají a vniknou do jejich hnízda. V případě evropských včel medonosných (které produkují daleko více medu než japonské včely a jsou v Japonsku chovány stále častěji) průzkumná sršeň přežije první kontakt, neboť žihadla včel nedokáží proniknout jejím chitinem a včely si dosud nedokázaly najít žádnou účinnou strategii boje proti sršním. Odletí z úlu a poté se vrátí s posilou (řádově desítky jedinců), jejíž útok je pro včelstvo fatální. I poměrně malý počet útočníků (pod 50 jedinců) dokáže během několika hodin zcela zlikvidovat desetitisícovou včelí kolonii. Zabijí sice každou včelu, která jim přijde do cesty, ale jejich těla odhazují stranou. Cílem jejich útoku jsou totiž plástve. Kdyby sršně včely nevyhubily, ty by jim nedovolily dostat se k plástvím. V plástvích se nachází nevylíhlé larvy, které mají mnohem větší výživovou hodnotu než dospělé včely. Jejich šťavnatá těla se stávají potravou pro larvy sršní. Podobně postupují i vůči vosám a jiným sršním, akorát s tím rozdílem, že vybíjecí fáze trvá déle.[12]

Včely východní (Apis cerana) si proti sršním vyvinuly vlastní obrannou strategii. Na rozdíl od neúčinné obrany včel medonosných postupují tyto koordinovaně a navíc jsou podstatně mrštnější.[2] Při kontaktu se sršním průzkumníkem v hnízdě vypustí specifický feromon, na základě čehož se kolem sršně vytvoří velké klubko včel, které uvnitř zvýší teplotu (46 °C), množství oxidu uhličitého (cca 4 %) a vlhkost (nad 90 %) na takovou úroveň, že sršeň zahyne. Včely totiž tolerují vyšší teplotu (50 °C oproti 46 °C, která je pro sršeň již kritická) a také vyšší množství CO2 než sršeň, a přežijí. A tak se sršní zvěd domů nevrátí a včelí společenství přežije.[27] Jestliže se včelám nepodaří průzkumnici zachytit a usmrtit, používají jako náhradní obrannou variantu překrytí jejího značkovacího pachu rozmazáváním různých aromatických rostlinných materiálů u vstupu do úlu.[28][29] Někdy proniknou sršně do úlu i přes tato obranná opatření a způsobí spoušť, nicméně jde spíše o výjimku. Pokud mají k dispozici jinou kořist (především úly včel medonosných), sršně mandarínské včely východní napadají jen zřídka.[2]

Dva jedinci okusující kůru stromu, pohled ze shora
Dva jedinci okusující kůru stromu

Predátoři, paraziti

Sršeň mandarínská má jen minimum přirozených nepřátel. Potvrzenými predátory sršní mandarínských jsou jiné sršně mandarínské a pak také včelojed lesní.[3][12] Výjimečně se stane, že padne za oběť obřímu vosíku druhu Polistes gigas.

Parazitem sršní mandarínských je řásnokřídlý hmyz Xenos moutoni, jehož samice se vyvíjejí v tělech sršních larev a dospělců.[3]

Lidé a sršně

Z pohledu člověka se jedná o velice škodlivý druh, neboť způsobuje obrovské škody na včelstvech. Každoročně čelí útoku těchto sršní desítky tisíc úlů. I přesto, že je ve velkém množství huben, je v Japonsku stále velmi hojný. Mezi metody kontroly sršní populace patří ubíjení různými plácačkami a klacky, ničení jejich hnízd, trávení pomocí návnad a chytání do lepivých pastí.[2]

Dalším problémem je relativní agresivnost a poměrně účinný opakovaně použitelný jed, jímž tento hmyz disponuje. Výsledkem jsou řádově desítky mrtvých lidí ročně, především v Japonsku a v Číně.[3][30][31]

Sršní nektar

Podrobnější informace naleznete v článku Sršní nektar.

Sršně jsou specifické tím, že dělnice nedokáží zpracovávat tuhou stravu. Umějí to však jedinci ve stadiu larvy. Dochází tak k tomu, že dělnice uloví brouky, pavouky, včely nebo jiný hmyz, poté s kořistí nakrmí larvy, ty ji natráví a vyprodukují z ní tzv. sršní nektar, kterým se dělnice živí. Této tekutině bohaté na cukry a aminokyseliny vděčí sršní dělnice za svoji mimořádnou vytrvalost. Rovněž na myších byla prokázána pozitivní účinnost této tekutiny na fyzickou výdrž.[3]

Předpokládá se, že sršní nektar působí pozitivně i na člověka a zlepšuje efektivitu tukového metabolizmu. Někteří vytrvalostní sportovci tak používají látky napodobující sršní nektar ke zvýšení výkonu a zlepšení regenerace,[32] ačkoliv jeho účinnost na lidech nebyla zatím spolehlivě prokázána.[3]

Odkazy

Reference

  1. KOSMEIER, Dieter. Vespa mandarinia Smith, 1852. www.vespa-crabro.de [online]. [cit. 2018-10-21]. Dostupné online.
  2. a b c d e f g h i j k l m n o p MATSUURA, Makoto; SAKAGAMI, Shôichi. A Bionomic Sketch of the Giant Hornet, Vespa mandarinia, a Serious Pest for Japanese Apiculture (With 12 Text-figures and 5 Tables). 北海道大學理學部紀要 = JOURNAL OF THE FACULTY OF SCIENCE HOKKAIDO UNIVERSITY Series VI. ZOOLOGY. 1973-10, roč. 19, čís. 1. Dostupné online [cit. 2018-10-21]. ISSN 0368-2188.
  3. a b c d e f g h i j k l m n BART, Zach, a kol. Vespa mandarinia. Animal Diversity Web [online]. 2013 [cit. 2018-10-21]. Dostupné online. (anglicky)
  4. JEMELKA, Petr. Smrtonosní sršni terorizují čínská města. A bude hůř. Aktuálně.cz. 2013-10-04. Dostupné online [cit. 2018-10-21]. (česky)
  5. YANAGAWA, Youichi; MORITA, Kentaro; SUGIURA, Takao. Cutaneous hemorrhage or necrosis findings afterVespa mandarinia(wasp) stings may predict the occurrence of multiple organ injury: A case report and review of literature. Clinical Toxicology. 2007-01, roč. 45, čís. 7, s. 803–807. Dostupné online [cit. 2018-10-21]. ISSN 1556-3650. DOI:10.1080/15563650701664871. (anglicky)
  6. a b PERRARD, Adrien; PICKETT, Kurt; VILLEMANT, Claire. Phylogeny of hornets: a total evidence approach (Hymenoptera, Vespidae, Vespinae, Vespa). Journal of Hymenoptera Research. 2013-04-24, roč. 32, s. 1–15. Dostupné online [cit. 2018-08-25]. ISSN 1314-2607. DOI:10.3897/jhr.32.4685. (anglicky)
  7. ARCHER, Michael E. A phylogenetic study of the species of the genus Vespa (Hymenoptera: Vespinae). Insect Systematics & Evolution. 1993-01-01, roč. 24, čís. 4, s. 469–478. Dostupné online [cit. 2018-10-28]. ISSN 1876-312X. DOI:10.1163/187631293X00226. (anglicky)
  8. a b KOŘÍNEK, Milan. druh sršeň mandarínská Vespa mandarinia Smith, 1852. BioLib: Biological library [online]. [cit. 2018-10-28]. Dostupné online. (česky)
  9. Vespa velutina (Asian Hornet). www.cabi.org [online]. [cit. 2018-10-29]. Dostupné online. (anglicky)
  10. KOŘÍNEK, Milan. druh sršeň asijská Vespa velutina Lepeletier, 1836. BioLib: Biological Library [online]. [cit. 2018-10-29]. Dostupné online. (česky)
  11. HONSŮ, Miroslav. Čeká nás invaze zabijáckých sršní mandarínských? Až k nám dorazí, určitě je nepřehlédnete. Zoom magazin. 2018-10-18. Dostupné online [cit. 2018-10-29]. (česky)
  12. a b c d e f g h i j k l MATSUURA, M.; YAMANE, S. Biology of the Vespine Wasps. Berlin, Heidelberg, New York etc.: Springer-Verlag, 1990.
  13. LEE, John X. Q. Vespa mandarinia. www.vespa-bicolor.net [online]. [cit. 2018-10-29]. Dostupné online.
  14. LEE, John X. Q. Vespa soror. vespa-bicolor.net [online]. [cit. 2018-10-29]. Dostupné online.
  15. LEE, John X. Q. Polistes gigas. www.vespa-bicolor.net [online]. [cit. 2018-10-29]. Dostupné online.
  16. a b ARCHER, Michael E. Taxonomy, distribution and nesting biology of the Vespa mandarinia group (Hym., Vespinae) (1995). ENTOMOLOGIST'S MONTHLY MAGAZINE. March 1995, roč. 131, s. 47-53. Dostupné online [cit. 2018-11-03]. (anglicky)
  17. PATOČKA, Jiří. Asijská obří vosa a její jed. www.veda.cz [online]. 2009 [cit. 2019-02-23]. Dostupné online.
  18. SCHMIDT, Justin O.; YAMANE, Soichi; MATSUURA, Makoto. Hornet venoms: Lethalities and lethal capacities. Toxicon. 1986, roč. 24, čís. 9, s. 950–954. Dostupné online [cit. 2019-02-23]. DOI:10.1016/0041-0101(86)90096-6. (anglicky)
  19. MOHAMED ALI, Mahmoud Abdu Al-Samie. Studies on Bee Venom and Its Medical Uses. International Journal of Advancements in Research & Technology [online]. July 2012 [cit. 2019-02-23]. Dostupné online. (anglicky)
  20. Smrtící sršni už jsou v Evropě! V Británii objevili první obří hnízdo. tn.nova.cz. 2016-10-06. Dostupné online [cit. 2018-11-18]. (česky)
  21. Sršeň mandarínská (Vespa mandarinia). DomaciMed. Dostupné online [cit. 2018-11-18]. (česky)
  22. Nebezpečný hmyz: Zmutované sršně děsí Evropu!. epochaplus.cz [online]. [cit. 2018-11-18]. Dostupné online. (česky)
  23. Čeká nás invaze zabijáckých sršní mandarínských? Až k nám dorazí, určitě je nepřehlédnete. Zoom magazin. Dostupné online [cit. 2018-11-18]. (česky)
  24. Smrtící sršni/ Killer Hornets from Hell [online]. 2015 [cit. 2019-02-24]. Dokumentární film. Dostupné online.
  25. a b ROSS, Kenneth G.; MATTHEWS, Robert W. (eds.). The Social Biology of Wasps. Ithaca, London: Cornell University Press, 1991. 702 s. Dostupné online. ISBN 0801499062. Kapitola Makoto MATSUURA: Vespa and Provespa, s. 232-262. (anglicky) Google-Books-ID: QeGVqmfs_nIC.
  26. LEE, John X. Q. A note on Vespa soror (Hymenoptera: Vespidae) in Hong Kong. Hong Kong Entomological Bulletin. April 2009, roč. 1, čís. 1, s. 18-22. Dostupné online [cit. 2018-08-24]. (anglicky)
  27. SUGAHARA, Michio; NISHIMURA, Yasuichiro; SAKAMOTO, Fumio. Differences in Heat Sensitivity between Japanese Honeybees and Hornets Under High Carbon Dioxide and Humidity Conditions Inside Bee Balls. Zoological Science. 2012-01, roč. 29, čís. 1, s. 30–36. Dostupné online [cit. 2018-11-03]. ISSN 0289-0003. DOI:10.2108/zsj.29.30. (anglicky)
  28. FUJIWARA, Ayumi; SASAKI, Masami; WASHITANI, Izumi. A scientific note on hive entrance smearing in Japanese Apis cerana induced by pre-mass attack scouting by the Asian giant hornet Vespa mandarinia. Apidologie. 2016-02-24, roč. 47, čís. 6, s. 789–791. Dostupné online [cit. 2018-11-03]. ISSN 0044-8435. DOI:10.1007/s13592-016-0432-z. (anglicky)
  29. FUJIWARA, Ayumi; SASAKI, Masami; WASHITANI, Izumi. First report on the emergency dance of Apis cerana japonica, which induces odorous plant material collection in response to Vespa mandarinia japonica scouting. Entomological Science. 2017-11-05, roč. 21, čís. 1, s. 93–96. Dostupné online [cit. 2018-11-03]. ISSN 1343-8786. DOI:10.1111/ens.12285. (anglicky)
  30. PARK, Madison, a kol. Deadly hornets kill 42 people in China, injure over 1,500. CNN [online]. 2013-10-04 [cit. 2019-02-23]. Dostupné online.
  31. Japanese woman dies after 150 giant hornet stings. Mail Online [online]. 2017-10-06 [cit. 2019-02-23]. Dostupné online.
  32. The power of hornet juice | RIKEN. www.riken.jp [online]. [cit. 2018-12-18]. Dostupné online.

Externí odkazy

license
cc-by-sa-3.0
copyright
Wikipedia autoři a editory
original
visit source
partner site
wikipedia CZ

Sršeň mandarínská: Brief Summary ( Czech )

provided by wikipedia CZ

Sršeň mandarínská (Vespa mandarinia) je druh jedovatého sociálního blanokřídlého hmyzu z čeledi sršňovitých a rodu Vespa (sršeň). Žije v jižní, jihovýchodní a hlavně ve východní Asii. Jako biotop preferuje lesy ve středních nadmořských výškách. Je to největší druh sršně na Zemi, dělnice dosahují délky přes 30 mm a královny mohou měřit až 55 mm a mít rozpětí křídel i více než 76 mm. Hlava je relativně masivní a celá tmavě žlutá až oranžová (kromě očí). Žihadlo měří 6 mm a disponuje velkým množstvím poměrně silného jedu (ale slabšího než má včela). Žije v organizovaných společenstvech, které zakládá a vede královna. Hnízda si staví nejčastěji pod zemí v kořenovém systému stromů. Dospělý jedinec se živí mízou, nektarem a jinými sladkými šťávami, pro své larvy pak loví různé bezobratlé. Sršně mandarínské často napadají kolonie jiného sociálního hmyzu, například včel, vos nebo jiných sršní včetně svého vlastního druhu. V místech svého výskytu jsou považováni za škůdce, protože jsou během krátké doby schopny vyplenit včelí úl a kompletně vybít jeho osazenstvo. Můžou být nebezpečné i člověku, každoročně zemře v Japonsku a v Číně několik desítek lidí po útoku těchto sršní.

license
cc-by-sa-3.0
copyright
Wikipedia autoři a editory
original
visit source
partner site
wikipedia CZ

Asiatische Riesenhornisse ( German )

provided by wikipedia DE
 src=
Asiatische Riesenhornisse

Die Asiatische Riesenhornisse (Vespa mandarinia) ist eine in Ost- und Südostasien vorkommende Hornissenart. Asiatische Riesenhornissen sind bis zu fünfmal größer als Westliche Honigbienen. Ein Stich der Riesenhornisse wird als äußerst schmerzhaft beschrieben. In Japan sterben im Jahr durchschnittlich 40 Menschen durch eine allergische Reaktion auf die Stiche ihrer größten Unterart, der Japanischen Riesenhornisse (Vespa mandarinia japonica, jap. Ōsuzumebachi (オオスズメバチ / 大雀蜂) ‚große Sperlingsbiene‘).

Merkmale

Arbeiterinnen haben eine Länge von 27–45 mm, Königinnen von bis zu 55 mm. Die Arbeiterinnen haben eine Flügelspannweite von ungefähr 76 mm und einen 6 mm langen Giftstachel.[1] Der Kopf ist orange und im Vergleich zu anderen Hornissen verhältnismäßig breit. Facettenaugen und Ocellen sind dunkelbraun, die Antennen graubraun mit orangem Schaft. Die Stirnplatte ist orange mit schmalen Ausbuchtungen im hinteren Teil. Die Mandibeln sind orangebraun mit schwarzer Zahnung. Thorax und Propodeum haben einen goldenen Farbton. Das zweiteilige Scutellum ist groß, mit einer tiefgezogenen Rille in der Mitte. Das vordere Beinpaar ist dunkelorange mit dunkelbraunen Tarsen, die mittleren und hinteren Beine sind dunkelbraun. Die Gaster ist dunkelbraun mit einem pulverartigen weißen Belag und schmalen gelben Bändern an den Hinterrändern der Tergite, nur das sechste Segment ist komplett gelb.[2] Der Giftstachel besitzt keine Widerhaken und kann daher mehrfach eingesetzt werden. Das Gift enthält eine hohe Konzentration an Acetylcholin.[3]

Geografische Verbreitung

Die Asiatische Riesenhornisse ist besonders häufig in ländlichen Regionen Japans anzutreffen. Außerdem kommt sie im südöstlichen Teil des asiatischen Russlands, den südlichen Regionen von Primorski Krai, sowie in Korea (koreanisch 장수말벌 jangsumalbeol, „langlebige Wespe“ genannt), China (chinesisch 虎頭蜂, Pinyin Hǔ tóu fēng, „Tigerkopf-Biene“ genannt), Indochina, Nepal, Bhutan, Indien und Sri Lanka vor.[4]

Angebliche Sichtungen dieser Spezies in anderen Teilen der Welt, etwa in Europa oder Mexiko, beruhten bisher immer auf fehlerhaften Zuweisungen anderer Hornissenarten wie Vespa orientalis (Orientalische Hornisse) und Vespa velutina; insbesondere wird seit 2004 eine von Frankreich ausgehende Invasion der kleineren Art Velutina in Europa beobachtet.[5] Seit dem Herbst 2019 wurden Sichtungen in den USA und Kanada verzeichnet,[6] und im Oktober 2020 erstmals ein gesamtes Nest gefunden und entfernt.[7]

Lebensweise

Entwicklung einer Kolonie

Vespa mandarinia nistet bevorzugt in unterirdischen Hohlräumen. Wenn gelegentlich oberirdische Nistplätze (Baumhöhlen oder Ähnliches) bezogen werden, befinden sich diese selten mehr als 1–2 m über dem Boden.[2]

Aus den Eiern der Königin bilden sich nach zirka einer Woche Larven. Mit ihren Mundwerkzeugen schaben die Larven an den Zellenwänden, um der Königin das Signal für die Nahrungssuche zu geben. Diese bringt geeignete Beutetiere, vorwiegend Insekten, die mit den scharfen Oberkieferzangen geköpft und zu einer weichen Futtermasse zerkaut werden, von der die Königin zur Deckung des für die Bruttätigkeit nötigen Eiweißbedarfs ebenfalls etwas frisst. In ähnlicher Weise versorgen die später schlüpfenden Arbeiterinnen die nachrückende Brut. Auf Grundlage zerkauter Beutetiere wachsen die Larven rasch heran und gehen in das Puppenstadium über. Im Herbst eines jeden Jahres schlüpfen auch männliche Tiere, die Drohnen, die kurze Zeit nach der Begattung der Jungköniginnen sterben.

Zu Beginn der kälteren Jahreszeit sterben die Hornissenkolonien ab – lediglich die Jungköniginnen überleben in einem geschützten Winterquartier mit geeignetem Mikroklima. Im darauffolgenden Frühjahr fliegen sie aus, um einen Platz für ein neues Nest zu suchen.

Ernährung

 src=
Asiatische Riesenhornisse mit erbeuteter Fangschrecke

Die geschlüpfte Hornissenarbeiterin wächst nicht mehr und benötigt selbst kein Eiweiß, hat aber aufgrund ihres massigen Körpers und der energieaufwändigen Flugtätigkeit einen hohen Bedarf an Zucker, der neben dem Fraß von Verdauungsstoffen der Beutetiere zunächst auch durch Blütenbesuche abgedeckt werden kann. Wie alle Wespenarbeiterinnen ernähren sich die Imagines fast nur vegetarisch, primär von Zucker und Pollen. Proteinquellen werden vor allem benötigt, um den Nachwuchs zu ernähren. Auffällig sind die kräftigen Wangen der Vespa mandarinia. Dahinter verbirgt sich eine gut ausgebildete Kaumuskulatur, die es der Hornisse ermöglicht, als Hauptbeute mittelgroße bis große Käfer zu jagen und anschließend für ihre Brut zu zerlegen. Mit fortschreitender Jahreszeit jedoch, in Japan meist ab Ende August, wenn solche Käfer immer spärlicher erbeutet werden und zur Versorgung der wachsenden Kolonie nicht mehr ausreichen, stellt sich die Vespa mandarinia auf neue Eiweißquellen ein. Da mit dem Anwachsen der Kolonie und dem Heranziehen der körperlich noch massigeren Geschlechtstier-Larven sowohl der Proteinbedarf als auch Zuckerbedarf stark ansteigt, wendet sie sich nun bevorzugt Honigbienen zu, die neben ihrer proteinhaltigen Körpersubstanz, die an den Nachwuchs verfüttert wird, meist auch über gesammelten Nektar, Honig und Pollen verfügen und sich gleichzeitig zur Versorgung von Arbeiterinnen und Nachwuchs eignen. Diese Lebensweise macht die Riesenhornisse zu einer ernst zu nehmenden Bedrohung für die sehr viel kleineren Honigbienen. Aber auch Wespen- und andere Hornissenvölker sind potentielle Beutetiere, beispielsweise die kleineren Wespenarten Vespa affinis oder Vespa dybowskii.

Jagdverhalten

 src=
Die sogenannte Hitzekugel von Apis cerana japonica gegen Hornissen
 src=
Das Ergebnis: zwei getötete Hornissen, allerdings einer kleineren Art (Vespa simillima xanthoptera)

Gegen Ende des japanischen Sommers kommt es zu koordinierten Massenangriffen der Asiatischen Riesenhornisse auf Nester kleinerer Wespen und Bienen.[2] Zunächst unternehmen einzelne Riesenhornissenspäherinnen längere Suchflüge und markieren ein geeignetes Nest mit Duftstoffen, den Pheromonen. Die Rekrutierung von Nestgenossinnen ist bei Wespenarten selten und sonst eher von Bienen bekannt. Dem Pheromon folgend attackieren nun weitere Arbeiterinnen das Nest. Die Hornissen nutzen dabei ihre gut entwickelten Mundwerkzeuge und sind durch einen starken Chitinpanzer weitgehend vor den Wehrstacheln der Wespen und Bienen geschützt. Die Verluste angegriffener Bienenvölker sind extrem hoch (durchschnittlich 40 Tiere in einer Minute) und können sogar die Auslöschung des ganzen Bienenstaates zur Folge haben. Überwältigte Nester werden oft ausgiebig geplündert und zerstört. Das macht die asiatische Riesenhornisse bei den ansässigen Imkern recht unbeliebt.

Die in Japan heimische Östliche Honigbiene (Apis cerana) hat – anders als die eingeführte Westliche Honigbiene (Apis mellifera) – eine wirksame Prävention gegen solche Angriffe entwickelt. Entdecken die Bienen eine Hornissenspäherin, so signalisieren sie mit einem Zittern ihres Hinterleibs, dass ein Gegenangriff eingeleitet werden soll. Mehrere hundert Bienen stürzen sich dann blitzartig auf die Hornisse und erzeugen eine Hitzekugel – einen ballförmigen Schwarm – um die Hornisse. Im Inneren des Gedränges wird durch Muskelzittern eine Temperatur von über 45 °C erzeugt, bei der die Hornissenspäherin stirbt, während die Bienen durch einen anderen Stoffwechsel kurzzeitig Temperaturen bis zu 50 °C ertragen können.[8] Neuere Arbeiten gehen davon aus, dass auch die erhöhte CO2-Konzentration in der Hitzekugel zum Tod der Hornissen beiträgt.[9] Andere staatenbildende Hautflügler inklusive der Westlichen Honigbiene können sich in der Regel nicht wirksam gegen die Asiatische Riesenhornisse verteidigen.

Feinde

 src=
Der Schopfwespenbussard (Pernis ptilorhynchus) ist einer der bedeutendsten Feinde der Asiatischen Riesenhornisse.

Die Asiatische Riesenhornisse hat, bedingt durch ihre Wehrhaftigkeit, vergleichsweise wenige natürliche Feinde und ist darüber hinaus gegenüber allen anderen staatenbildenden Bienen und Wespen (andere Hornissen eingeschlossen), mit denen sie ihren Lebensraum teilt, dominant. Es kann jedoch vorkommen, dass sich rivalisierende Völker der Asiatischen Riesenhornisse gegenseitig angreifen.

Weitere Feinde dieser Hornissenart sind Wespenbussarde (Gattung Pernis), besonders der Schopfwespenbussard (Pernis ptilorhynchus), der sich wie die anderen Arten der Gattung auf staatenbildende Hautflügler spezialisiert hat und über ein dichtes Gefieder verfügt, wodurch er vor Stichen der Hornissen gut geschützt ist. Die Vögel dieser Gattung können sich dadurch auch ungehindert den Nestern der Hornissen nähern und diese anschließend ausplündern.[10]

 src=
Die Große Chinesen-Mantis (Tenodera sinensis) zählt zu den Fangschrecken, die einzelne Individuen der Asiatischen Riesenhornisse erbeuten können.

Obwohl zum Beutespektrum der Hornisse auch Fangschrecken zählen, können einzelne Individuen der Asiatischen Riesenhornisse ebenso Exemplaren von größeren Vertretern dieser Ordnung, bsp. der Großen Chinesen-Mantis (Tenodera sinensis), zum Opfer fallen.[11] Die Östliche Honigbiene kann sich einzelner Späher der Hornisse, die in deren Nest eindringen, erwehren. Ein Parasit, der sich auf die Asiatische Riesenhornisse spezialisiert hat, ist der Fächerflügler Xenos moutoni.[12]

Die größte Bedrohung für die Asiatischen Riesenhornisse geht jedoch vom Menschen aus, der die Hornisse oftmals als Lästling oder Imkereischädling einstuft und sie zu bekämpfen versucht. (s. Kapitel Bedeutung für den Menschen).[13]

Bedeutung für den Menschen

Wegen der hohen Aggressivität der Riesenhornisse gegenüber staatenbildenden Insekten wird diese besonders von Bienenzüchtern bekämpft. Da Westliche Honigbienen deutlich mehr Honig produzieren als die einheimische Asiatische Biene, greifen viele Imker eher zu chemischen Schädlingsmitteln anstatt wieder auf die Östlichen Bienen umzusteigen. Die Aggressivität gegenüber dem Menschen ist jedoch weit geringer als oft angenommen. Todesopfer gibt es hauptsächlich bei Allergikern, die durch allgemeine allergische Reaktionen auf das Gift einen Kreislaufzusammenbruch erleiden können.

In Japan sterben im Durchschnitt etwa 40 Menschen pro Jahr am Stich der Japanischen Riesenhornisse.[3] 2013 kamen in der Provinz Shaanxi in China 42 Menschen durch Angriffe von asiatischen Riesenhornissen zu Tode.[14] Die Angriffe auf Menschen resultieren meistens aus falschem Verhalten gegenüber den Tieren (nach ihnen schlagen, wegpusten oder sie zertreten). Lediglich bei der Verteidigung des Nestes reagieren die Tiere zum Teil aggressiv.

Literatur

  • Steve Backshall: Steve Backshall's Venom: Poisonous Animals in the Natural World. New Holland Publishers, London 2007, ISBN 1-84537-734-6.

Einzelnachweise

  1. Brian Handwerk: "Hornets From Hell" Offer Real-Life Fright. National Geographic News. 25. Oktober 2002. Abgerufen am 9. November 2011.
  2. a b c Asiatische Riesenhornisse. Webseite hornissenschutz.de. 15. August 2011. Abgerufen am 9. November 2011.
  3. a b Steve Backshall: Steve Backshall's Venom. S. 147ff.
  4. James M. Carpenter, Jun-ichi Kojima: Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae). In: Natural History Bulletin of Ibaraki University. Nr. 1, 1997, S. 51–92, online (PDF; 2,9 MB).
  5. Exotische hoornaar vestigt zich in Nederland – NPO Radio 1. In: nporadio1.nl. Abgerufen am 23. September 2017.
  6. Mike Baker: ‘Murder Hornets’ in the U.S.: The Rush to Stop the Asian Giant Hornet. In: The New York Times. 2. Mai 2020, ISSN 0362-4331 (nytimes.com [abgerufen am 3. Mai 2020]).
  7. Film bei Spiegel Online: Wissenschaftler filmen Einsatz - Wie man ein Nest der asiatischen Riesenhornisse unschädlich macht
  8. M. Ono, T. Igarashi, E. Ohno, M. Sasaki: Unusual thermal defense by a honeybee against mass attack by hornets (Vespa mandarinia japonica). In: Nature. (1995) 377, S. 334–336.
  9. Michio Sugahara, Fumio Sakamoto: Heat and carbon dioxide generated by honeybees jointly act to kill hornets. Naturwissenschaften, September 2009, Volume 96, Issue 9, Seiten 1133–1136.
  10. Beschreibung der Asiatischen Riesenhornisse auf Animal Diversity Web (Link)
  11. Beschreibung der Großen Chinesen-Mantis auf PRAYING-MANTIS.org (Link)
  12. Beschreibung der Asiatischen Riesenhornisse auf Animal Diversity Web (Link)
  13. Beschreibung der Asiatischen Riesenhornisse auf Animal Diversity Web (Link)
  14. Der Spiegel: China – Riesenhornissen töten mehr als 40 Menschen (Video).
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Asiatische Riesenhornisse: Brief Summary ( German )

provided by wikipedia DE
 src= Asiatische Riesenhornisse

Die Asiatische Riesenhornisse (Vespa mandarinia) ist eine in Ost- und Südostasien vorkommende Hornissenart. Asiatische Riesenhornissen sind bis zu fünfmal größer als Westliche Honigbienen. Ein Stich der Riesenhornisse wird als äußerst schmerzhaft beschrieben. In Japan sterben im Jahr durchschnittlich 40 Menschen durch eine allergische Reaktion auf die Stiche ihrer größten Unterart, der Japanischen Riesenhornisse (Vespa mandarinia japonica, jap. Ōsuzumebachi (オオスズメバチ / 大雀蜂) ‚große Sperlingsbiene‘).

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Tōa-thô͘-phang ( Nan )

provided by wikipedia emerging languages

Tōa-thô͘-phang (hàn-jī: 大塗蜂; ha̍k-miâ: Vespa mandarinia), mā hō-chò thô͘-phang-á iah sī tē-lêng-phang (地龍蜂), sī chi̍t khoán Tang-a ê hó͘-thâu-phang, mā-sī siōng-tōa khoán ê hó͘-thâu-phang. Tōa-thô͘-phang chiong phang-siū khí tī thô͘, tōng-hia̍t ia̍h sī chhiū-kin lāi-té. Bat ū lâng hō͘ in ui--tio̍h tiō sí--khì, sī chin gûi-hiám ê phang.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors

Азиски голем стршлен ( Macedonian )

provided by wikipedia emerging languages

Азискиот голем стршлен (Vespa mandarina), вклучувајќи ги и поранешните подвидови познати како јапонски голем стршлен (Vespa mandarina japonica),[2] e најголемиот стршлен во светот, родум од умерена и тропска Источна Азија. Тие претпочитаат да живеат во ниски планини и шуми, додека скоро целосно да избегнуваат рамнини и климатски височини. Стршленот создава гнезда со копање, повторно користење а постојните тунели ископани од глодари или зафаќајќи места во близина на расипани борови корени.[3] Се храни првенствено од поголеми инсекти, колонии на други еузоцијални инсекти, сирупи од дрвја и мед од колонии на пчели.[4] Стршленот има должина од 45 мм, распон на крилјата околу 75 мм и должина на осило од 6 мм, што вбризгува голема количина моќен отров.[5]

Азискиот голем стршлен понекогаш е помешан со „жолтоножестиот стршлен“ (Vespa Velutina), познат и како азискиот стршлен.

Таксономија

Азискиот голем стршлен е вид во родот осовидни (Веспи), кој ги опфаќа сите вистински стршлени и оси. Заедно со седум други видови, азискиот голем стршлен е дел од групата наречена „тропика“ или „тропски“, дефинирана со единечно ниво што се наоѓа на апикалната маргина на седмиот гастрален дел на мажјакот. Триаголен облик на апикална маргина на клипеусот на женката е дијагностичен, зглобот на двата вида е зголемен, а формата на врвот на едеагусот е слична.[6]

Опис

Без оглед на полот, главата на стршленот е светлопортокалова, а нејзините антени се кафеави со жолто-портокалови основи. Очите и окели се темно кафеави до црни. Големиот азиски се разликува од другите стршлени по изразениот клипеус. Неговата портокалова мандибула содржи црн заб што го користи за копање.[7] Градниот кош е темно кафеав, со две сиви крилја кои варира во распон од 3,5 до 7,5 см. Неговите предни екстремитети се посветли од средните и задните. Основата на предните нозе е потемна од останатите. Абдоменот наизменично се појавува помеѓу ленти темно кафеава или црна боја и жолто-портокалова нијанса (во согласност со нејзината боја на главата). Шестиот сегмент е жолт. Осилото е долго 10 мм и содржи силен отров, кој во случај на повеќекратно убоднување од повеќе стршлени може да убие и човек.[7]

Матиците се значително поголеми од работниците. Матиците може да надминат 50 мм, додека работниците се помеѓу 35 и 40 мм. Репродуктивната анатомија е конзистентна меѓу двете, но работниците не се репродуцираат.[7]

Трутовите (мажјаците) се слични на женките, но немаат осило. Ова е конзистентна карактеристика кај ципокрилците.[7]

Бележење со мирис

Големиот азиски стршлен е единствениот вид оса, за која се знае дека применува мирис за да ја насочи својата колонија кон извор на храна. Осата лачи хемикалијата од шестата стернална жлезда. Ваквото однесување е забележано за време на есенските периоди откако роговите ќе започнат да ловат во групи наместо индивидуално. Способноста да се применуваат мириси може да се појави затоа што осата многу се потпира на колониите на медоносни пчели како главен извор на храна. Едно оса не е во состојба да заземе цела колонија на пчели, бидејќи видови како Апис церана имаат добро организиран одбранбен механизам.[8]

Осило

Осилото на азискиот голем стршлен е долг околу 6 мм,[5] и инјектира особено моќен отров кој содржи, како и многу отрови од пчели и оси, цитолитски пептид (конкретно, мастопаран) што може да го оштети ткивото од стимулирачко дејство на фосфолипаза.Отровот содржи невротоксин наречен мандароксин.

Наводи

  1. Smith, F.. VIII. Descriptions of some new and apparently undescribed species of hymenopterous insects from North China, collected by Robert Fortune, Esq.. „Transactions of the Royal Entomological Society of London“ том 7 (2): 33–44. doi:10.1111/j.1365-2311.1852.tb02208.x. https://www.biodiversitylibrary.org/page/14789100#page/68/mode/1up. (Vespa mandarinia: p. 38)
  2. Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. стр. 9–11. ISBN 978-0-313-33922-6. https://archive.org/details/extraordinaryani0000pipe.
  3. Yamane, Seiki (јули 1976 г). Morphological and taxonomic studies on vespine larvae, with reference to the phylogeny of the subfamily Vespinae (Hymenoptera: Vespidae). „Insecta Matsumurana“. Series entomology. New series том 8: 1–45.
  4. Campbell, Dana (11 November 2014). Vespa mandarinia. Encyclopedia of Life. Архивирано од изворникот на 7 October 2013. конс. 16 September 2014. Unknown parameter |url-status= ignored (помош)
  5. 5,0 5,1 Handwerk, Brian (October 25, 2002). "Hornets From Hell" Offer Real-Life Fright“. National Geographic News. Архивирано од изворникот на 25 January 2010. Unknown parameter |url-status= ignored (помош)
  6. Archer, Michael E. (1993 г). A phylogenetic study of the species of the genus Vespa (Hymenoptera: Vespinae). „Entomologica Scandinavica“ том 24 (4): 475. doi:10.1163/187631293x00226. OCLC 527642543. https://www.academia.edu/4333354.
  7. 7,0 7,1 7,2 7,3 Barth, Zach; Kearns, Thomas; Wason, Elizabeth. „Vespa mandarinia“. Animal Diversity Web. University of Michigan Museum of Zoology. Архивирано од изворникот на 8 October 2015. конс. 25 September 2014. Unknown parameter |url-status= ignored (помош)
  8. Taylor, Benjamin J.; Nordheim, Erik V.; Schueller, Teresa I.; Jeanne, Robert L. (28 февруари 2011 г). Recruitment in swarm-founding wasps: Polybia occidentalis does not actively scent-mark carbohydrate food sources. „Psyche“ том 2011: 378576. doi:10.1155/2011/378576.

license
cc-by-sa-3.0
copyright
Автори и уредници на Википедија

Азиски голем стршлен: Brief Summary ( Macedonian )

provided by wikipedia emerging languages

Азискиот голем стршлен (Vespa mandarina), вклучувајќи ги и поранешните подвидови познати како јапонски голем стршлен (Vespa mandarina japonica), e најголемиот стршлен во светот, родум од умерена и тропска Источна Азија. Тие претпочитаат да живеат во ниски планини и шуми, додека скоро целосно да избегнуваат рамнини и климатски височини. Стршленот создава гнезда со копање, повторно користење а постојните тунели ископани од глодари или зафаќајќи места во близина на расипани борови корени. Се храни првенствено од поголеми инсекти, колонии на други еузоцијални инсекти, сирупи од дрвја и мед од колонии на пчели. Стршленот има должина од 45 мм, распон на крилјата околу 75 мм и должина на осило од 6 мм, што вбризгува голема количина моќен отров.

Азискиот голем стршлен понекогаш е помешан со „жолтоножестиот стршлен“ (Vespa Velutina), познат и како азискиот стршлен.

license
cc-by-sa-3.0
copyright
Автори и уредници на Википедија

Asian giant hornet

provided by wikipedia EN

The Asian giant hornet (Vespa mandarinia) or northern giant hornet,[2][3] including the color form referred to as the Japanese giant hornet,[4][5] is the world's largest hornet. It is native to temperate and tropical East Asia, South Asia, Mainland Southeast Asia, and parts of the Russian Far East. It was also found in the Pacific Northwest of North America in late 2019[6][7] with a few more additional sightings in 2020,[8][9] and nests found in 2021,[10][11] prompting concern that it could become an invasive species.[12][Ala 1] However, by the end of the season in November 2022, there were no confirmed sightings in North America at all,[13] suggesting the wasps may have been eradicated in that region.[14]

Asian giant hornets prefer to live in low mountains and forests, while almost completely avoiding plains and high-altitude climates. V. mandarinia creates nests by digging, co-opting pre-existing tunnels dug by rodents, or occupying spaces near rotten pine roots.[15][Arc 1] It feeds primarily on larger insects, colonies of other eusocial insects, tree sap, and honey from honey bee colonies.[16] The hornet has a body length of 45 mm (1+34 in), a wingspan around 75 mm (3 in), and a stinger 6 mm (14 in) long, which injects a large amount of potent venom.[17]

Taxonomy and phylogeny

form "magnifica"

V. mandarinia is a species in the genus Vespa, which comprises all true hornets. Along with seven other species, V. mandarinia is a part of the V. tropica species group, defined by the single notch located on the apical margin of the seventh gastral sternum of the male. The most closely related species within the species group is V. soror.[Arc 2][Arc 3] The triangular shape of the apical margin of the clypeus of the female is diagnostic, the vertex of both species is enlarged, and the shape of the apex of the aedeagus is distinct and similar.[18]

Division of the genus into subgenera has been attempted in the past,[19] but has been abandoned, due to the anatomical similarity among species and because behavioral similarity is not associated with phylogeny.[15] The species has been around since the Miocene as indicated by fossils found in Shanwang formation.[20]

As of 2012, three subspecies were recognized:[21] V. m. mandarinia, V. m. magnifica, and V. m. nobilis. The former subspecies referred to as V. m. japonica has not been considered valid since 1997.[22] The most recent revision in 2020 eliminated all of the subspecies rankings entirely, with "japonica", "magnifica", and "nobilis" now relegated to informal non-taxonomic names for different color forms.[4]

Common names

Since its discovery in North America, the scientific literature and official government sources refer to this species by its established common name, Asian giant hornet, whilst the mainstream media have taken to using the nickname "murder hornet".[23][24][25] In July 2022, the Entomological Society of America stated that they will adopt the common name northern giant hornet for the species.[2][26][27][28]

Description

Head detail
Hornet specimen held in a human hand to illustrate its size

Regardless of sex, the hornet's head is a light shade of orange and its antennae are brown with a yellow-orange base. Its eyes and ocelli are dark brown to black. V. mandarinia is distinguished from other hornets by its pronounced clypeus and large genae. Its orange mandible contains a black tooth that it uses for digging.[29] The thorax is dark brown, with two grey wings varying in span from 35 to 76 mm (1+38 to 3 in).[29]

Its fore legs are brighter than the mid and hind legs. The base of the fore legs is darker than the rest. The abdomen alternates between bands of dark brown or black, and a yellow-orange hue (consistent with its head color). The sixth segment is yellow. Its stinger is typically 6 mm (14 in) long and delivers a potent venom that in cases of multiple hornets stinging simultaneously can kill a human.[29]

Queens and workers

The queens are considerably larger than workers. Queens can exceed 50 mm (2 in), while workers are between 35 and 40 mm (1+25 and 1+35 in). The reproductive anatomy is consistent between the two, but workers do not reproduce.[29]

Drones

Drones (males) are similar to females, and can attain 38 millimetres (1+12 in) in length, but lack stingers. This is a consistent feature among the Hymenoptera.[29]

Larvae

Larvae spin a silk cocoon when they complete development and are ready to pupate.[30] Larval silk proteins have a wide variety of potential applications due to their wide variety of potential morphologies, including the native fiber form, but also sponge, film, and gel.[30]

Genome

The mitochondrial genome is provided by Chen et al., 2015.[31] This data has also been important to confirm the place of the wider Vespidae family in the Vespoidea superfamily, and confirms that Vespoidea is monophyletic.[31]

Misidentifications

Within two days of the initial 2020 news report on V. mandarinia, insect identification centers in the eastern United States (where the wasp does not occur) began getting identification requests, and have been swamped ever since, even though not one of the thousands of submitted photos or samples has been of V. mandarinia, but have instead primarily been wasps such as the European hornet (V. crabro), the eastern cicada killer (Sphecius speciosus), or the southern yellowjacket (Vespula squamosa).[32][33]

Submissions suspected by laypeople to be V. mandarinia also include other wasps of various sizes, bees, sawflies, horntails, wasp-mimicking flies, beetles, Jerusalem crickets, cicadas, and even a plastic children’s toy that was wasp-like in appearance, all of which were routinely estimated to be 130-185% of their actual size.[32]

Reports of this species from other parts of the world appear to be erroneous identifications of other introduced hornet species, such as V. orientalis in several locations around the world, and V. velutina in Europe.[34]

Distribution

Ecological distribution

V. mandarinia is primarily a forest dweller.[35][36] When it does live in urban landscapes, V. mandarinia is highly associated with green space.[35][Ala 2] It is the most dependent upon green space of the Vespa species (with V. analis the least).[35] Extremely urbanized areas provide a refuge for V. analis, whereas V. mandarinia – its predator – is entirely absent.[35]

Geographic distribution

An Asian giant hornet

Asia

The Asian giant hornet can be found in:

North America

The first confirmed sightings of the Asian giant hornet in North America were confirmed in 2019 and have mainly been concentrated in the Vancouver area, with nests also discovered in neighboring Whatcom County, Washington, in the United States.

  • In August 2019, three hornets were found in Nanaimo on Vancouver Island, and a large nest was found and destroyed shortly thereafter;[39][40]
  • At the end of September, a worker was reported in Blaine, Washington.[41]
  • Another worker was found in Blaine in October;[41]
  • In December 2019, another worker was found in Blaine;[8]
  • Two specimens were collected in May 2020, one from Langley, British Columbia, about 13 kilometres (8 miles) north of Blaine, and one from Custer, Washington, 14 km (9 mi) southeast of Blaine.[41]
  • One queen sighting in June 2020, from Bellingham, Washington, 24 km (15 mi) south of Custer[41]
  • An unmated queen was trapped in July 2020, near Birch Bay, Washington, 10 km (6 mi) west of Custer.[8]
  • A male hornet was captured in Custer, Washington in July 2020.[42]
  • A hornet of unknown caste was reported in August 2020, in Birch Bay, and another was trapped in the same area the following day.[41]
  • Three hornets were seen (and two killed) southeast of Blaine on 21 and 25 September 2020,[43] and three more were found in the same area on 29 and 30 September,[44] prompting officials to report that attempts were underway to pinpoint and destroy a nest believed to be in the area.[45]
  • In October 2020, the Washington State Department of Agriculture announced that a nest was found 2.5 metres (8.3 ft) above ground[46] in a cavity of a tree in Blaine, with dozens of hornets entering and leaving.[47] The nest was eradicated the next day, including the immediate discovery and removal of about 100 hornets.[48][49][50] At first the owner of the land required the nest to be returned, and he advertised it for sale.[51] A local beekeeper bought it from him and gifted it back to the state entomology team.[51] After further analysis, it was determined that the nest had contained about 500 live specimens, including about 200 queens.[46][52] Some of these specimens were sent to the Smithsonian Institution to become a part of the NMNH Biorepository permanent cryogenic collection.[53][54] It was announced that several undiscovered live nests were also believed to exist within Washington State, when considering the captures of individual hornets in Birch, Blaine, and Custer that were all relatively far from the discovered nest.[46][52][55] However, cautious optimism was expressed by officials saying that it might still be possible to eradicate the hornets before they can become established in the area.[46] A Canadian official said that although individual specimens had been found in Canada and some nests were suspected to exist there, the presence there seemed to be only in near-border regions, and the center of the invasion seemed to be in Washington State.[46]
  • In November 2020, one individual was found in Abbotsford, BC.[56][57][58][59] As a result the BC government asked Abbotsford beekeepers and residents to report any sightings.[60][61]
  • In November 2020, a queen was found in Aldergrove, BC.[62][63][64][65][66][67]
  • In August 2021, a nest was discovered in Whatcom County, Washington near Blaine, only 2 miles (3.2 km) from the nest WSDA eradicated in 2020.[10][68] This nest was destroyed two weeks later on 25 August, before it could produce new queens.[69]
  • In September 2021, two more nests were found near Blaine, in the vicinity of the nest found in August,[70][11] and a "potential sighting" was reported from near Everson, some 25 miles east of Blaine.[71]

A mitochondrial DNA analysis was performed to determine the maternal population(s) ancestral to the British Columbia and Washington introduced populations.[Wil 1] The high dissimilarity between these two was similar to the mutual distances between each of the Chinese, Japanese, and Korean native populations[Wil 2] suggesting the specimens collected in 2019 were from two different maternal populations,[Wil 3] Japanese in BC[Wil 4] and South Korean in Washington.[Wil 5] This suggests that two separate introductions of the Asian giant hornet occurred in North America within about 80 km (50 mi) of one another within a few months.

In April 2020, authorities in Washington asked members of the public to be alert and report any sightings of these hornets, which are expected to become active in April if they are in the area.[72] If they become established, the hornets "could decimate bee populations in the United States and establish such a deep presence that all hope for eradication could be lost." A "full-scale hunt" for the species by the WSDA was then underway.[23] Two assessment models of their potential to spread from their present location on the US–Canada border suggested that they could spread northward into coastal British Columbia and Southeast Alaska, and southward as far as southern Oregon.[12][Ala 3] The USDA's Agricultural Research Service is engaged in lure/attractant development and molecular genetics research, both as part of its normal research mission, but also to further the near-term eradication goal in Washington.[73]

In 2020, the United States Congress considered specific legislation to eradicate V. mandarinia[74] including a proposal by the Interior Secretary, the Fish and Wildlife Director, and the other relevant agencies, which has been introduced as an amendment to the appropriations omnibus.[75][76] British Columbia Agriculture is prepared for a "long fight" lasting years, if necessary.[77] One advantage humans will have is the lack of diversity of such an invasive population – leaving the hornets less prepared for novel environments and challenges.[77]

In June 2021 a dead, desiccated male was found near Marysville, Snohomish County, Washington and reported to WSDA. Its different, more reddish color form immediately suggested yet another parental population from the Japanese and Korean ones already known. USDA APHIS (Animal and Plant Health Inspection Service) performed a genetic analysis several days later and, together with WSDA, confirmed it was of a third, unrelated population. The discovery of a male in June is "perplexing" given that the earliest male emergence in 2020 was July, which was already earlier than normal for the home range. This and its desiccated state indicate it did not emerge in 2021 at all, but is instead a dead specimen that had already emerged in a previous year.[78]

The WSDA announced in December 2022 that there were "no confirmed sightings" of the hornet in the state for that year.[13]

Nesting

V. mandarinia nests in low mountain foothills and lowland forests.[35][Arc 1] As a particularly dominant species, no efforts are directed toward conserving V. mandarinia or its habitats, as they are common in areas of low human disturbance.[35] Unlike other species of Vespa, V. mandarinia almost exclusively inhabits subterranean nests[35][Arc 1] – in 1978 it was still doubted that aerial nests were possible, as Matsuura and Sakagami reported this to be unknown in Japan in 1973[79] and aerial nesting is still described as extremely rare in Japan,[37] and yet as of 2021 all nests in the invasive range have been aerial.

In a study of 31 nests, 25 were found around rotten pine roots, and another study found only 9 of 56 nests above ground.[Arc 1] Additionally, rodents, snakes, or other burrowing animals previously made some of the tunnels.[Arc 1] The depth of these nests was between 6 and 60 cm (2 and 24 in). The entrance at the ground surface varies in length from 2 to 60 cm (1 to 24 in) either horizontally, inclined, or vertically. The queens that found the nest prefer narrow cavities.[36]

Nests of V. mandarinia typically lack a developed envelope. During the initial stages of development, the envelope is in an inverted-bowl shape.[Arc 4] As the nest develops, one to three rough sheets of combs are created. Often, single primordial combs are created simultaneously and then fused into a single comb.[36]

A system of one main pillar and secondary pillars connects the combs. Nests usually have four to seven combs.[Arc 4] The top comb is abandoned after summer and left to rot. The largest comb is at the middle to bottom portion of the nest. The largest combs created by V. mandarinia measured 49.5 by 45.5 cm (19+12 by 18 in) with 1,192 cells (no obstacles, circular) and 61.0 by 48.0 cm (24 by 19 in) (elliptical; wrapped around a root system).[36]

Colony cycle

The nesting cycle of V. mandarinia is fairly consistent with that of other eusocial insects. Six phases occur in each cycle.[36]

Pre-nesting period

Inseminated and uninseminated queens enter hibernation following a cycle. They first appear in early to mid-April and begin feeding on the sap of Quercus (oak) trees. Although this timing is consistent among hornets, V. mandarinia dominates the order, receiving preference for premium sap sources. Among the V. mandarinia queens is a dominance hierarchy. The top-ranked queen begins feeding, while the other queens form a circle around her. Once the top queen finishes, the second-highest-ranking queen feeds. This process repeats until the last queen feeds at a poor hour.[36]

Solitary, cooperative, and polyethic periods

Inseminated queens start to search for nesting sites in late April. The uninseminated queens do not search for nests, since their ovaries never fully develop. They continue to feed, but then disappear in early July.

An inseminated queen begins to create relatively small cells in which she raises around 40 small workers. Workers do not begin to work outside of the hive until July. Queens participate in activities outside the hive until mid-July, when they stay inside the nest and allow workers to do extranidal activities. Early August marks a fully developed nest, containing three combs holding 500 cells and 100 workers. After mid-September, no more eggs are laid and the focus shifts to caring for larvae. The queens die in late October.[36]

Dissolution and hibernating period

Male

Males and new queens take on their responsibilities in mid-September and mid-October, respectively. During this time, their body color becomes intense and the weights of the queens increase about 20%. Once the males and queens leave the nest, they do not return. In V. mandarinia, males wait outside the nest entrance until the queens emerge, when males intercept them in midair, bring them to the ground, and copulate from 8 to 45 seconds. After this episode, the males return to the entrance for a second chance, while the now-mated queens leave to hibernate. Many queens (up to 65%) attempt to fight off the males and leave unfertilized,[37] at least temporarily. After this episode, pre-hibernating queens are found in moist, subterranean habitats.

When sexed individuals emerge, workers shift their focus from protein and animal foods to carbohydrates. The last sexed individuals to emerge may die of starvation.[36]

Sting

The stinger of the Asian giant hornet is about 6 mm (14 in) long,[17] which is about 4.5 mm (316 in) longer than that of a honeybee.[80]

Venom

Their stinger injects an especially potent venom that contains mastoparan-M.[81] Mastoparans are found in many bee and wasp venoms.[81] They are cytolytic peptides that can damage tissue by stimulating phospholipase action, in addition to its own phospholipase.[81][36] Masato Ono, an entomologist at Tamagawa University, described the sensation of being stung as feeling "like a hot nail being driven into my leg".[17] Besides using their stingers to inject venom, Asian giant hornets are apparently able to spray venom into a person's eyes under certain circumstances, with one report in 2020 from Japan of long-term damage, though the exact extent of actual visual impairment still remains unassessed.[82]

The venom contains a neurotoxin called mandaratoxin,[36][Abe 1] a single-chain polypeptide with a molecular weight around 20 kDa.[36][Abe 2] While a single wasp cannot inject a lethal dose, multiple stings can be lethal even to people who are not allergic if the dose is sufficient, and allergy to the venom greatly increases the risk of death. Tests involving mice found that the venom falls short of being the most lethal of all wasp venoms, having an LD50 of 4.0 mg/kg. (In comparison, the deadliest wasp venom (at least to laboratory mice) by weight belongs to V. luctuosa at 1.6 mg/kg.) The potency of the V. mandarinia sting is due, rather, to the relatively large amount of venom injected.[83]

Immunogenicity

Evidence is insufficient to believe that prophylactic immunotherapy for the venom of other Vespidae will prevent allergic reaction to V. mandarinia venom, because of wide differences in venom chemistry.[84]

Effects on humans

In 1957, van der Vecht was under the impression humans in the native range lived in constant fear of V. mandarinia and Iwata reported in 1976 that research and removal were hampered by its attacks.[79] However they are now widely agreed to present little danger to humans.[85]

Parasites

The strepsipteran Xenos moutoni is a common parasite among Vespa species. In a study of parasites among species of Vespa, 4.3% of V. mandarinia females were parasitized. Males were not stylopized (parasitization by stylopid strepsipterans, such as X. moutoni) at all. The major consequence of being parasitized is the inability to reproduce, and stylopized queens follow the same fate as uninseminated queens. They do not search for an area to create a new colony and feed on sap until early July, when they disappear. In other species of Vespa, males also have a chance of being stylopized. The consequences between the two sexes are similar, as neither sex is able to reproduce.[86]

Communication and perception

V. mandarinia uses both visual and chemical cues as a means of navigating itself and others to the desired location. Scent marking was discussed as a way for hornets to direct other members of the colony to a food source. Even with antennae damage, V. mandarinia was able to navigate itself. It was unable to find its destination only when vision impairment was induced. This implies that while chemical signaling is important, visual cues play an equally important role in guiding individuals. Other behaviors include the formation of a "royal court" consisting of workers that lick and bite the queen, thereby ingesting her pheromones.

These pheromones could directly communicate between the queen and her court or indirectly between her court and other workers due to the ingested pheromones. This is merely speculation, as no direct evidence has been collected to suggest the latter. V. mandarinia communicates acoustically, as well. When larvae are hungry, they scrape their mandibles against the walls of the cell. Furthermore, adult hornets click their mandibles as a warning to other creatures that encroach upon their territories.[29][87]

Scent marking

V. mandarinia is the only species of social wasp known to apply a scent to direct its colony to a food source. The hornet secretes the chemical from the sixth sternal gland, also known as van der Vecht's gland. This behavior is observed during autumnal raids after the hornets begin hunting in groups instead of individually. The ability to apply scents may have arisen because the Asian giant hornet relies heavily on honey bee colonies as its main food source.[88][79]

A single hornet is unable to take on an entire colony of honey bees because species such as Apis cerana have a well-organized defense mechanism. The honey bees swarm one wasp and flutter their wings to heat up the hornet and raise carbon dioxide to a lethal level. So, organized attacks are much more effective and easily devastate a colony of tens of thousands of honey bees.[88][79]

Interspecies dominance

In an experiment observing four different species of Vespa (V. ducalis, V. crabro, V. analis, and V. mandarinia), V. mandarinia was the dominant species. Multiple parameters were set to determine this. The first set parameter observed interaction-mediated departures, which are defined as scenarios wherein one species leaves its position due to the arrival of a more dominant individual. The proportion of interaction-mediated departures was the lowest for V. mandarinia. Another measured parameter was attempted patch entry. Over the observed time, conspecifics (interactions with the same species) resulted in refused entry far more than heterospecifics (interactions with different species).[89]

Lastly, when feeding at sap flows, fights between these hornets, Pseudotorynorrhina japonica, Neope goschkevitschii, and Lethe sicelis were observed, and once more V. mandarinia was the most dominant species. In 57 separate fights, one loss was observed to Neope goschkevitschii, giving V. mandarinia a win rate of 98.3%. Based on interaction-mediated departures, attempted patch entry, and interspecific fights, V. mandarinia is the most dominant Vespa species.[89]

Diet

Feeding on a mantis

The Asian giant hornet is intensely predatory; it hunts medium- to large-sized insects, such as bees,[36][90] other hornet and wasp species, beetles, hornworms,[91] and mantises. The latter are favored targets in late summer and fall. Large insects such as mantises are key protein sources to feed queen and drone larvae. Workers forage to feed their larvae, and since their prey can include crop pests, the hornets are sometimes regarded as beneficial.[91]

This hornet often attacks colonies of other Vespa species (V. simillima being the usual prey species), Vespula species,[91] and honey bee (such as Apis cerana and A. mellifera)[91] hives to obtain the adults, pupae, and larvae as food for their own larvae. Sometimes, they cannibalize each other's colonies. A single scout, sometimes two or three, cautiously approaches the hive, producing pheromones to lead its nest-mates to the hive. The hornets can devastate a colony of honey bees, especially if it is the introduced western honey bee. A single hornet can kill as many as 40 bees per minute due to its large mandibles, which can quickly strike and decapitate prey.[92]

The honey bees' stings are ineffective because the hornets are five times their size and heavily armored. Only a few hornets (under 50) can exterminate a colony of tens of thousands of bees in a few hours. The hornets can fly up to 100 km (60 mi) in a single day, at speeds up to 40 km/h (25 mph).[93] The smaller Asian hornet similarly preys on honey bees, and has been spreading throughout Europe.

Hornet larvae, but not adults, can digest solid protein. The adult hornets can only drink the juices of their victims, and they chew their prey into a paste to feed to their larvae. The workers dismember the bodies of their prey to return only the most nutrient-rich body parts, such as flight muscles, to the nest.[5] Larvae of predatory social vespids generally, not just Vespa, secrete a clear liquid, sometimes referred to as Vespa amino acid mixture, the exact amino acid composition of which varies considerably from species to species, and which they produce to feed the adults on demand.[94]

Native honey bees

A defensive ball of Japanese honey bees (A. c. japonica) in which two Japanese hornets (V. simillima xanthoptera) are engulfed, incapacitated, heated, and eventually killed. This sort of defense is also used against the Asian giant hornet.

Beekeepers in Japan attempted to introduce western honey bees (Apis mellifera) for the sake of their high productivity. Western honey bees have no innate defense against the hornets, which can rapidly destroy their colonies.[5] Kakugo virus infection, though, may provide an extrinsic defence.[95] Although a handful of Asian giant hornets can easily defeat the uncoordinated defenses of a western honey bee colony, the Japanese honey bee (Apis cerana japonica) has an effective strategy. When a hornet scout locates and approaches a Japanese honey bee hive, she emits specific pheromonal hunting signals. When the Japanese honey bees detect these pheromones, 100 or so gather near the entrance of the nest and set up a trap, keeping the entrance open.[96]

This permits the hornet to enter the hive. As the hornet enters, a mob of hundreds of bees surrounds it in a ball, completely covering it and preventing it from reacting effectively. The bees violently vibrate their flight muscles in much the same way as they do to heat the hive in cold conditions.[96] This raises the temperature in the ball to the critical temperature of 46 °C (115 °F).[96]

In addition, the exertions of the honey bees raise the level of carbon dioxide (CO2) in the ball.[96] At that concentration of CO2, they can tolerate up to 50 °C (122 °F), but the hornet cannot survive the combination of high temperature and high carbon dioxide level.[96] Some honey bees do die along with the intruder, much as happens when they attack other intruders with their stings, but by killing the hornet scout, they prevent it from summoning reinforcements that would wipe out the entire colony.[97]

Detailed research suggests this account of the behavior of the honey bees and a few species of hornets is incomplete and that the honey bees and the predators are developing strategies to avoid expensive and mutually unprofitable conflict. Instead, when honey bees detect scouting hornets, they transmit an "I see you" signal that commonly warns off the predator.[98] Another defence used by Apis cerana is speeding up dramatically when returning to the colony, to avoid midair attacks.

Diet in North America

The WSDA found V. mandarinia to be preying on cluster fly, orange legged drone fly, bristle fly, bronze birch borer beetle, western honey bee, western yellowjacket, German yellowjacket, aerial yellowjacket, bald faced hornet, European paper wasp, golden paper wasp, paddle-tailed darner dragonfly, shadow darner dragonfly, large yellow underwing moth, blinded sphinx moth, and red admiral butterfly (Vanessa atalanta). They had also eaten cow's meat, but the WSDA assumes this to be beef from a hamburger.[99]

Pollination

V. mandarinia is not solely carnivorous, but also a pollinator. It is among the diurnal pollinators of the obligate plant parasite Mitrastemon yamamotoi.[100] It is among the most common pollinators of Musella lasiocarpa in the Yunnan Province of China.[101]

Extermination methods

As of 1973, six different methods were used to control hornets in Japan; these methods decrease damage done by V. mandarinia.

Beating

Hornets are crushed with wooden sticks with flat heads. Hornets do not counterattack when they are in the bee-hunting phase or the hive-attack phase ("slaughter"), but they aggressively guard a beehive once they kill the defenders and occupy it. The biggest expenditure in this method is time, as the process is inefficient.[36]

Nest removal

Applying poisons or fires at night is an effective way of exterminating a colony. The most difficult part about this tactic is finding the subterranean nests. The most common method of discovering nests is giving a piece of frog or fish meat attached to a cotton ball to a wasp and following it back to its nest. With V. mandarinia, this is particularly difficult considering its common home flight radius of 1–2 kilometres (0.62–1.24 mi). V. mandarinia travels up to 8 kilometres (5.0 mi) away from the nest.[36][102]

For the rare nest that is up in a tree, wrapping the tree in plastic and vacuuming the hornets out is used.[50]

Bait traps

Bait traps can be placed in apiaries. The system consists of multiple compartments that direct the hornet into a one-sided hole which is difficult to return through once it is in the cul-de-sac compartment, an area located at the top of the box from which honey bees can escape through a mesh opening, but wasps cannot due to their large size. Baits used to attract the hornets include a diluted millet jelly solution or a crude sugar solution with a mixture of intoxicants, vinegar, or fruit essence.[36]

The WSDA has been using plastic bottle traps, baited with fruit juice and added alcohol. The alcohol is used because it repels bees, but not V. mandarinia, thus reducing the bycatch.[103]

Mass poisoning

Hornets at the apiary are captured and fed a sugar solution or bee that has been poisoned with malathion. The toxin is expected to spread through trophallaxis. This method is good in principle, but has not been tested extensively.[36]

Trapping at hive entrances

The trap is attached to the front of beehives. The effectiveness of the trap is determined by its ability to capture hornets while allowing honey bees to escape easily. The hornet enters the trap and catches a bee. When it tries to fly back through the entrance of the hive, it hits the front of the trap. The hornet flies upwards to escape and enters the capture chamber, where the hornets are left to die. Some hornets find a way to escape the trap through the front, so these traps can be very inefficient.[36]

Protective screens

As explained in the trapping section, if met by resistance, hornets lose the urge to attack and instead retreat. Different measures of resistance include weeds, wire, or fishing nets or limiting the passage size so only honey bees can make it through. Experienced hornets catch on and eventually stay on these traps, awaiting the arrival of bees. The best method of controlling hornets is to combine protective screens with traps.[36]

Human consumption

In some Japanese mountain villages, the nests are excavated and the larvae are considered a delicacy when fried.[5] In the central Chūbu region, these wasps are sometimes eaten as snacks or an ingredient in drinks. The grubs are often preserved in jars, pan-fried or steamed with rice to make a savory dish called hebo-gohan. The adults are fried on skewers, stinger and all, until the body becomes crunchy.[104]

Economic impact

If V. mandarinia settles all suitable habitats in North America, control costs in the United States will be over US$113.7 million/year (possibly significantly higher).[Ala 4]

Agricultural impact

If V. mandarinia reaches all suitable habitat in North America, bee products would bring in US$11.98 ± 0.64 million less per year, and bee-pollinated crops would produce US$101.8 million less per year.[Ala 5] New York, Massachusetts, Pennsylvania, Connecticut, North Carolina, New Jersey, and Virginia would be most severely affected.[Ala 6] By region, New England would be worst hit, and to a lesser degree the entire northeast and the entirety of eastern North America.[Ala 6] New England would become by far the greatest concentration of V. mandarinia in the world, far surpassing the original introduction site (the Pacific Northwest), and even its home range of East Asia.[Ala 6] Alfalfa/other hays, apples, grapes, tobacco, cotton, and blueberries would be the crops most severely affected.[Ala 7]

See also

References

  1. ^ Smith, F. (1852). "VIII. Descriptions of some new and apparently undescribed species of hymenopterous insects from North China, collected by Robert Fortune, Esq". Transactions of the Royal Entomological Society of London. Royal Entomological Society. 7 (2): 33–44. doi:10.1111/j.1365-2311.1852.tb02208.x. (Vespa mandarinia: p. 38)
  2. ^ a b
  3. ^ "Giant hornet gets new name". agr.wa.gov. Retrieved 25 July 2022.
  4. ^ a b Smith-Pardo, Allan H; Carpenter, James M.; Kimsey, Lynn; Hines, Heather (May 2020). "The diversity of hornets in the genus Vespa (Hymenoptera: Vespidae; Vespinae), their importance and interceptions in the United States". Insect Systematics and Diversity. 4 (3). doi:10.1093/isd/ixaa006.
  5. ^ a b c d e Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. pp. 9–11. ISBN 978-0-313-33922-6.
  6. ^ BC Gov News: Asian Giant Hornet nest eradicated in Nanaimo.
  7. ^ USDA New Pest Response Guidelines: Vespa mandarinia Asian giant hornet.
  8. ^ a b c "Hornets". Washington State Department of Agriculture.
  9. ^ "WSDA News Releases". Washington State Department of Agriculture.
  10. ^ a b "Washington state has first live 'murder hornet' sighting of 2021". NBC News. 13 August 2021. Retrieved 13 August 2021.
  11. ^ a b "3rd murder hornet nest of 2021 found in northwest Washington". 11 September 2021.
  12. ^ a b Zhu, Gengping; Gutierrez Illan, Javier; Looney, Chris; Crowder, David W. (2020). "Assessing the ecological niche and invasion potential of the Asian giant hornet". Proceedings of the National Academy of Sciences. 117 (40): 24646–24648. Bibcode:2020PNAS..11724646Z. doi:10.1073/pnas.2011441117. PMC 7547231. PMID 32963093.
  13. ^ a b Bartick, Alex (6 December 2022). "No northern giant hornets found in Washington in 2022". KOMO News (Seattle, Washington). Retrieved 7 December 2022.
  14. ^ Murder Hornets Appear to Have Been Driven Out of the U.S. - Newsweek 10/17/22
  15. ^ a b Yamane, Seiki (July 1976). "Morphological and taxonomic studies on vespine larvae, with reference to the phylogeny of the subfamily Vespinae (Hymenoptera: Vespidae)". Insecta Matsumurana. Entomology. Faculty of Agriculture Hokkaido University HUSCAP. 8: 1–45. hdl:2115/9782. Retrieved 14 January 2021.
  16. ^ Campbell, Dana (11 November 2014). "Vespa mandarinia". Encyclopedia of Life. Archived from the original on 7 October 2013. Retrieved 16 September 2014.
  17. ^ a b c Handwerk, Brian (25 October 2002). ""Hornets From Hell" Offer Real-Life Fright". National Geographic News. Archived from the original on 25 January 2010.
  18. ^ Archer, Michael E. (1993). "A phylogenetic study of the species of the genus Vespa (Hymenoptera: Vespinae)". Insect Systematics & Evolution. 24 (4): 469–478. doi:10.1163/187631293x00226.
  19. ^ Vecht, Jacobus van der (21 May 1959). "Notes on oriental Vespinae, including some species from China and Japan (Hymenoptera, Vespidae)". Zoologische Mededelingen. Naturalis. 36 (13): 205–232.
  20. ^ "Vespa mandarinia Smith 1852 (Asian giant hornet)". PBDB.org.
  21. ^ Archer, M.E. (2012). Penney, D. (ed.). Vespine wasps of the world: behaviour, ecology and taxonomy of the Vespinae. Monograph Series. Vol. 4. Siri Scientific. ISBN 9780956779571. OCLC 827754341.
  22. ^ Carpenter, James M. & Kojima, Jun-ichi (1997). "Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae)" (PDF). Natural History Bulletin of Ibaraki University. 1: 51–92.
  23. ^ a b Baker, Mike (2 May 2020). "'Murder Hornets' in the U.S.: The Rush to Stop the Asian Giant Hornet". The New York Times. Retrieved 5 May 2020.
  24. ^ "Murder hornet". Collins English Dictionary. Retrieved 1 November 2020.
  25. ^ Garvey, Kathy Keatley (4 May 2020). "About Those Asian Giant Hornets..." UC Davis: San Mateo & San Francisco Counties. University of California, Davis. Retrieved 22 May 2021. "It's ridiculous to call them murder hornets," says noted UC Davis wasp expert and researcher Lynn Kimsey, director of the Bohart Museum of Entomology and professor of entomology, UC Davis Department of Entomology and Nematology.
  26. ^ "'Murder hornets' get a new name; now called northern giant hornets". FOX 13 Seattle. 25 July 2022. Retrieved 25 July 2022.
  27. ^ Schlosser, Kurt (25 July 2022). "Murder hornets get a new name, but desire to wipe them out in Washington state remains the same". GeekWire. Retrieved 25 July 2022.
  28. ^ "'Murder Hornet' Rebranding Makes A Clean Break From Crime". news.yahoo.com. Retrieved 27 July 2022.
  29. ^ a b c d e f Barth, Zach; Kearns, Thomas; Wason, Elizabeth. "Vespa mandarinia". Animal Diversity Web. University of Michigan Museum of Zoology. Archived from the original on 8 October 2015. Retrieved 25 September 2014.
  30. ^ a b Kuroda, Reiko; Kameda, Tsunenori (31 January 2018). "Conformation change of hornet silk proteins in the solid phase in response to external stimulation". Chirality. Wiley. 30 (5): 541–547. doi:10.1002/chir.22824. ISSN 0899-0042. PMID 29384590.
  31. ^ a b
  32. ^ a b Michael J Skvarla, Matthew A Bertone, Patrick J Liesch (2022) Murder Hornet Mayhem: The Impact of the 2020 Giant Hornet Panic and COVID-19 Pandemic on Arthropod Identification Laboratories. American Entomologist 68(2): 38–43, https://doi.org/10.1093/ae/tmac029
  33. ^ AGH and look-alikes; WSDA
  34. ^ Osterloff, Emily (12 March 2020). "Why Asian hornets are bad news for British bees". Natural History Museum, London. Retrieved 11 November 2020.
  35. ^ a b c d e f g Azmy, Muna Maryam; Hosaka, Tetsuro; Numata, Shinya (2016). "Responses of four hornet species to levels of urban greenness in Nagoya city, Japan: Implications for ecosystem disservices of urban green spaces". Urban Forestry & Urban Greening. Elsevier BV. 18: 117–125. doi:10.1016/j.ufug.2016.05.014. ISSN 1618-8667. S2CID 89290615.
  36. ^ a b c d e f g h i j k l m n o p q r Matsuura, Makoto; Sakagami, Shôichi F. (1973). "A Bionomic Sketch of the Giant Hornet, Vespa mandarinia, a Serious Pest for Japanese Apiculture (With 12 Text-figures and 5 Tables)". 北海道大學理學部紀要 [Journal of the Faculty of Science Hokkaido University Series VI. Zoology]. 北海道大學 (Hokkaido University). 19 (1): 125–162. hdl:2115/27557. S2CID 55398608.
  37. ^ a b c "Asian Giant Hornets". Penn State Extension. 6 May 2020. Retrieved 19 November 2020.
  38. ^ "broadcast listing". TV Asahi. 28 September 2008.
  39. ^ "British Columbia Ministry of Agriculture Pest Alert: Asian Giant Hornet" (PDF). September 2019.
  40. ^ Bérubé, Conrad (February 2020). "Giant Alien Insect Invasion Averted – Canadian Beekeepers Thwart Apicultural Disaster" (PDF). American Bee Journal: 209–214.
  41. ^ a b c d e "Confirmed Asian giant hornet detections". Washington State Department of Agriculture.
  42. ^ "First male 'murder hornet' trapped in Wash. state". KOMO News. 17 August 2020. Retrieved 2 November 2020.
  43. ^ Relyea, Kie (30 September 2020). "Three more Asian giant hornets found in Whatcom. Why the warm weather could mean more". Bellingham Herald. Retrieved 2 November 2020..
  44. ^ "Detection and Eradication Data". Washington State Department of Agriculture. Retrieved 2 November 2020.
  45. ^ "Washington State Officials Hunt for Colony of 'Murder Hornets'". The New York Times. 3 October 2020.
  46. ^ a b c d e "Washington State Department of Agriculture Press Conference". TVW. 10 November 2020. Retrieved 11 November 2020.
  47. ^ Geranios, Nicholas (23 October 2020). "Washington state discovers first 'murder hornet' nest in US". AP News. Retrieved 23 October 2020.
  48. ^ "Washington state crews destroy first US murder hornet nest". The Guardian. Associated Press. 24 October 2020. Retrieved 25 October 2020.
  49. ^ Geranios, Nicholas (26 October 2020). "Scientists remove 98 'murder hornets' in Washington state". AP News. Retrieved 26 October 2020.
  50. ^ a b Salp, Karla (30 October 2020). "Stirring up a hornet nest – safely". Washington State Department of Agriculture. Retrieved 3 November 2020.
  51. ^ a b Main, Douglas (2022). "The untold, dramatic story behind the discovery of America's first murder hornet nest". National Geographic. National Geographic Society.
  52. ^ a b "'Murder hornet' nest with nearly 200 queens destroyed 'in the nick of time'". CBS News. 11 November 2020. Retrieved 11 November 2020.
  53. ^ Eisenstadt, Abigail (17 November 2020). "Family Members Follow Original Asian Giant Hornet to Smithsonian". Smithsonian Magazine. Smithsonian Institution. Retrieved 18 November 2020.
  54. ^ "Frozen 'murder hornets' shipped across the country for further study". KATU. 17 November 2020. Retrieved 18 November 2020.
  55. ^ "'Murder hornets': More nests likely to be found in US". BBC News. 11 November 2020. Retrieved 12 November 2020.
  56. ^ "B.C. beekeepers and residents asked to keep lookout after discovery of another Asian giant hornet". CBC. 3 November 2020. Retrieved 4 November 2020.
  57. ^ Mooney, Harrison (3 November 2020). "Residents alerted after 'murder hornet' found in Abbotsford". Vancouver Sun. Retrieved 4 November 2020.
  58. ^ Azpiri, Jon (3 November 2020). "'Murder hornet' spotted in Abbotsford, B.C." Global News. Retrieved 4 November 2020.
  59. ^ ""Murder hornet" discovered in Abbotsford neighbourhood". Daily Hive Vancouver. 3 November 2020. Retrieved 4 November 2020.
  60. ^ "Asian giant hornet found in Abbotsford". Province of British Columbia News Archive. 3 November 2020. Retrieved 4 November 2020.
  61. ^ Georgiou, Aristos (9 November 2020). "Murder hornets discovered 100 miles from Seattle as invasion of North America continues". Newsweek. Retrieved 9 November 2020.
  62. ^ jonazpiri (10 November 2020). "Another 'murder hornet' spotted in B.C. – BC". Global News. Retrieved 13 November 2020.
  63. ^ Daflos, Penny (12 November 2020). "Residents find queen 'murder hornet' in B.C.'s Fraser Valley as ministry traps sit empty". CTV News. Retrieved 13 November 2020.
  64. ^ Mangione, Kendra (10 November 2020). "2 'murder hornets' found about 5 kilometres apart within 5 days in B.C." CTV News. Retrieved 13 November 2020.
  65. ^ "Another 'murder hornet' discovered in B.C.'s Fraser Valley". CTV News. 3 November 2020. Retrieved 13 November 2020.
  66. ^ Claxton, Matthew (28 May 2020). "Asian giant "murder hornets" found in Brookswood". Aldergrove Star. Retrieved 13 November 2020.
  67. ^ "Two more 'murder hornets' turn up on B.C. mainland". AgCanada.
  68. ^ "STATE ENTOMOLOGISTS CONFIRM THE FIRST LIVE ASIAN GIANT HORNET SIGHTING OF 2021". Washington State Department of Agriculture. 8 September 2020. Retrieved 13 August 2021.
  69. ^ "State eradicates first Asian giant hornet nest of 2021, asks public to continue reporting".
  70. ^ "3rd Asian giant hornet nest of 2021 found, 2nd nest eradicated in Whatcom County". 10 September 2021.
  71. ^ "Suspected Asian giant hornet spotted farther east than other sightings". 17 September 2021.
  72. ^ Holpuch, Amanda (2 May 2020). "'Murder hornets' in Washington state threaten bees and whip up media swarm; Asian giant hornet, which became more active in the state in April, is the world's largest and can kill humans with multiple stings". The Guardian.
  73. ^ "ARS Takes On the Asian Giant Hornet". USDA ARS AgResearch Magazine. Retrieved 18 November 2020.
  74. ^ Grijalva, Raul M. (8 May 2020). "Murder Hornet Eradication Act of 2020" (PDF).
  75. ^ "Rules Committee Print 116–68 Text of the House Amendment to the Senate Amendment to H.R. 133" (PDF). p. 1606.
  76. ^ Burton, Bonnie (21 December 2020). "US Congress to establish 'murder hornet' eradication pilot program". CNET. Retrieved 22 December 2020.
  77. ^ a b Cecco, Leyland (1 January 2021). "Beekeepers brace for next round with Canada's 'murder hornets'". The Guardian. Retrieved 1 January 2021.
  78. ^ "State and Federal Entomologists Confirm New Asian Giant Hornet Detection in Snohomish County". Washington State Department of Agriculture. 16 June 2021. Retrieved 16 June 2021.
  79. ^ a b c d Akre, R D; Davis, H G (1978). "Biology and Pest Status of Venomous Wasps". Annual Review of Entomology. Annual Reviews. 23 (1): 215–238. doi:10.1146/annurev.en.23.010178.001243. ISSN 0066-4170. PMID 343706.
  80. ^ Doumani, Beshara (May 1987). "We are Here to Stay". MERIP Middle East Report (146): 15–18. doi:10.2307/3011869. JSTOR 3011869.
  81. ^ a b c
  82. ^ Hirano, Koji; Tanikawa, Atsuhiro (May–August 2020). "Ocular injury caused by the sprayed venom of the Asian Giant Hornet (Vespa mandarinia)". Case Reports in Ophthalmology. 11 (2): 430–435. doi:10.1159/000508911. PMC 7506230. PMID 32999672. S2CID 221882297.
  83. ^ Schmidt, Justin O.; Yamane, Soichi; Matsuura, Makoto; Starr, Christopher K. (1986). "Hornet venoms: Lethalities and lethal capacities" (PDF). Toxicon. Elsevier. 24 (9): 950–954. doi:10.1016/0041-0101(86)90096-6. PMID 3810666.
  84. ^ Pongracic, Jacqueline A. "Vespid allergy and Asian giant hornet". American Academy of Allergy Asthma & Immunology.
  85. ^ "Human Health". Washington State Department of Agriculture. 2020. Retrieved 10 August 2022.
  86. ^ Makino, Shun'ichi; Yamashita, Yoshiharu (25 December 1998). "Levels of Parasitism by Xenos moutoni du Buysson (Strepsiptera, Stylopidae) and their Seasonal Changes in Hornets (Hymenoptera: Vespidae, Vespa) Caught with Bait Traps" (PDF). Entomological Science. 1 (4): 537–543. ISSN 1479-8298. NAID 110003374544. Archived (PDF) from the original on 20 March 2019. Retrieved 25 September 2014.
  87. ^ "Vespa mandarinia". University of Wisconsin–La Crosse (UWL). Archived from the original on 10 January 2019. Retrieved 25 September 2014.
  88. ^ a b Taylor, Benjamin J.; Nordheim, Erik V.; Schueller, Teresa I.; Jeanne, Robert L. (2011). "Recruitment in swarm-founding wasps: Polybia occidentalis does not actively scent-mark carbohydrate food sources". Psyche. 2011: 1–7. doi:10.1155/2011/378576.
  89. ^ a b Yoshimoto, J.; Nishida, T. (1 March 2009). "Factors Affecting Behavioral Interactions Among Sap-Attracted Insects". Annals of the Entomological Society of America. 102 (2): 201–209. doi:10.1603/008.102.0203.
  90. ^ Richter, M. Raveret (2000). "Social Wasp (Hymenoptera: Vespidae) Foraging Behavior". Annual Review of Entomology. Annual Reviews. 45 (1): 121–150. doi:10.1146/annurev.ento.45.1.121. ISSN 0066-4170. PMID 10761573. p. 126: Social wasps use masticated arthropod prey and other animal protein to progressively provision their developing brood. Prey items most commonly include a variety of arthropods such as ... bees (...79...)...
  91. ^ a b c d "Adw: : Information".
  92. ^ Kosmeier, Dieter (27 January 2013). "Vespa mandarinia (Asian Giant Hornet) page". Vespa-crabro.de. Retrieved 18 March 2013.
  93. ^ Kosmeier, Dieter (27 January 2013). "Vespa mandarinia (Asian Giant Hornet) page". Vespa-crabro.de. Retrieved 18 March 2013.
  94. ^ Hunt, James H.; Baker, Irene; Baker, Herbert G. (November 1982). "Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps". Evolution. 36 (6): 1318–1322. doi:10.2307/2408164. JSTOR 2408164. PMID 28563573.
  95. ^ Hamblin, Steven R.; White, Peter A.; Tanaka, Mark M. (2014). "Viral niche construction alters hosts and ecosystems at multiple scales". Trends in Ecology & Evolution. Cell Press. 29 (11): 594–599. doi:10.1016/j.tree.2014.08.005. ISSN 0169-5347. PMID 25237032.
  96. ^ a b c d e
  97. ^ "Defensive Adaptations: Heat Tolerance As A Weapon". Bio.davidson.edu. 2001. Archived from the original on 4 November 2013. Retrieved 18 March 2013.
  98. ^ Tan, Ken; Wang, Zhenwei; Li, Hua; Yang, Shuang; Hu, Zongwen; Kastberger, Gerald; Oldroyd, Benjamin P. (2012). "An 'I see you' prey–predator signal between the Asian honeybee, Apis cerana, and the hornet, Vespa velutina". Animal Behaviour. 83 (4): 879–882. doi:10.1016/j.anbehav.2011.12.031. S2CID 53192582.
  99. ^ Salp, Karla (3 August 2021). "Hungry hornet babies – what's on their menu in the PNW?". Washington State Department of Agriculture AgBriefs. Retrieved 13 August 2021.
  100. ^ Suetsugu, K. (6 September 2018). Dafni, A. (ed.). "Social wasps, crickets and cockroaches contribute to pollination of the holoparasitic plant Mitrastemon yamamotoi (Mitrastemonaceae) in southern Japan". Plant Biology. Wiley. 21 (1): 176–182. doi:10.1111/plb.12889. ISSN 1435-8603. PMID 30098096.
  101. ^
  102. ^ Molteni, Megan (24 August 2020). "Inside the Sprint to Map the Murder Hornet Genome". Wired. Retrieved 2 November 2020.
  103. ^ Golembiewski, Kate (27 December 2020). "Murder Hornets Menaced Parts of the U.S. This Year. How Big of a Threat Are They?". Discover Magazine. Retrieved 7 January 2021.
  104. ^ Dooley, Ben (5 May 2020). "In Japan, the 'Murder Hornet' Is Both a Lethal Threat and a Tasty Treat". The New York Times. Retrieved 10 September 2020.
  1. ^ a b c d e p. 51–52, "The queens usually select underground cavities as nest sites. The cavities are either associated with rotten tree roots or are made by small vertebrates such as moles and snakes. The cavities are in well drained soil along a slope or under an overhanging cliff. The nests are found at a depth of six to 60 cm and the entrance tunnel is two to 60 cm long. A few nests are found above ground (e.g. nine nests from a sample of 56) either in tree hollows or mud walls and within one or two meties above the surface of the ground. The nests are found on hillsides, parks and forests but are rare in the lowlands and high mountains. The Taiwan colour form of V. mandarinia also nests underground but the western colour form has been found in tree hollows near the surface of the ground (Bingham, 1888)"
  2. ^ p. 48, "V. soror du Buysson 1905 was described as a variety of V. ducalis Smith, 1852, despite the structural characteristics of the vertex and apical margin of the clypeus being similar to V. magnifica. Van der Vecht (1957) recognised the confusion and proposed the new combination V. mandarinia soror. Archer (1991a) showed that V. mandarinia soror was sympatric for part of its geographical distribution with V. m. mandarinia but still retained its distinctive colour characteristics so should be given specific status, V. soror."
  3. ^ p. 48–49, "V. mandarinia and V. soror cannot be satisfactory separated by structural characteristics but are readily separated by colour characteristics:
    1. Third to the sixth gastral terga in the female and to the seventh gastral terga in the male black, at most with a narrow apical orange band on the third gastral tergum .................................................................... soror du Buysson. 1905
    — Third to the fifth gastral terga in the female and to the sixth gastral terga in the male with either a narrow or broad apical orange band, tergum six in the female and tergum seven in the male largely orange ................................... mandarinia Smith. 1852"
  4. ^ a b p. 52, "The queen builds a comb of about 44 cells (range 37–60) with a mean cell building rate per day of 1.64 (range 0–4) and a mean egg laying rate per day of 1.53 (range 0–5). The envelope is bowl-shaped, not completely enclosing the comb which is ventrally exposed within the nest cavity. The queen is able to excavate soil so as to enlarge the nest cavity as the nest grows in size. The first workers emerge as adults after about 38 days from the queen nest. In southern Japan, nests at maturity consist of four to seven combs although five to six combs are more usual. Mature nests contain about 2700 cells with the largest nest having 4661 cells. The large cells are clearly larger than the small cells although the size of the small cells does increase during the development of the nest. The envelope is thin and absent at the bottom of the nest exposing the lower comb and providing access to the combs. The workers continue to excavate soil to enlarge the nest cavity although stones too large to be carried drop to the bottom of the nest cavity. The ability of the queen and workers to excavate soil probably relates to the lack of relocation behaviour in this species."
  1. ^ p. 1693, "A hornet (Vespa mandarinia) neurotoxin, mandaratoxin (MDTX)"
  2. ^ p. 1696, "Estimations of the molecular weight of purified MDTX in its reduced and unreduced forms with denaturing solvents and its molecular weight in the native form are nearly the same. It is concluded that the toxin is a single polypeptide chain of approximately 20,000 daltons. Thus, the toxin acts on nerve membranes as a monomer protein of similar molecular weight."
  1. ^ • p. 6, "Our results show that the east coast is highly suitable for the establishment and spread of V. mandarinia, a zone where this species has not been recorded yet, making it necessary to implement preventive actions to avoid a possible invasion."
  2. ^ • p. 2, "The abundance of V. mandarinia is positively associated with amounts of green spaces in urban landscapes, suggesting that the control of their populations should be focused on urban green areas.26"
    • p. 6, "For canopy cover, a similar result was found by Azmy et al.26 in urban environments in China, where the quality of green areas benefited the abundance of V. mandarinia."
  3. ^ • p. 4-6: Figure 2B, Figure 3A, Figure 3C, Figure 4
    • Supplemental #2: Table S5
  4. ^ • p. 7, "Here we have estimated an annual projected loss of US$113.7 million per year. However, the costs associated with control actions not included in our study may eventually increase these amounts significantly (i.e. c. US$26 million as estimated by Barbet-Massin et al.12 for V. velutina)."
  5. ^ • p. 1, "If this species spread across the country, it could threaten 95 216 ± 5551 honey bee colonies, threatening an estimated income of US$ ... 101.8 million for ... bee-pollinated crops production ... while colonizing 60 837.8 km2 of bee-pollinated croplands."
    • p. 5, "The potential threatened income associated with bee-pollinated croplands reached US$101.8 million per year (Tables S7 and S8)."
  6. ^ a b c • p. 4-7: Figure 2, §3.2 Threatened colonies, §3.3 Hive products potential losses, §3.4 Threatened bee-pollinated croplands, Figure 4, Figure 5
    • Supplemental #2: Table S5, Table S6 (mislabeled S5), Table S7, Table S8, Table S9
  7. ^ • p. 5, "We also identified that alfalfa/hay, apples, grapes and tobacco are the crops with the largest threatened areas of 58 484.1, 522.9, 468.5 and 432.9 km2, respectively (Table S8)."
    • Supplemental #2: Table S3, Table S8, Table S9
  • Secondary support of Alaniz:
  1. ^ p. 2, "Complete mitochondrial DNA was sequenced with Illumina’s MiSeq platform (ILLUMINA, United States)."
  2. ^ p. 3, "These genetic differences corresponded to the values found between native V. mandarinia from Japan, South Korea, and China."
  3. ^ p. 3-4, "A high pairwise distance of 0.0071 was also confirmed between the 13 PCGs of mitochondrial DNA sequences of V. mandarinia specimens from the United States and Canada, suggesting that the hornets differ in maternal origin (Table 1). ... The ML tree also revealed that V. mandarinia from the United States and Canada were not monophyletic (Fig. 2). Molecular phylogenetic analysis of the mitochondrial genomes revealed that V. mandarinia from the United States was genetically distant from that of Canada. ... The observed genetic differences between the Canada and U.S. mitochondrial genomes suggest that the two V. mandarinia specimens introduced to western N. America during or prior to 2019 are derived from different maternal lineages."
  4. ^ p. 4, "The mitochondrial genome of ... the Canadian V. mandarinia was most genetically similar to the Japanese V. mandarinia used in this study."
  5. ^ p. 4, "The mitochondrial genome of the specimen collected from Blaine, WA shared 99.5% sequence homology to the specimen characterized from South Korea,"
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Asian giant hornet: Brief Summary

provided by wikipedia EN

The Asian giant hornet (Vespa mandarinia) or northern giant hornet, including the color form referred to as the Japanese giant hornet, is the world's largest hornet. It is native to temperate and tropical East Asia, South Asia, Mainland Southeast Asia, and parts of the Russian Far East. It was also found in the Pacific Northwest of North America in late 2019 with a few more additional sightings in 2020, and nests found in 2021, prompting concern that it could become an invasive species. However, by the end of the season in November 2022, there were no confirmed sightings in North America at all, suggesting the wasps may have been eradicated in that region.

Asian giant hornets prefer to live in low mountains and forests, while almost completely avoiding plains and high-altitude climates. V. mandarinia creates nests by digging, co-opting pre-existing tunnels dug by rodents, or occupying spaces near rotten pine roots. It feeds primarily on larger insects, colonies of other eusocial insects, tree sap, and honey from honey bee colonies. The hornet has a body length of 45 mm (1+3⁄4 in), a wingspan around 75 mm (3 in), and a stinger 6 mm (1⁄4 in) long, which injects a large amount of potent venom.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Mandarena vespo ( Esperanto )

provided by wikipedia EO
 src=
La mandarena vespo (Vespa mandarinia)
 src=
La kapo de la mandarena vespo (Vespa mandarinia)
 src=
La mandarena vespo (Vespa mandarinia) - sur la vira polmo (manplato)
 src=
La mandarena vespo (Vespa mandarinia)

La Mandarena vespo (Vespa mandarinia), inklude la subspecion Japana mandarena vespo (Vespa mandarinia japonica),[1] populare konata kiel poefago-murdanto,[2] estas la plej granda vespo en la mondo, indiĝena de moderklimata kaj tropika Orienta Azio (Japanio, Ĉinio, Tajvano, Rusio (Ĉemara regiono), Koreio, Nepalo, Srilanko kaj Barato). Ties korpolongo estas proksimume 50 mm, ties enverguro ĉirkaŭ 76 mm,[3] kaj ĝi havas 6 mm longan pikilon kiu injektas grandan kvanton de povega veneno (ĉefe de la alergia reago t.e. anafilaksio, nur en Japanio mortis pli ol 50 personoj.) La mandarena vespo vivas grupe en svarmo nombranta ĉirkaŭ unu milo da vespoj kaj en la nesto kun diametro unumetra kaj ĝi ege estas eĉ danĝera por la tuta grandnombra abela familio (eĉ kun 70 mil da abeloj).

Vidu ankaŭ

Notoj

  1. Piper, Ross. (2007) Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, p. 9–11. ISBN 978-0-313-33922-6.
  2. Backshall, Steve. (2007) Steve Backshall's venom: poisonous animals in the natural world. New Holland Publishers. ISBN 1845377346.
  3. . "Hornets From Hell" Offer Real-Life Fright. National Geographic News (October 25, 2002). Alirita Januaro 2010.
license
cc-by-sa-3.0
copyright
Vikipedio aŭtoroj kaj redaktantoj
original
visit source
partner site
wikipedia EO

Mandarena vespo: Brief Summary ( Esperanto )

provided by wikipedia EO
 src= La mandarena vespo (Vespa mandarinia)  src= La kapo de la mandarena vespo (Vespa mandarinia)  src= La mandarena vespo (Vespa mandarinia) - sur la vira polmo (manplato)  src= La mandarena vespo (Vespa mandarinia)

La Mandarena vespo (Vespa mandarinia), inklude la subspecion Japana mandarena vespo (Vespa mandarinia japonica), populare konata kiel poefago-murdanto, estas la plej granda vespo en la mondo, indiĝena de moderklimata kaj tropika Orienta Azio (Japanio, Ĉinio, Tajvano, Rusio (Ĉemara regiono), Koreio, Nepalo, Srilanko kaj Barato). Ties korpolongo estas proksimume 50 mm, ties enverguro ĉirkaŭ 76 mm, kaj ĝi havas 6 mm longan pikilon kiu injektas grandan kvanton de povega veneno (ĉefe de la alergia reago t.e. anafilaksio, nur en Japanio mortis pli ol 50 personoj.) La mandarena vespo vivas grupe en svarmo nombranta ĉirkaŭ unu milo da vespoj kaj en la nesto kun diametro unumetra kaj ĝi ege estas eĉ danĝera por la tuta grandnombra abela familio (eĉ kun 70 mil da abeloj).

license
cc-by-sa-3.0
copyright
Vikipedio aŭtoroj kaj redaktantoj
original
visit source
partner site
wikipedia EO

Vespa mandarinia ( Spanish; Castilian )

provided by wikipedia ES
 src=
Avispón gigante asiático.

El avispón gigante asiático (Vespa mandarinia) es una especie de insecto himenóptero de la familia Vespidae.[1]​ Tiene una longitud de 5 cm y una envergadura alar de 7,5 cm. Es muy corpulento y posee un potente veneno capaz de disolver los tejidos. Es agresivo y, a diferencia de los abejorros, no tolera la cautividad. Además, dispone de unas mandíbulas potentes, armaduras protectoras y uñas tarsales para sujetar a su víctima. Debido a estas características son apodados «avispones asesinos».

Descripción

Es de color naranja y bastante grande (las reinas pueden medir más de 50 mm, las obreras de 35 a 40 mm) en comparación con otras especies de avispas. Sus ojos compuestos y ocelos son de color azul oscuro a negro; las antenas son de color marrón oscuro con una base anaranjada. El clípeo (placa de escudo en la parte frontal de la cabeza) es de color anaranjado; el lado posterior del clípeo tiene lóbulos redondeados estrechos. Las mandíbulas son grandes y de color naranja con un diente negro usado para escarbar.[2]

El tórax (propodeo) es marrón oscuro, con un amplio escutelo (escama de escudo en el tórax) que tiene una línea medial profunda; la placa detrás del escutelo sobresale y domina el propodeo. Las alas son grises y miden 3.5 a 7.5 cm de envergadura. Las patas delanteras son de color naranja, con tarsos de color marrón oscuro; las otras patas son de color marrón oscuro.

El gáster es de color marrón oscuro con blanco, con bandas amarillas estrechas en los márgenes posteriores del tergo, el sexto segmento es enteramente amarillo. El aguijón mide hasta 10 mm.[2]​ Es similar en apariencia a la avispa europea (Vespa crabro).

Ciclo vital de la colonia

V. mandarinia anida en las tierras bajas y bosques, al pie de las sierras. Es una especie dominante que no necesita esfuerzos de conservación. Son comunes en regiones alteradas por los humanos. Hacen nidos subterráneos a diferencia de otras especies del género Vespa. Usan huecos, causados por descomposición de madera de raíces, o los nidos abandonados de roedores, serpientes u otros animales excavadores. La entrada a esos nidos puede tener una profundidad de 2 a 60 cm; luego se extiende en forma horizontal, vertical o en ángulo. Las reinas prefieren cavidades angostas.[3]

Los nidos, típicamente carecen de envoltura. Durante las primeras etapas de formación, tienen forma de un tazón invertido. A medida que el nido crece, se añaden de una a tres capas de celdillas o panales.[3]​ Un sistema de un pilar principal y pilares secundarios conectan los panales. Pueden llegar a tener de cuatro a siete panales. El más superior es abandonado al final del verano y se lo deja pudrir. El más grande está al medio. El más grande observado medía 49,5 cm por 45,5 cm con 1192 celdillas.[3]

Como en otros insectos sociales el ciclo del nido incluye seis fases.[3]

Período pre–nido

Las reinas inseminadas o no inseminadas son las únicas que pasan el invierno. Los machos y obreras del nido anterior han muerto en el otoño. Las primeras emergen a principios o mediados de abril y comienzan a alimentarse de la savia de robles (Quercus). Dominan a avispas presentes de otras especies y tienen prioridad sobre la savia. Hay una jerarquía entre las reinas, las dominantes se alimentan primero mientras las otras esperan en círculo. Solo cuando ésta termina pueden alimentarse las demás según su rango.[3]

Períodos solitario, cooperativo y poliético

Las reinas inseminadas comienzan a buscar lugares para anidar a finales de abril. Las no inseminadas no buscan nidos ya que sus ovarios no están desrrollados. Siguen alimentándose y desaparecen a principios de julio.

Una reina inseminada comienza a construir celdillas relativamente chicas en las que cría alrededor de 40 obreras pequeñas. Las obreras son estériles. Empiezan a trabajar fuera del nido recién en julio. La reina participa en las tareas fuera del nido hasta mediados de julio; desde entonces permanece dentro del nido y deja que las obreras hagan todas las tareas fuera. A principios de agosto el nido alcanza su desarrollo completo con tres o más panales y alrededor de 500 celdillas. Desde mediados o fines de septiembre no se producen más huevos y los esfuerzos se concentran en la cría de las larvas. Estas últimas camadas de huevos producen individuos sexuados, machos y futuras reinas. La reina muere a finales de octubre.[3]

Períodos de disolución e invernación

Los machos y las nuevas reinas asumen sus actividades a mediados de septiembre y a mediados de octubre respectivamente. El color de sus cuerpos se vuelve más intenso y la reina aumenta de peso alrededor del 20%. Una vez que los machos y reinas abandonan el nido, no regresan. Los machos esperan a la salida del nido hasta que las nuevas reinas aparecen. Una vez que las reinas salen volando, los machos las atacan en el aire, arrastrándolas a la tierra donde copulan entre 8 a 45 segundos. Después de esto cada macho regresa a la entrada del nido a la espera de otras reinas, mientras la reina recién apareada se aleja. Muchas reinas resisten estos ataques y no son fertilizadas. Después, las reinas buscan lugares subterráneos húmedos donde pasar el invierno.

Cuando los individuos sexuados emergen, las obreras dejan de buscar proteínas y buscan solo carbohidratos. Los últimos individuos sexuados pueden morir por falta de alimentación.[3]

Problemas que ocasiona

En Nagano, Japón, han muerto muchas personas a causa de los avispones. Su veneno es muy potente y su picadura muy dolorosa. Las avispas incursionan en la apicultura. Las abejas oriundas japonesas no elaboran mucha cantidad de miel, así que, en Japón se importan abejas europeas que no han desarrollado defensas contra el avispón gigante.

Cuando el nido está en el cénit, y la población es máxima, las obreras buscan fuentes más grandes de energía. Antes las cazadoras actuaban en solitario, pero ahora no dudan en atacar en grupo. Primero, atacan a su pariente el avispón amarillo (Vespa simillima xanthoptera), cuyo botín supone miles de individuos, y de 3000 a 7000 larvas y crisálidas. Son la mitad de pequeños y no son presa fácil, pero los avispones gigantes son más fuertes y más grandes. Acaban con ellos, y los que quedan huyen abandonando a sus crías. Su forma de comer es trocear a las víctimas y extraer el interior. Pueden consumir 400 larvas de avispón amarillo al día.

Seguidamente, atacan también a la abeja importada europea. El avispón es cinco veces más grande que ella. Las defensoras superan en número a los avispones pero no consiguen salvarse gracias a la fuerza de estos depredadores. En cuestión de horas treinta avispones matan treinta mil abejas. Al igual que con los avispones amarillos, las cortan por la mitad dejándolas moribundas. Los pocos soldados que quedan no son obstáculo para los avispones, así que estos llegan hasta la miel, las crisálidas y las larvas que les sirven de alimento durante semanas.

Los lugareños cerca de Nagano veneran a los espíritus de las víctimas. El sustento de estas personas depende de las abejas y saben que cada otoño la población de abejas se ve amenazada debido a los avispones. Millones de individuos mueren cada año y es por esto que les hacen una ceremonia de respeto y honor.

Estos avispones atacan también a la abeja nativa japonesa, pero estas han desarrollado un sistema increíble para combatir tanto a los avispones amarillos, como a los gigantes. Cuando llega la avanzadilla (el avispón explorador) las abejas le invitan a entrar al nido. Ella avanza para marcarlo con su feromona, porque así es como está visible olorosamente a sus congéneres. Las abejas, entonces, balancean sus abdómenes para comunicarse la estrategia y, de pronto el avispón se ve rodeado por centenares de abejas, las cuales no le pican, sino que empiezan a vibrar aumentando la temperatura colectiva hasta los 47 °C. Las abejas japonesas soportan temperaturas de hasta 48 °C. El límite del avispón es de 46 °C, así que el avispón explorador muere por sofocación.

La naturaleza, limita el imperio con la llegada del invierno. La reina entra en un estado de gran debilidad. En esta fase pone huevos sin fertilizar, que se convierten en machos que proporcionan esperma. Algunas larvas se desarrollan como reinas. Los machos vuelan para fecundar a otras reinas de otros nidos. Son aceptados sólo a mediodía durante unas horas no obstante sólo uno consigue aparearse. Los machos mueren a los pocos días. Las reinas fertilizadas buscan donde hibernar. La naturaleza y el frío ocasionan la muerte de estos animales, quienes sucumben por inanición.

Especie invasora en España

Debido a su potencial colonizador y por constituir una amenaza grave para las especies autóctonas, los hábitats o los ecosistemas esta especie ha sido incluida en el Catálogo Español de Especies exóticas Invasoras, aprobado por Real Decreto 6/30/2013, de 2 de agosto.[4][5][6]

Aparición en los Estados Unidos

En mayo de 2020 apicultores y expertos estadounidenses mostraron preocupación por las colmenas de abejas ya que detectaron avispones asiáticos gigantes en el estado de Washington. Según indicó The New York Times, el hombre que dio la voz de alarma de su presencia en Estados Unidos se encontraba en su hogar cuando vio que: "Sus abejas habían sido decapitadas", el apicultor descubrió que el culpable había sido el avispón gigante asiático (Vespa mandarinia). Según el Departamento de Agricultura del Estado de Washington (WSDA), el primer avistamiento verificado de avispones asesinos en América del Norte fue en Blaine, estado de Washington a finales de 2019.[7]

Subespecies

Se reconocen las siguientes subespecies:[1]

Referencias

  1. a b Bisby F., Roskov Y., Culham A., Orrell T., Nicolson D., Paglinawan L., Bailly N., Appeltans W., Kirk P., Bourgoin T., Baillargeon G., Ouvrard D., eds (2012). «Species 2000 & ITIS Catalogue of Life, 2012 Annual Checklist» (en inglés). Readin, Reino Unido. Consultado el 15 de octubre de 2012.
  2. a b Barth, Zach; Kearns, Thomas; Wason, Elizabeth. «Vespa mandarinia». Animal Diversity Web. University of Michigan Museum of Zoology. Archivado desde el original el 8 de octubre de 2015. Consultado el 25 de septiembre de 2014.
  3. a b c d e f g Matsuura, Makoto; Sakagami, Shôichi F. (October 1973). «A Bionomic Sketch of the Giant Hornet, Vespa mandarinia, a Serious Pest for Japanese Apiculture». Journal of the Faculty of Science, Hokkaido University. Series 6, Zoology 19 (1): 125-162. ISSN 0368-2188. Archivado desde el original el 18 de agosto de 2017. Consultado el 25 de septiembre de 2014.
  4. Real Decreto 630/2013, de 2 de agosto, por el que se regula el Catálogo español de especies exóticas invasoras..
  5. Avispón japonés en España, Procaen
  6. Redacción (26 de marzo de 2019). «La avispa mandarina no ha llegado a Europa: así es el avispón gigante». Apicultura y miel. Consultado el 7 de abril de 2019.
  7. «En medio de la pandemia EEUU se enfrenta a la invasión de las avispas más grandes del mundo». La Vanguardia. 4 de mayo de 2020. Consultado el 5 de mayo de 2020.
 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Vespa mandarinia: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES
 src= Avispón gigante asiático.

El avispón gigante asiático (Vespa mandarinia) es una especie de insecto himenóptero de la familia Vespidae.​ Tiene una longitud de 5 cm y una envergadura alar de 7,5 cm. Es muy corpulento y posee un potente veneno capaz de disolver los tejidos. Es agresivo y, a diferencia de los abejorros, no tolera la cautividad. Además, dispone de unas mandíbulas potentes, armaduras protectoras y uñas tarsales para sujetar a su víctima. Debido a estas características son apodados «avispones asesinos».

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Kiinanherhiläinen ( Finnish )

provided by wikipedia FI

Kiinanherhiläinen[1][2], suomalaisissa uutislähteissä kutsuttu nimellä ”Aasian jättiherhiläinen”[3], (Vespa mandarinia)[4] on maailman suurin herhiläislaji. Herhiläislajin vartalo voi kasvaa 50 millimetrin mittaiseksi ja siipien väli 76 millimetriin. Lajin pistin on noin 6 millimetrin pituinen. Laji tuottaa erittäin voimakasta hermomyrkkyä, ja sen pistot voivat olla ihmisille tappavia.[3] Esimerkiksi Japanissa kuolee vuosittain noin 40 ihmistä kiinanherhiläisen pistoon.[5]

Lähteet

  1. Kiinanherhiläinen Nomen.at. Viitattu 10.7.2018.
  2. All (in this database) Other insects list (with Finnish common names) Tree of life. Viitattu 10.7.2018.
  3. a b Terhi Toivonen: Jättiherhiläiset tappaneet parikymmentä Kiinassa Yle uutiset. 27.9.2013. YLE. Viitattu 28.9.2013.
  4. Ramy Inocencio, Ke Feng: Killer hornets sting at least 19 people to death in China, nearly 600 stung cnn.com. 27.9.2013. CNN. Viitattu 28.9.2013. (englanniksi)
  5. Lietsala, Linda: Kauhumato, tappajaetana ja jättiläisherhiläinen - nämä terveydelle vaaralliset ötökät ovat jo tunkeutuneet Eurooppaan Iltalehti.fi. 25.5.2018. Viitattu 28.5.2018.
Tämä eläimiin liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.
license
cc-by-sa-3.0
copyright
Wikipedian tekijät ja toimittajat
original
visit source
partner site
wikipedia FI

Kiinanherhiläinen: Brief Summary ( Finnish )

provided by wikipedia FI

Kiinanherhiläinen, suomalaisissa uutislähteissä kutsuttu nimellä ”Aasian jättiherhiläinen”, (Vespa mandarinia) on maailman suurin herhiläislaji. Herhiläislajin vartalo voi kasvaa 50 millimetrin mittaiseksi ja siipien väli 76 millimetriin. Lajin pistin on noin 6 millimetrin pituinen. Laji tuottaa erittäin voimakasta hermomyrkkyä, ja sen pistot voivat olla ihmisille tappavia. Esimerkiksi Japanissa kuolee vuosittain noin 40 ihmistä kiinanherhiläisen pistoon.

license
cc-by-sa-3.0
copyright
Wikipedian tekijät ja toimittajat
original
visit source
partner site
wikipedia FI

Vespa mandarinia ( French )

provided by wikipedia FR

Vespa mandarinia, aussi connu sous le nom de frelon géant, est la plus grosse espèce de frelons au monde. Elle est aussi la plus grande espèce d'insectes sociaux connue. Décrite au XIXe siècle par l'anglais Frederick Smith, cette espèce a la particularité de parfois chasser en groupe. Lorsque le nid est suffisamment développé, plusieurs frelons peuvent partir chasser ensemble, c'est-à-dire éradiquer la population d'un nid d'un autre hyménoptère social (abeille, guêpe ou frelons d'une espèce plus petite) pour se servir, après l'attaque, de ce nid comme d'un garde-manger, avec les ouvrières décimées, mais aussi et surtout le couvain de larves.

Cinq fois plus gros qu'une abeille, le frelon géant est capable d'en tuer 300 en moins d'une heure[1].

Répartition

Cette espèce est essentiellement présente en Asie : Inde, Birmanie, Thaïlande, Laos, Viêt Nam, Cambodge, Chine, Corée du Sud et Japon [2].

Il a été repéré au cours de l'année 2019 dans l'État de Washington, USA, ainsi qu'en Colombie-Britannique, Canada, en août 2019[3], et à nouveau en mai 2020, à Langley, Colombie-Britannique, et à Custer, Washington[4]. En octobre 2020, un nid est pour la première fois détruit aux États-Unis[5].

Anatomie

Le frelon géant mesure de 4,5 à 5,5 cm de long pour les reines, 2,5 à 4 cm pour les ouvrières[6],[7],[8]. Ses battements d'ailes provoquent un bourdonnement intense.

Liste des sous-espèces

  • Vespa mandarinia subsp. bellona Smith, 1871
  • Vespa mandarinia subsp. magnifica Smith, 1852
  • Vespa mandarinia subsp. nobilis Sonan, 1929
  • Vespa mandarinia subsp. japonica

Notes et références

  1. [vidéo] LE FRELON GEANT de 5cm sur Dailymotion (à 3 minutes 7 secondes)
  2. (en). Food and Agriculture Organization of the United Nation, « Honey bee diseases and pests: a practical guide », in Agricultural and food Engineering Technical Report no 4, 2006, 42 pages, (ISSN ) Lire en ligne (page 20)
  3. (en) Umair Irfan, « The Asian giant hornet, a.k.a. the Murder Hornet, has arrived. Bees beware. », Vox.com,‎ 3 mai 2020 (lire en ligne, consulté le 4 mai 2020).
  4. « Hornets », sur agr.wa.gov
  5. « Un nid de frelons géants éradiqué pour la première fois aux États-Unis », sur www.lefigaro.fr, 25 octobre 2020 (consulté le 26 octobre 2020).
  6. (en) F. Smith, « VIII. Descriptions of some new and apparently undescribed Species of Hymenopterous Insects from North China, collected by Robert Fortune, Esq. », Transactions of the Royal Entomological Society of London, vol. 7, no 2,‎ 24 avril 2009, p. 33–44 (DOI , lire en ligne, consulté le 5 mai 2020)
  7. Lien web|langue=Français|auteur1=Quentin Rome|auteur2=Claire Villemant|titre=Le Frelon asiatique Vespa velutina|url=http://frelonasiatique.mnhn.fr/lutte/#Predateurs%7Csite=http://frelonasiatique.mnhn.fr%7Cpériodique=%7Cdate=2015-2020%7Cconsulté le=5 mai 2020
  8. Article |langue=Anglais |auteur1=Lee, J.X.Q. |titre=Notes on Vespa analis and Vespa mandarinia (Hymenoptera, Vespidae) in Hong Kong, and a key to all Vespa species known from the SAR |périodique=Hong Kong Entomological Bulletin |date=2010 |issn= |lire en ligne=http://hkentsoc.org/bulletin/HKEB2(2)_vespa_Lee.pdf |pages=31-36 }}

Voir aussi

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Vespa mandarinia: Brief Summary ( French )

provided by wikipedia FR

Vespa mandarinia, aussi connu sous le nom de frelon géant, est la plus grosse espèce de frelons au monde. Elle est aussi la plus grande espèce d'insectes sociaux connue. Décrite au XIXe siècle par l'anglais Frederick Smith, cette espèce a la particularité de parfois chasser en groupe. Lorsque le nid est suffisamment développé, plusieurs frelons peuvent partir chasser ensemble, c'est-à-dire éradiquer la population d'un nid d'un autre hyménoptère social (abeille, guêpe ou frelons d'une espèce plus petite) pour se servir, après l'attaque, de ce nid comme d'un garde-manger, avec les ouvrières décimées, mais aussi et surtout le couvain de larves.

Cinq fois plus gros qu'une abeille, le frelon géant est capable d'en tuer 300 en moins d'une heure.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Azijski divovski stršljen ( Croatian )

provided by wikipedia hr Croatian

Azijski divovski stršljen (Vespa mandarinia), kukac iz reda Opnokrilaca, vrsta su najvećih stršljena na svijetu, azijskog su porijekla, odakle su se raširili i po drugim kontinentima, Europa (uključujući Hrvatsku), i Sjeverna Amerika (Illinois).

Odlikuju se narančastom glavom i crnim tijelom i šestmilimetarskim žalcem, a nastanjuje područja od Rusije, preko Indije i Šri Lanke do Kine i Japana. Veličine su preko 5 centiometara, a mogu letiti brzinom do 40km na sat a dnevno prijeđe i po 100 kilometara.[1]

Ubodi ovih kukaca mogu biti smrtonosni za ljude (anafilaktički šok; slučajevi u Kini) i Europi. [2]

Podvrste

Logotip Zajedničkog poslužitelja
Na Zajedničkom poslužitelju postoje datoteke vezane uz: Azijski divovski stršljen
Logotip Wikivrsta
Wikivrste imaju podatke o: Vespa mandarinia

Izvori

license
cc-by-sa-3.0
copyright
Autori i urednici Wikipedije
original
visit source
partner site
wikipedia hr Croatian

Azijski divovski stršljen: Brief Summary ( Croatian )

provided by wikipedia hr Croatian

Azijski divovski stršljen (Vespa mandarinia), kukac iz reda Opnokrilaca, vrsta su najvećih stršljena na svijetu, azijskog su porijekla, odakle su se raširili i po drugim kontinentima, Europa (uključujući Hrvatsku), i Sjeverna Amerika (Illinois).

Odlikuju se narančastom glavom i crnim tijelom i šestmilimetarskim žalcem, a nastanjuje područja od Rusije, preko Indije i Šri Lanke do Kine i Japana. Veličine su preko 5 centiometara, a mogu letiti brzinom do 40km na sat a dnevno prijeđe i po 100 kilometara.

Ubodi ovih kukaca mogu biti smrtonosni za ljude (anafilaktički šok; slučajevi u Kini) i Europi.

license
cc-by-sa-3.0
copyright
Autori i urednici Wikipedije
original
visit source
partner site
wikipedia hr Croatian

Tawon raksasa asia ( Indonesian )

provided by wikipedia ID

Tawon raksasa asia (Vespa mandarinia), termasuk subspesies tawon raksasa Jepang (Vespa mandarinia japonica),[1] dijuluki juga tawon pembunuh yak,[2] adalah tawon terbesar di dunia yang berasal dari wilayah Asia Timur yang beriklim tropis dan sedang. Mereka cenderung tinggal di hutan dan pegunungan pada ketinggian yang rendah . V. mandarinia membuat sarang dengan menggali, menggunakan lubang yang sudah digali oleh hewan pengerat, atau menduduki tempat di dekat akar pinus yang membusuk.[3] Hewan ini memakan serangga yang lebih besar dan madu dari koloni lebah madu.[4] Tawon ini memiliki panjang tubuh sebesar 45 mm, bentang sayap sebesar 75 mm, dan penyengat sepanjang 6 mm yang dapat menyuntikkan racun dalam jumlah yang besar.[5]

Catatan kaki

  1. ^ Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. hlm. 9–11. ISBN 978-0-313-33922-6.
  2. ^ Backshall, Steve (2007). Steve Backshall's venom: poisonous animals in the natural world. New Holland Publishers. ISBN 1-84537-734-6.
  3. ^ Yamane, Seiki (1976). "Morphological and Taxonomic Studies on Vespine Larvae, with Reference to the Phylogeny of the Subfamily Vespinae (Hymenoptera : Vespidae)". New series. 8: 1–45.
  4. ^ Campbell, Dana (11 November 2014). "Vespa Mandarinia". Encyclopedia of Life. Diakses tanggal 16 September 2014.
  5. ^ Handwerk, Brian (October 25, 2002). ""Hornets From Hell" Offer Real-Life Fright". National Geographic News. Diarsipkan dari versi asli tanggal 25 January 2010. Diakses tanggal January 2010. Periksa nilai tanggal di: |accessdate= (bantuan)

Lihat pula

Pranala luar

license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Tawon raksasa asia: Brief Summary ( Indonesian )

provided by wikipedia ID

Tawon raksasa asia (Vespa mandarinia), termasuk subspesies tawon raksasa Jepang (Vespa mandarinia japonica), dijuluki juga tawon pembunuh yak, adalah tawon terbesar di dunia yang berasal dari wilayah Asia Timur yang beriklim tropis dan sedang. Mereka cenderung tinggal di hutan dan pegunungan pada ketinggian yang rendah . V. mandarinia membuat sarang dengan menggali, menggunakan lubang yang sudah digali oleh hewan pengerat, atau menduduki tempat di dekat akar pinus yang membusuk. Hewan ini memakan serangga yang lebih besar dan madu dari koloni lebah madu. Tawon ini memiliki panjang tubuh sebesar 45 mm, bentang sayap sebesar 75 mm, dan penyengat sepanjang 6 mm yang dapat menyuntikkan racun dalam jumlah yang besar.

license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Vespa mandarinia ( Italian )

provided by wikipedia IT

Il calabrone gigante asiatico (Vespa mandarinia Smith, 1852), detto anche calabrone giapponese, è il calabrone più grande al mondo.[1] Nativo dell'Asia orientale temperata e tropicale, il suo corpo è lungo circa 45 mm, con un'apertura alare di circa 75 mm e un pungiglione lungo 6 mm, col quale inietta una grande quantità di potente veleno (mortale per effetto di una reazione allergica, se non trattata opportunamente e quanto prima);[2] le regine possono raggiungere una lunghezza di 55 mm.

Il calabrone gigante asiatico è spesso confuso con la Vespa velutina (o “calabrone dalle zampe gialle”), una specie invasiva che causa maggiori preoccupazioni in Europa; e a volte anche con la Vespa orientalis.[3]

Anatomia

Ha la testa color arancione e apertura alare molto ampia, in paragone alle altre specie. Gli occhi composti e gli ocelli sono color marrone scuro, le antenne sono marrone-arancione. Il clipeo (lamina a forma di scudo davanti alla testa) è arancione e punteggiato; la parte posteriore del clipeo ha lobi stretti, arrotondati. La mandibola è grande, arancione, con un dente nero (superficie masticatoria interna).

Il torace e il propodeum (segmento che forma la parte posteriore del torace) della vespa mandarinia hanno un caratteristico color dorato e un grande scutello dalla linea mediale profondamente impressa. Il postscutello sporge e sovrasta il propodeum. Le zampe anteriori sono color arancione con tarsi marrone scuro; quelle centrali e quelle posteriori sono color castano scuro. Le ali dell'insetto sono di color grigio-marrone scuro. Le tegula sono marroni.

Distribuzione geografica

Il calabrone gigante asiatico si può trovare in Territorio del Litorale, Corea, Cina, Taiwan, Indocina, Nepal, India, Sri Lanka, ma è più comune nelle aree montane del Giappone. Di recente è stato avvistato anche negli Stati Uniti[4], in Europa non ci sono segnalazioni. Preferisce vivere in basse montagne e foreste, mentre evita completamente pianure e le alte altitudini.

Ciclo vitale

Il ciclo vitale di questo insetto inizia in modo più o meno uguale a quello degli altri vespidi sociali: una femmina fondatrice, o regina, si sveglia in primavera e fonda un nido.

Nel caso della Vespa mandarinia il risveglio avviene nel mese di aprile, dopo vari mesi di ibernazione all'interno di cavità nel terreno o nel legno marcescente. Essa trascorre varie settimane a nutrirsi con le secrezioni zuccherine nelle lesioni della corteccia di alcuni alberi, come le querce, attendendo la maturazione degli ovari. La fondazione del nido inizia in giugno, all'interno di una cavità sotterranea come una tana di roditori abbandonata o simili. La costruzione del nido, con materiale cartaceo ricavato dalle fibre di corteccia di giovani rami masticate, prevede la creazione di un peduncolo al quale sono fissate un gran numero di celle esagonali rivolte verso il basso. Ogni cella ospita un uovo, che si sviluppa in larva.

Le larve sono nutrite con carne di altri insetti cacciati dalla regina stessa, ed in cambio, se stimolate meccanicamente, secernono una gocciolina di liquido zuccherino e ricco di aminoacidi da cui essa prende energia per una nuova battuta di caccia. Un esile strato protettivo viene costruito attorno al favo. Le larve maturano in circa un mese, costruendo un opercolo sericeo con il quale chiudono la propria cella una volta raggiunta la maturità. All'interno della cella chiusa, la larva muta in pupa e matura in circa una settimana. Una volta diventata un'operaia adulta, rosicchia l'opercolo di seta ed emerge. In luglio, nascono così le prime operaie, leggermente più piccole, allevate dalla sola regina. Le prime operaie arrivano circa ad essere 40, ma prima che esse imparino completamente le mansioni del nido (estendere e costruire le cellette, ampliare lo strato protettivo, difendere la colonia e cacciare insetti con cui nutrire le larve), la regina continua per un breve periodo a lavorare, cessando totalmente ogni attività al di fuori della deposizione di uova in circa 10 giorni.

In estate, la regina depone centinaia, migliaia di uova, accudita dalle operaie nate. Una colonia in salute, ad inizio agosto, conta circa un centinaio di operaie per poco più di un migliaio di cellette. Via via che passa il tempo, nascono sempre più operaie e ben presto un solo piano di cellette non basta più: sono costruiti ulteriori piani per permettere alla famiglia di allargarsi, e il nido può raggiungere le dimensioni e la forma di una sfera anche di 60 cm di diametro, protetto da strati di copertura impermeabile che fungono da muri termici con cui si isola il calore. L'appetito delle larve costringe le operaie a cercare cibo sempre più spesso e più lontano.

A cavallo fra agosto e settembre, la colonia può contare in media 300 operaie ed un numero enorme di cellette. Ogni giorno, ci sono numerose operaie che nascono e sempre più larve da sfamare. Una colonia matura può diventare estremamente pericolosa, in quanto si avvia al declino. A metà settembre nascono i primi esemplari maschi, a metà ottobre nascono esemplari fertili e di grandi dimensioni, che saranno le future fondatrici nell'anno successivo. A fine ottobre la regina muore, probabilmente sono le operaie stesse ad ucciderla appena essa diventa incapace di produrre i feromoni che indicano alla colonia che solo lei è in grado di riprodursi. La colonia cade quindi nella totale anarchia. Le operaie, ormai decimate dal mancato ricambio generazionale, cessano di nutrire le larve rimaste che iniziano a morire di fame, creando un odore nauseabondo, preludio della imminente estinzione della colonia. Le operaie, ormai anziane, sono ormai vicine alla morte. Sono spesso facili da incontrare presso fonti zuccherine alla ricerca di cibo, aspettando la morte.

Le nuove regine e i maschi, intanto, si colorano di un arancione carico per via dei carotenoidi sintetizzati in gran quantità nella cuticola. I maschi pattugliano l'uscita del nido, catturando ogni regina che esce per provare ad accoppiarsi con essa. Le regine non compiono alcun volo di orientamento, per cui non appena si accoppiano, prendono il volo e non tornano mai più al nido originale, che comunque è ormai quasi desolato. Una abbondante metà delle regine vola senza accoppiarsi: sono regine sterili, che passeranno comunque la stagione fredda in ibernazione come quelle fecondate, ma a differenza di queste ultime, al risveglio primaverile non riusciranno a fondare alcun nido e non raggiungeranno mai la totale capacità riproduttiva, morendo in luglio.

Puntura

 src=
Vespa mandarinia

Il pungiglione della vespa mandarinia è lungo circa 6 mm e può iniettare un potente veleno che contiene, come quello delle api e delle vespe, un peptide citolitico, che può danneggiare i tessuti con un'azione di fosfolipasi, in aggiunta alla sua propria intrinseca fosfolipasi.

Masato Ono, un entomologo della Tamagawa University vicino a Tokyo, descrisse una puntura ricevuta “come un chiodo rovente conficcato nella gamba”[5].

Un soggetto allergico può morire per reazione allergica; il veleno però, contenendo una neurotossina chiamata mandaratossina, può essere letale anche per persone non allergiche, se la dose è sufficiente (ossia in caso di punture multiple)[6].

Ogni anno circa 50 persone muoiono in Giappone dopo essere state punte[7]. Secondo un'altra fonte, dal 2001, in Giappone il numero di morti annuali causate da punture di vespe, api e calabroni è tra 12 e 26[8]. Dato che questo numero include anche morti causate da vespe, api e altre specie di calabroni, il numero di morti causate dalla Vespa mandarinia è probabilmente molto più basso.

Sebbene non tutti mostrino lesioni o necrosi, esiste una forte correlazione tra il numero di punture e la gravità del danno subito. Coloro che sono morti, in media, erano stati punti 59 volte (con uno scarto quadratico medio di 12), mentre coloro che sono sopravvissuti hanno subito 28 punture (con uno scarto quadratico medio di 4)[9]

Alcune note sul veleno e sul pungiglione della vespa mandarinia:

  • il veleno contiene almeno otto distinti componenti: alcuni danneggiano i tessuti, alcuni causano dolore e almeno uno ha un odore che attrae più calabroni sulla vittima;
  • il veleno contiene il 5% di acetilcolina: essa stimola le fibre nervose dolorifiche, intensificando il dolore della puntura (la vespa mandarinia usa le sue grandi mandibole, anziché il pungiglione, per uccidere le prede);
  • l'enzima contenuto nel veleno è così potente che può sciogliere i tessuti umani;
  • come tutti i calabroni, la vespa mandarinia ha un pungiglione privo di barbiglio, consentendole così di pungere ripetutamente senza morire.

Prevenzione delle punture e precauzioni

  • I calabroni giapponesi proteggono i loro nidi e attaccano chi si avvicini a circa 10 metri. La prevenzione dunque parte dalla localizzazione dei nidi, con segnalazione all'autorità competente.
  • La vespa mandarinia dimostra lo stesso comportamento aggressivo anche per proteggere le fonti di cibo, come le secrezioni di linfa degli alberi, specie in estate.
  • Abiti di colore nero aumentano il rischio di attacco del calabrone. Gli abiti bianchi possono essere a rischio di notte.
  • Anche singole punture possono essere letali.
  • Gli insetti sono attratti dalle bevande contenenti alcool e glucosio, quindi bisogna far attenzione quando si beve da una lattina o da altri recipienti contenenti tali componenti, se sono stati lasciati aperti abbastanza a lungo da lasciarci entrare un calabrone.

Primo soccorso in caso di puntura

La puntura di calabrone gigante è estremamente dolorosa e potenzialmente letale, e contiene feromoni che attraggono e incitano altri calabroni ad attaccare nuovamente.

  • Una volta punti, ci si dovrebbe ritrarre velocemente, senza movimenti eccessivi che potrebbero aumentare il rischio di attacchi multipli.
  • Si raccomanda la compressione e/o l'uso di un dispositivo sottovuoto per rimuovere il veleno dalla ferita. Non usare la suzione orale perché il veleno si trasmetterebbe alla bocca.
  • Lavare la ferita con acqua o, meglio, con liquidi contenenti tannini, come aceto, tè o vino rosso, perché il tannino combatte gli effetti di una o più tossine.
  • L'uso di pomate contenenti antistaminici e cortisonici è raccomandato.
  • Dopo le prime cure, occorre consultare subito il medico.
  • Chi è stato punto in precedenza è a grande rischio di shock anafilattico, la causa principale di morte da puntura di vespa mandarinia.

Predazione

Il calabrone gigante asiatico è un predatore inesorabile, che caccia altri grandi insetti, come le api, le altre specie di calabroni e le mantidi. Nel pieno della stagione estiva, una colonia ancora in crescita può limitarsi a cacciare insetti solitari o braccare qualche ape operaia all'ingresso degli alveari. Una colonia matura, invece, ha bisogno di una quantità di proteine molto maggiore per nutrire sempre più larve, tra cui quelle destinate a diventare sessuati. Per soddisfare questo fabbisogno, le operaie aumentano la loro aggressività a livelli esponenziali, arrivando a localizzare e sterminare intere colonie di api o di altre vespe, di cui depredano le larve e le pupe per portarle al nido. Le api giapponesi, della sottospecie Apis cerana japonica, hanno sviluppato un metodo per combattere il calabrone. Quando un'operaia di calabrone localizza un nido, le api la fanno avvicinare e poi la ricoprono completamente con i loro corpi, producendo calore mediante i muscoli alari e arrostendo il calabrone.[10] Questo metodo funziona fintanto che le api riescono ad abbindolare il calabrone. Se esso sopravvive, tornerà assieme a numerosi altri compagni che saranno in grado di estinguere la colonia. Le api europee, non essendosi evolute nell'ambiente naturale del calabrone gigante, non hanno sviluppato questa tecnica: le colonie di api europee in Giappone sono minacciate e spesso sterminate, nel giro di pochissimi anni, da sciami di calabroni.

I calabroni adulti non possono digerire le proteine solide, perché il loro peziolo (congiunzione tra torace e addome) è troppo stretto, così non mangiano le loro prede, ma le masticano ottenendo una pasta che danno alle loro larve; queste producono in cambio un liquido chiaro, la miscela aminoacida di vespa, che poi gli adulti consumano. In assenza di larve nel nido (già sfarfallate o ancora nascenti), gli adulti bottinano sui fiori o vanno alla ricerca di liquidi zuccherini di vario genere.

Uso nell'alimentazione umana

Nei villaggi montani del Giappone le larve e le pupe dei calabroni sono considerate una prelibatezza. Esse sono mangiate fritte, o come una specie di sashimi di calabroni.

Uso come integratore

Recentemente numerose ditte in Asia e in Europa hanno cominciato a produrre integratori alimentari e bevande energetiche contenenti una versione sintetica delle secrezioni delle larve di Vespa mandarinia. I fabbricanti di questi prodotti affermano che il loro consumo migliorerebbe la resistenza fisica umana.

Note

  1. ^ La mia vita per lo sciame!, su Italia Unita per la Scienza, 1º giugno 2015. URL consultato il 13 aprile 2019 (archiviato dall'url originale il 13 aprile 2019).
  2. ^ Brian Handwerk, "Hornets From Hell" Offer Real-Life Fright, su news.nationalgeographic.com, National Geographic News, 25 ottobre 2002 (archiviato dall'url originale il 25 gennaio 2010).
  3. ^ Emily Osterloff, Why Asian hornets are bad news for British bees, su nhm.ac.uk, The Natural History Museum.
  4. ^ https://cms.agr.wa.gov/WSDAKentico/Documents/PP/PestProgram/Vespa_mandarinia_NPRG_10Feb2020-(002).pdf
  5. ^ "Hornets From Hell" Offer Real-Life Fright Brian Handwerk for National Geographic News - October 25, 2002
  6. ^ http://www.corriere.it/esteri/13_settembre_27/calabroni-cina-invasione_b88ca08a-2756-11e3-94f0-92fd020945d8.shtml
  7. ^ (EN) Mike Baker, Tracking the ‘Murder Hornet’: A Deadly Pest Has Reached North America, su nytimes.com, 2 maggio 2020. URL consultato il 2 maggio 2020.
  8. ^ ハチ刺されと死亡事故, su www2u.biglobe.ne.jp. URL consultato il 4 maggio 2020.
  9. ^ Youichi Yanagawa e Kentaro Morita, Cutaneous hemorrhage or necrosis findings after Vespa mandarinia (wasp) stings may predict the occurrence of multiple organ injury: A case report and review of literature, in Clinical Toxicology, vol. 45, n. 7, Informa Healthcare USA, 10 ottobre 1980, pp. 803–807, DOI:10.1080/15563650701664871, PMID 17952752.
  10. ^ (EN) Bees Kill A Giant Hornet With Heat, su youtube.com, BBC Earth. URL consultato il 19 settembre 2021.

Bibliografia

  • Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. pp. 9–11. ISBN 978-0-313-33922-6.
  • Backshall, Steve (2007). Steve Backshall's venom: poisonous animals in the natural world. New Holland Publishers. ISBN 1-84537-734-6. http://books.google.com/?id=qOyV7KnJRCYC&pg=PA147.
  • a b c Handwerk, Brian (October 25, 2002). "Hornets From Hell" Offer Real-Life Fright". National Geographic News. https://news.nationalgeographic.com/news/2002/10/1025_021025_GiantHornets.html. Retrieved January 2010.
  • Hirai, Y., Yasuhara, T., Yoshida, H., Nakajima, T. (1981) A new mast cell degranulating peptide, mastoparan-M, in the venom of the hornet Vespa mandarinia Biomed. Res. 2:447-449
  • Abe, T., Sugita, M., Fujikura, T., Hiyoshi, J., Akasu, M. (2000) Giant hornet (Vespa mandarinia) venomous phospholipases – The purification, characterization and inhibitory properties by biscoclaurine alkaloids. Toxicon 38:1803-1816
  • Abe, T., Kawai, N., Niwa, A. (1982) Purification and properties of a presynaptically acting neurotoxin, mandaratoxin, from hornet (Vespa mandarinia). Biochemistry 21:1693-7
  • Biochemistry. 1982 Mar 30;21 (7):1693-7 6282316 [1]
  • アレルギー対策について 厚生労働省
  • わが国における蜂刺症 The Topic of This Month Vol.18 No.8(No.210) 国立感染症研究所
  • Schmidt, J.O., S. Yamane, M. Matsuura and C.K. Starr (1986). Hornet venoms: lethalities and lethal capacities. Toxicon 24(9):950-4.
  • Vespa mandarinia (Asian Giant Hornet) page, vespa-crabro.de
  • Hunt, J. H., I. Baker, and H. G. Baker. 1982. Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps. Evolution 36: 1318-1322
  • Defensive Adaptations: Heat Tolerance As A Weapon, davidson.edu
  • "Honeybee mobs overpower hornets". BBC News. July 3, 2009. http://news.bbc.co.uk/2/hi/science/nature/8129536.stm. Retrieved April 25, 2010.
  • Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press.
  • Effect of amino acid mixture intake on physiological responses and rating of perceived exertion during cycling exercise, PubMed

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Vespa mandarinia: Brief Summary ( Italian )

provided by wikipedia IT

Il calabrone gigante asiatico (Vespa mandarinia Smith, 1852), detto anche calabrone giapponese, è il calabrone più grande al mondo. Nativo dell'Asia orientale temperata e tropicale, il suo corpo è lungo circa 45 mm, con un'apertura alare di circa 75 mm e un pungiglione lungo 6 mm, col quale inietta una grande quantità di potente veleno (mortale per effetto di una reazione allergica, se non trattata opportunamente e quanto prima); le regine possono raggiungere una lunghezza di 55 mm.

Il calabrone gigante asiatico è spesso confuso con la Vespa velutina (o “calabrone dalle zampe gialle”), una specie invasiva che causa maggiori preoccupazioni in Europa; e a volte anche con la Vespa orientalis.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Tebuan gergasi Asia ( Malay )

provided by wikipedia MS

Tebuan gergasi Asia (Vespa mandarinia), termasuk bekas subspesies yang dikenali sebagai tebuan gergasi Jepun (V. m. Japonica),[2] yang dikenali sebagai tebuan pembunuh,[3] ialah tebuan terbesar di dunia, Asia Timur yang sederhana dan tropika. Mereka lebih suka tinggal di pergunungan dan hutan rendah, sementara hampir mengelakkan dataran dan iklim altitud tinggi. V. mandarinia mencipta sarang dengan menggali, menggabungkan terowong yang sedia ada yang digali oleh tikus, atau menduduki ruang berhampiran akar pain rotan.[4] Ia memberi makan terutama pada serangga yang lebih besar, jajahan serangga eusosial lain, sap pohon, dan madu dari koloni lebah madu.[5] Tebuan mempunyai panjang badan 45 mm (1.8 in), jarak sayap sekitar 75 mm (3.0 in), dan penyengat 6 mm (0.24 in) panjang, yang menyuntik sejumlah besar racun kuat.[5]

Tebuan gergasi Asia kadang kala dikelirukan dengan tebuan kuning (Vespa velutina) berkulit kuning, yang juga dikenali sebagai tebuan Asia, spesies utama yang menyerang utama di seluruh Eropah, termasuk UK.[1]

Rujukan

  1. ^ a b Smith, F. (1852). "VIII. Descriptions of some new and apparently undescribed species of hymenopterous insects from North China, collected by Robert Fortune, Esq". Transactions of the Royal Entomological Society of London. 7 (2): 33–44. doi:10.1111/j.1365-2311.1852.tb02208.x. (Vespa mandarinia: p. 38)
  2. ^ Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. m/s. 9–11. ISBN 978-0-313-33922-6.
  3. ^ Backshall, Steve (2007). Steve Backshall's venom: poisonous animals in the natural world. New Holland Publishers. ISBN 978-1-84537-734-2.
  4. ^ Yamane, Seiki (July 1976). "Morphological and taxonomic studies on vespine larvae, with reference to the phylogeny of the subfamily Vespinae (Hymenoptera: Vespidae)". Insecta Matsumurana. Series entomology. New series. 8: 1–45.
  5. ^ a b Handwerk, Brian (October 25, 2002). ""Hornets From Hell" Offer Real-Life Fright". National Geographic News. Diarkibkan daripada asal pada 25 January 2010.

Pautan luar

Wikimedia Commons mempunyai media berkaitan: Tebuan gergasi Asia. Wikispesies mempunyai maklumat berkaitan dengan Tebuan gergasi Asia
license
cc-by-sa-3.0
copyright
Pengarang dan editor Wikipedia
original
visit source
partner site
wikipedia MS

Tebuan gergasi Asia: Brief Summary ( Malay )

provided by wikipedia MS

Tebuan gergasi Asia (Vespa mandarinia), termasuk bekas subspesies yang dikenali sebagai tebuan gergasi Jepun (V. m. Japonica), yang dikenali sebagai tebuan pembunuh, ialah tebuan terbesar di dunia, Asia Timur yang sederhana dan tropika. Mereka lebih suka tinggal di pergunungan dan hutan rendah, sementara hampir mengelakkan dataran dan iklim altitud tinggi. V. mandarinia mencipta sarang dengan menggali, menggabungkan terowong yang sedia ada yang digali oleh tikus, atau menduduki ruang berhampiran akar pain rotan. Ia memberi makan terutama pada serangga yang lebih besar, jajahan serangga eusosial lain, sap pohon, dan madu dari koloni lebah madu. Tebuan mempunyai panjang badan 45 mm (1.8 in), jarak sayap sekitar 75 mm (3.0 in), dan penyengat 6 mm (0.24 in) panjang, yang menyuntik sejumlah besar racun kuat.

Tebuan gergasi Asia kadang kala dikelirukan dengan tebuan kuning (Vespa velutina) berkulit kuning, yang juga dikenali sebagai tebuan Asia, spesies utama yang menyerang utama di seluruh Eropah, termasuk UK.

license
cc-by-sa-3.0
copyright
Pengarang dan editor Wikipedia
original
visit source
partner site
wikipedia MS

Japansk kjempeveps ( Norwegian )

provided by wikipedia NO

Japansk kjempeveps, Vespa mandarinia, er en asiatisk art – den største av alle – i familien stikkeveps. Den tilhører samme slekt som vår norske geithams (V.crabro) og minner om denne i levevis. Underarten Vespa mandarinia japonica hører hjemme i Japan.

Beskrivelse

Som hos alle stikkeveps varierer størrelsen mye. Arbeiderne blir 24–45 mm lange, mens dronningene blir opptil 55 mm. En arbeider veier gjennomsnittlig ca. 3,5 g – omtrent som 6-7 vanlige geithamser eller 20-40 jordveps eller honningbier. Vepsen er kraftig, med stort og bredt hode og store kjever også i forhold til insektets størrelse. Som de fleste andre stikkeveps har den en stripet kropp med tydelige advarselsfarger, i gult, oransje, brunt og sort. Hodet er oransje – likeså kjevene, men med to sorte tenner. Øynene er brune. En mørk fargevarietet har svart kropp unntatt oransje bakroppsspiss og noen tynne oransje striper.

Utbredelse og tilholdssted

 src=
Japansk kjempeveps.

Arten er påvist i Japan, Russland, Korea, Kina, Taiwan, Indokina, Nepal, India og Sri Lanka. Den finnes både i tempererte og tropiske skoger, oftest i høyere strøk opp til over 2000 moh[1]. Som vår geithams bygger den ofte bol i hule trær.

Arten er ikke sikkert påvist i Amerika, Europa eller Australia, men er påstått sett flere steder, blant annet i Frankrike[2]. Det er også hevdet at den holdes som kjæledyr i USA[3]. Kjempevepsen må ikke forveksles med den betydelig mindre asiatiske geithamsen Vespa velutina, som også tar bier, og som er blitt innslept til Sør-Frankrike og har spredt seg der.

Levevis og livsløp

 src=
En japansk kjempeveps har tatt en kneler.
 src=
Japansk kjempeveps (Vespa mandarinia)
Foto: Gary Alpert

Artens livsløp er typisk for geithamser og andre sosiale stikkeveps. I strøk med markerte årstider er vepsesamfunnene ettårige, omtrent som hos stikkevepsene i Norge. Bare dronningene overvintrer, for så å grunnlegge et nytt vepsesamfunn om våren. Til å begynne med er bolet svært lite, med noen få celler hvor hun legger ett egg i hver. Eggene klekkes innen en uke, og etter ytterligere ca. to uker kryper sesongens første arbeidere ut av puppehylsteret. Nå begynner vepsesamfunnet å vokse for alvor, og sensommers kan det bestå av ca. 700 arbeidere.[4] På denne tiden begynner avkommet å utvikle seg til hanner (av ubefruktede egg) og forplantningsdyktige hunner. Disse kjønnsindividere parer seg. Deretter dør hannene forholdsvis snart, mens hunnene søker et sted å overvintre, for så å grunnlegge et nytt samfunn neste vår. Også den gamle dronningen dør, vepsesamfunnet går i oppløsning, og arbeiderne dør i løpet av høsten.

Som hos andre sosiale stikkeveps er kjempevepsens arbeider et energisk insekt, som er på vingene en stor del av tiden på jakt etter mat til larvene. Kjempevepsen er rask og utholdende og kan fly 100 km om dagen med en fart på opptil 40 km/t.[5]

Ernæring

Som andre stikkeveps tar japansk kjempeveps store mengder insekter og andre smådyr for å fôre larvene. Størrelsen og den tykke huden gjør at den gjerne går løs på byttedyr som de mindre stikkevepsene sjelden eller aldri gir seg i kast med. Den tar blant annet andre vepser, bier og knelere. Knelerne er selv blant de største rovinsektene. De fanger andre insekter ved å sakse dem med forbena, for så å spise dem. Men det har hendt en slik sakset veps i stedet har drept den langt større kneleren.

Angrep på honningbier...

 src=
Japan er godt forsynt med geithamser, men japanske honningbier (Apis cerana japonica) forsvarer seg mot dem ved å klamre seg til dem til de dør av overopphetning. Metoden virker selv mot japansk kjempeveps. Her har biene angrepet to eksemplarer av den noe mindre Vespa simillima xanthoptera.

Som andre store veps plyndrer den også bikuber – både for larver, pupper og honning. Kjempevepsens hud er så tykk at biene ikke kan stikke gjennom den – og den europeiske honningbien, som er innført til Japan pga. sin høye honningproduksjon, er hjelpeløs overfor kjempevepsen. Når en speiderveps kommer over en bikube, sender den duftsignaler (feromoner) til andre veps, så de kan angripe i samlet flokk. Én veps kan drepe 40 bier i minuttet ved å knuse dem mellom kjevene, og noen få kjempeveps kan utrydde et helt bifolk på et par timer. Den japanske honningbien (Apis cerana japonica) er en vanskeligere motstander: Som andre honningbier har den skiltvakter foran inngangen til kuben. Hvis en veps nærmer seg, vrikker de med bakkroppen for å signalisere at vepsen er oppdaget, og at den blir drept hvis den angriper. Noen ganger trekker den seg tilbake.[6] Andre ganger angriper vepsen likevel. Hundrevis av bier klamrer seg til den langt større vepsen slik at de omslutter vepsen som en ball, mens de bruker vingemusklene. Dermed stiger temperaturen til ca. 46 °C, samtidig som CO2-innholdet øker. I motsetning til biene tåler ikke vepsen dette – og dør. Før det kommer så langt, kan den ha drept flere hundre bier.

...og veps

Den japanske kjempevepsen angriper også vepsebol, først og fremst for å ta larver og pupper. Den kan tilmed angripe bolet til andre geithamser. Dermed kan de også kvitte seg med en konkurrent om maten. Men disse vepsene setter seg så kraftig til motverge at angrepet kan mislykkes, eller iallfall koste betydelige tap.

Regnes også som nyttig

Til tross for herjingene i bikubene og det kraftige stikket oppfattes ikke kjempevepsen som udelt skadelig. Den tar ofte mengder av skadeinsekter når disse har masseforekomster – bl.a. fluer og larver er enklere byttedyr enn hissige bier. Mange steder i Asia er det dessuten tradisjon for å spise insekter, ikke minst i form av sprøstekt geithams; særlig larvene regnes som en delikatesse.[7] Også kjempevepsen spises stekt i noen japanske fjellandsbyer.

Utveksling av næring med larvene

Larvene av sosiale stikkeveps er mer enn passive mottagere av mat. Når arbeiderne fôrer larvene med store mengder proteinrik kjøttmat – som de visstnok ikke er i stand til å fordøye selv – får de noen dråper med energirik væske tilbake. Iallfall hos kjempevepsen synes denne væsken å ha stor betydning for energiutfoldelsen. Siden 1990-årene er den også fremstilt syntetisk og markedsført som energidrikk, særlig i forbindelse med utholdenhetsidrett. Da Naoko Takahashi vant OL-maraton i 2000, ble seieren tilskrevet dette produktet.[8] Stoffet markedsføres under navn som «Hornet Juice» og «Hornet Performance Nutrition»[9] (engelsk hornet = geithams).

Ved stoffskiftet bidrar også larvene til å holde temperaturen oppe i bolet på kjølige dager.

Stikket og giften

I likhet med vår geithams og andre stikkeveps er japansk kjempeveps sjelden aggressiv overfor mennesker. Den stikker sjelden – unntatt hvis den blir klemt eller tråkket på, og særlig hvis den føler seg truet ved bolet. Skal vi tro forsøk med mus, er giftvirkningen sterkere enn for giften til vår geithams, men svakere enn for honningbienes gift. Hvis kjempevepsen først stikker, er følgene ofte alvorlige fordi giftmengden er langt større enn hos mindre veps. Stikkene er meget smertefulle – og beskrevet som om en får kjørt en glohet spiker inn i kjøttet. De kan også være farlige selv for folk, særlig barn, som ikke er allergiske. I henhold til forsøk med mus har giften en LD50 på 4,1 mg/kg (LD50 av engelsk Lethal Dose 50, den giftmengde som fører til en dødelighet på 50 %). Hvis erfaringene med mus kan overføres til mennesker, er altså dødeligheten for en person på 50 kg 50 % hvis han får i seg 205 mg gift (giften til en honningbie har en LD50 på 1,2 mg/kg).[10] I Japan dør ca. 40 mennesker i året etter stikk av kjempevepsen, mens ca. 10 dør av slangebitt (de farligste slangene, som kongekobra og brilleslange, mangler i Japan). Hverken denne statistikken eller beregninger av giftens virkning sier noe om sjokkvirkningen, eller at folk dør fordi de tror stikket er farlig (noceboeffekt).

Giften inneholder en rekke kjemikalier som dels er typiske for vepsegift, dels ikke er kjent fra andre veps. Som hos andre stikkeveps inneholder giften et cytolytisk (dvs. at det bryter ned cellevev) peptid, og dessuten et neurotoxin som er gitt navnet mandaratoxin (MDTX),[11]

Referanser

  1. ^ The Asian Giant Hornet; Vespa mandarinia Smith, 1852
  2. ^ (identification) Vespa mandarinia?, fransk diskusjonsforum
  3. ^ Killer insect to invade USA? Pravda.ru 26. oktober 2010
  4. ^ Asian Giant Hornet, A-z-animals
  5. ^ «Hornets: Gentle Giants! Bad press - what is true?» Vespa-crabro.de
  6. ^ «Honningbier og gedehamse i åben krig», Videnskab.dk 16. februar 2012
  7. ^ food stuffed with things, Thorn Tree forum, Lonely Planet
  8. ^ The Asian Giant Hornet Vespa mandarinia Smith, 1852
  9. ^ Hornet Performance Nutrition på Facebook
  10. ^ Schmidt, J.O.; Yamane, S.; Matsuura, M.; Starr, C.K. (1986): «Hornet venoms: lethalities and lethal capacities» i: Toxicon 24 (9): 950–4. DOI:10.1016/0041-0101(86)90096-6. PMID 3810666.
  11. ^ Abe, T., Kawai, N., Niwa, A. (1982): «Purification and properties of a presynaptically acting neurotoxin, mandaratoxin, from hornet (Vespa mandarinia)» i: Biochemistry 21, s. 1693-1697

Eksterne lenker

license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Japansk kjempeveps: Brief Summary ( Norwegian )

provided by wikipedia NO

Japansk kjempeveps, Vespa mandarinia, er en asiatisk art – den største av alle – i familien stikkeveps. Den tilhører samme slekt som vår norske geithams (V.crabro) og minner om denne i levevis. Underarten Vespa mandarinia japonica hører hjemme i Japan.

license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Szerszeń azjatycki ( Polish )

provided by wikipedia POL
Commons Multimedia w Wikimedia Commons

Szerszeń azjatycki (Vespa mandarinia) – gatunek owada z rodziny osowatych (Vespidae), największy szerszeń świata.

Występowanie

Występują we wschodniej Rosji (region Primorski Krai), Azji Południowej i Południowo-Wschodniej[1].

Budowa

Długość ciała wynosi od 2,5 do 4,5 cm (królowe)[2], rozpiętość skrzydeł sięga 7,6 cm[3]. Ubarwienie czarne z pomarańczowo-żółtymi pasami.

Biologia i ekologia

Owad wszystkożerny. Larwy karmione są przez robotnice upolowanymi owadami lub pajęczakami. Ze względu na swe duże rozmiary, robotnice atakują nawet tak niebezpieczne ofiary jak modliszki i inne osy. Same żywią się ponadto pokarmem roślinnym w postaci owoców oraz nektaru kwiatowego. Szerszenie azjatyckie ze względu na swój odstraszający wygląd nie mają wielu naturalnych wrogów, poza dużymi owadami drapieżnymi i pająkami.

Roje liczą do kilkuset osobników i mieszkają w gniazdach, które mogą osiągnąć średnicę 1 m.

Zagrożenia dla ludzi i innych zwierząt

Gatunek ten jest bardziej agresywny niż inne osy. Jego użądlenia zabijają co roku w samej Japonii około 40 osób, przeważnie w wyniku reakcji alergicznej na jad owada (najbardziej aktywną substancją jest mastoparan)[3]. Użądlenie człowieka z alergią jest zabójcze, jednak nawet zdrowy człowiek może zginąć z powodu działania neurotoksyny zwanej mandarotoksyną (MDTX), jeżeli ilość wstrzykniętego jadu jest wystarczająca. Entomolog Masato Ono z uniwersytetu w Tamagawie porównał użądlenie do gorącego gwoździa wbijanego w nogę[4].

Szerszenie azjatyckie znane są z niszczenia pszczelich rojów, czym negatywnie wpływają na przemysł pszczelarski. Kilkadziesiąt szerszeni potrafi wybić całkowicie kilkudziesięciotysięczny rój. Celem ataków szerszeni na ule jest pozyskanie pszczelich larw oraz miodu.

 src=
Głowa

Podgatunki

  • Vespa mandarinia bellona Smith, 1871
  • Vespa mandarinia mandarinia Smith, 1852
  • Vespa mandarinia japonica Radoszkowski, 1857
  • Vespa mandarinia magnifica Smith, 1852
  • Vespa mandarinia nobilis Sonan, 1929

Przypisy

  1. J. M. Carpenter, J. Kojima. Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae). „Natural history bulletin of Ibaraki University”. 1, s. 51–92, 1997. ISSN 1343-0955 (ang.). (pdf)
  2. Nguyen et al. Vespidae of Viet Nam (Insecta: Hymenoptera) 2. Taxonomic Notes on Vespinae. „Zoological Science”. 23, s. 95–104, 2006 (ang.).
  3. a b Brian Handwerk: "Hornets From Hell" Offer Real-Life Fright. National Geographic News, 2002-10-25. [dostęp 2008-11-30].
  4. Handwerk, Brian (October 25, 2002). "Hornets From Hell" Offer Real-Life Fright". National Geographic News. Archived from the original on 25 January 2010. Retrieved January 2010.

Bibliografia

  • The Asian Giant Hornet (en.)
  • Handwerk, Brian (October 25, 2002). "Hornets From Hell" Offer Real-Life Fright". National Geographic News. Archived from the original on 25 January 2010. Retrieved January 2010.
license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Szerszeń azjatycki: Brief Summary ( Polish )

provided by wikipedia POL

Szerszeń azjatycki (Vespa mandarinia) – gatunek owada z rodziny osowatych (Vespidae), największy szerszeń świata.

license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Vespa-mandarina ( Portuguese )

provided by wikipedia PT

A vespa-mandarina,[nota 1] também conhecida como vespa-gigante-asiática,[nota 2] é a maior vespa do mundo. É nativa do leste asiático temperado e tropical, sul da Ásia, sudeste da Ásia continental e partes do Extremo Oriente russo. Foi também encontrada no Noroeste Pacífico da América do Norte no final de 2019[3] e cientistas canadenses também confirmaram um espécime descoberto em 2020 em Langley, British Columbia,[4] mas ainda sem informação que sugira que se tenham estabelecido lá. Preferem viver em montanhas e florestas baixas, evitando quase completamente planícies e climas de alta altitude. A Vespa mandarinia cria ninhos cavando, cooptando túneis pré-existentes cavados por roedores ou ocupando espaços perto de raízes de pinheiros podres.[5] Alimenta-se principalmente de insectos maiores, colónias de outros insectos eusociais, seiva de árvores e mel de colónias de abelhas.[6] Esta vespa tem um comprimento de corpo de 45 milímetros, uma envergadura de cerca de 75 milímetros, e um ferrão com 6 milímetros de comprido, que injecta uma grande quantidade de veneno potente.[7]

A vespa-mandarina é frequentemente confundida com a vespa-asiática (Vespa velutina), uma espécie invasora geradora de grande preocupação em toda a Europa.

Taxonomia e filogenia

Vespa mandarinia é uma espécie do género Vespa, que compreende todas as vespas verdadeiras. Juntamente com outras sete espécies, V. mandarinia faz parte do grupo de espécies de V. tropica, definido pelo entalhe único localizado na margem apical do sétimo esterno gastral do macho. As espécies mais intimamente relacionadas dentro do grupo de espécies são V. soror. A forma triangular da margem apical do clípeo da fêmea é diagnóstica, o vértice de ambas as espécies é aumentado e a forma do ápice do edeago é distinta e semelhante.[8] A divisão do género em subgéneros foi tentada no passado,[9] mas foi abandonada devido à similaridade anatómica entre as espécies, e porque a similaridade comportamental não está associada à filogenia.[5] Depois de 2012, existem apenas três subespécies reconhecidas:[10] V. m. mandarinia Smith, 1852 (leste da China, Coreia, Rússia e Japão); V. mandarinia magnifica Smith, 1852 (China Ocidental, Índia, Nepal, Mianmar, Laos e Malásia peninsular); V. mandarinia nobilis Sonan, 1929 (apenas Taiwan). A antiga subespécie referida como V. mandarinia japonica não é considerada válida desde 1997.[11]

Descrição

 src=
Detalhe da cabeça

Independentemente do sexo, a cabeça da vespa tem um tom de laranja claro e suas antenas são castanhas, com uma base amarelo-laranja. Os olhos e ocelos são castanho-escuros a pretos. A vespa-mandarina distingue-se das outras vespas pelo clípeo pronunciado e pela grande gena. A mandíbula laranja contém um dente preto que usa para cavar. O tórax é castanho-escuro, com duas asas cinzentas variando de 3,5 a 7,5 cm. As pernas dianteiras são mais brilhantes que as patas médias e traseiras, e a base destas é mais escura que as demais. O abdómen alterna entre faixas de castanho-escuro ou preto e um tom amarelo-laranja, consistente com a cor da cabeça. O sexto segmento é amarelo. O ferrão tem tipicamente 6 milímetros de comprimento e contém um potente veneno que, em casos de várias vespas picando simultaneamente, pode matar um humano.[12]

As rainhas são consideravelmente maiores que as operárias, podendo exceder os 50 milímetros, enquanto as operárias estão entre 35 e 40 milímetros. A anatomia reprodutiva é comum entre os dois tipos, embora as operárias não se reproduzam.[12] Os machos são semelhantes às fêmeas, mas não têm ferrão, uma característica comum entre os himenópteros.[12]

Distribuição geográfica

Vídeo de Vespa-gigante-asiática
 src=
Vespa-gigante-asiática

A vespa pode ser encontrada no Krai de Primorsky, Krai de Khabarovsky (somente parte sul) e nas regiões do Oblast Autónomo Judaico da Rússia, da Coreia - onde é designada 장수말벌 , "vespa general"), China, Taiwan, Laos, Tailândia, Cambodja, Mianmar, Vietname, Nepal, Índia e Sri Lanka, sendo também comum no Japão, onde prefere áreas rurais nas quais pode encontrar árvores para nidificar,[2] sendo conhecida como o ōsuzumebachi (オオスズメバチ(大雀蜂、大胡蜂), ōsuzumebachi? literalmente, "grande abelha pardal") Em 2008, alguns meios de comunicação populares no Japão também se referiram a essa vespa como "satsujin suzumebachi" (殺人スズメバチ, "satsujin suzumebachi"? literalmente, "vespa assassina"),[13] um nome que foi repassado em 2020 a um repórter do New York Times.[14]

Em Setembro de 2019, o Ministério da Agricultura da Colúmbia Britânica confirmou que vespas foram encontradas na ilha Vancouver, no Canadá, com um ninho sendo descoberto e posteriormente destruído na cidade de Nanaimo.[15][16] Em Dezembro de 2019, o Departamento de Agricultura do Estado de Washington confirmou um avistamento relatado, assim como um espécime morto em Blaine, no lado americano da fronteira adjacente à Ilha Vancouver, sendo este o primeiro relatório dessa espécie nos Estados Unidos, e muito perto dos avistamentos de Setembro.[17] Em Abril de 2020, as autoridades de Washington pediram aos membros do público que ficassem alerta, e que relatassem qualquer avistamento dessas vespas, cuja actividade deve começar em Abril, caso estejam na área.[18] Se as vespas tiverem se estabelecido, supõe-se que "poderiam dizimar populações de abelhas nos Estados Unidos e estabelecer uma presença tão profunda que todas as esperanças de erradicação pudessem ser perdidas". Uma "caça em grande escala" desta espécie está a ser promovida pelo Departamento de Agricultura do Estado de Washington.[14] As descobertas laboratoriais determinaram que os espécimes recolhidos na Colúmbia Britânica e no Estado de Washington eram de diferentes colónias, sugerindo assim terem ocorrido duas introduções simultâneas da vespa gigante asiática na América do Norte a aproximadamente 80 quilómetros uma da outra.[14]

 src=
Corpo desfalecido de membro da subespécie vespa-gigante-japonesa

Relatos desta espécie vindos de outras partes do mundo são identificações erróneas de outras espécies de vespas, como V. orientalis e V. velutina na Europa.[19]

Nidificação

 src=
Ninho de vespa-gigante-asiática

A vespa mandarina nidifica no sopé de montanhas baixas e florestas de várzea. Sendo uma espécie particularmente dominante, nenhum esforço é direccionado à conservação da V. mandarinia ou dos seus habitats, sendo comuns em áreas de baixa perturbação humana. Ao contrário de outras espécies de vespa, a V. mandarinia habita quase exclusivamente ninhos subterrâneos. Num estudo levado a cabo em 31 ninhos, 25 foram encontrados em torno de raízes de pinheiros podres. Além disso, roedores, cobras e outros animais escavadores haviam feito alguns dos túneis, usando-os como tocas. Os ninhos encontravam-se a uma profundidade variável de 6 a 60 centímetros. A entrada na superfície do solo varia em comprimento de 2 a 60 centímetros, encontrando-se tanto horizontalmente, inclinada ou verticalmente. As rainhas que haviam que acharam o ninho preferem cavidades estreitas.[20] Os ninhos desta vespa normalmente não possuem um envelope desenvolvido. Durante os estágios iniciais de desenvolvimento, o envelope está em formato de tigela invertida. À medida que o ninho se desenvolve, são criadas uma a três folhas ásperas de favos. Frequentemente, um favos primordiais são criados simultaneamente, e mais tarde fundidos num único favo.[20]

Os favos são conectados através de um sistema de pilar principal e pilares secundários, possuindo os ninhos geralmente entre quatro a sete favos. O favo superior é abandonado após o Verão, e deixado em decomposição. O maior favo encontra-se na parte do meio para o fundo do ninho. Os maiores favos criados pela mandarina mediam 49,5 por 45,5 centímetros, com 1.192 células, sem obstáculos, e de forma circular, e 61 por 48 centímetros, elípticos e enrolados no sistema radicular.[20] Em algumas aldeias serranas japonesas, os ninhos são escavados, sendo as larvas consideradas uma iguaria quando fritas.[2]

Ciclo da colónia

O ciclo de nidificação de V. mandarinia é bastante consistente com o de outros insectos eusociais, apresentando seis fases por ciclo.[20]

Período de pré-descanso

Tanto as rainhas inseminadas como as não insemindas entram em hibernação após um ciclo. Aparecem pela primeira vez no início e meados de Abril, começando a se alimentar da seiva de carvalhos. Embora esse momento seja comum entre as vespas, a V. mandarinia domina o abastecimento, preferindo e controlando as fontes de seiva de primeira categoria. Entre as rainhas de V. mandarinia, há uma hierarquia de dominância. As rainhas de primeira linha começam a se alimentar, enquanto as outras rainhas formam um círculo ao seu redor. Quando a rainha do topo termina, a segunda rainha do nível mais alto é alimentada. Esse processo repete-se até que a última rainha se alimente numa má hora.[20]

Períodos solitários, cooperativos e poléticos

Em finais de Abril, as rainhas inseminadas começam a procurar locais de nidificação. As não inseminadas não chegam a procurar ninhos, pois os seus ovários nunca se desenvolvem completamente. As vespas continuam a se alimentar, vindo a desaparecer no início de Julho.

 src=
Macho ou vespão de vespa-gigante-asiática

Uma rainha inseminada começa a criar células relativamente pequenas, nas quais cria cerca de 40 pequenas operárias, as quais não começam a trabalhar fora da colmeia até Julho. As rainhas participam de actividades fora da colmeia até meados de Julho, quando se recolhem ao ninho, permitindo que as operárias realizem actividades extranidais. No início de Agosto o ninho encontra-se já totalmente desenvolvido, contendo três favos, cada um com 500 células e 100 operárias. Após meados de Setembro, não há mais deposição de ovos, e o foco muda para o cuidado com as larvas. As rainhas morrem no final de Outubro.[20]

Dissolução e período de hibernação

Os machos e as novas rainhas assumem as suas responsabilidades em meados de Setembro e meados de Outubro, respectivamente. Durante esse período, a cor do corpo torna-se intensa, e o peso da rainha aumenta cerca de 20%. Tanto os machos como a rainha não retornam após deixar o ninho. No caso da V. mandarinia, os machos esperam do lado de fora da entrada do ninho até a rainha emergir. Quando esta emerge, os machos interceptamna no ar, trazem-na para o chão, copulando de 8 a 45 segundos, após o que retornam à entrada para uma segunda tentativa, quando a rainha sair. Muitas rainhas tentam combater os machos, saindo sem ser fertilizadas. As rainhas são depois encontradas em habitats húmidos e subterrâneos.

Quando os indivíduos sexuados emergem, as operárias mudam seu foco alimentar de proteínas e animais para carboidratos. Os últimos indivíduos sexuados a emergir morrem de fome.[20]

Picada

O ferrão da vespa gigante asiática mede cerca de 6 milímetros,[7] injectando um veneno especialmente potente que contém, como muitos venenos de abelhas e vespas, um peptídeo citolítico, um mastoparan, que pode danificar o tecido ao estimular a acção da fosfolipase, para além da sua própria fosfolipase.[20] O ferrão desta vespa mede cerca de 4,5 milímetros a mais que o de uma abelha comum.[21] Masato Ono, entomologista da Universidade Tamagawa, perto de Tóquio, descreveu a sensação da picada como "um prego quente sendo enfiado na minha perna".[7]

O veneno contém uma neurotoxina, a mandaratoxina,[20] um polipeptídeo de cadeia única com um peso molecular em torno de 20 kD. Embora uma única vespa não seja capaz de injectar uma dose letal, esta pode ser letal mesmo em pessoas que não sejam alérgicas se a dose for suficiente, ou seja, se forem recebidas várias picadas. No entanto, quando a vítima é alérgica ao veneno, isso aumenta em muito o risco de morte. Testes com ratos revelaram que o veneno fica aquém de ser o mais letal veneno de vespa, tendo um LD50 de 4,0 mg/kg. Em comparação, o veneno de vespa mais mortal, pelo menos para ratos de laboratório, pertence com grande vantagem à Vespa luctuosa, com 1,6 mg/kg. A potência da picada deve-se à quantidade relativamente grande de veneno injectado.[22]

Efeitos de picadas em seres humanos

Desde 2001, o número anual de mortes humanas causadas por picadas de abelhas, vespas e vespas no Japão tem variado entre 12 e 26.[23] Como esse número também inclui mortes causadas por outras espécies de vespas e abelhas, o número de mortes causadas por vespas gigantes asiáticas é provavelmente significativamente menor.

os avisos na China são que as pessoas picadas mais de dez vezes recorram a ajuda médica, e a tratamento de emergência quando tiverem levado mais de 30 picadas. As picadas podem causar insuficiência renal.[24] Em 2013, as picadas de vespas gigantes asiáticas mataram 41 pessoas e feriram mais de 1.600 em Xianxim, na China.[25]

As mortes por envenenamento estão relacionadas principalmente a choque anafilático ou paragem cardíaca, ocorrendo como resultado da falência de múltiplos órgãos, geralmente após um grande número de picadas.

Todas as vítimas de picada exibiram sinais de hemorragia e necrose da pele, causadas provavelmente pela incapacidade de neutralizar efectivamente o veneno ou a toxicidade invulgarmente potente dessa quantidade de picadas. Em ambos os casos, essas picadas levaram à lesão de múltiplos órgãos. Embora nem todos tenham apresentado lesões ou necrose, existe uma forte correlação entre o número de picadas e a gravidade da lesão. Os que morreram, em média, foram picados 59 vezes (com desvio padrão de 12), enquanto os que sobreviveram sofreram 28 picadas (com desvio padrão de 4).[26]

Parasitas

Xenos moutoni é um parasita comum entre as espécies de Vespa. Num estudo de parasitas entre estas espécies, 4,3% das fêmeas de V. mandarinia haviam sido parasitadas. Os machos não foram estilopizados (parasitados por Stylopidae, como Xenos moutoni). A largura da cabeça do estilóide e da cabeça do hospedeiro está positivamente correlacionada. A principal consequência da parasitação é a incapacidade de se reproduzir para o ano seguinte. A rainhas estilopizadas seguem o mesmo destino que rainhas não inseminadas, não procurando uma área para criar uma nova colónia e se alimentar de seiva até o início de julho, quando desaparecem. Noutras espécies de Vespa, os machos também têm a possibilidade de serem estilizados. As consequências para os dois sexos são semelhantes, uma vez que nenhum dos dois é capaz de se reproduzir.[27]

Comunicação e percepção

A V. mandarinia usa pistas visuais e químicas como um meio de navegar, tanto ela própria como as outras, para o local desejado. A marcação por aroma tem sido discutida como uma maneira das vespas direccionarem outros membros da colónia para uma fonte de alimento. Mesmo com danos nas antenas, a V. mandarinia foi capaz de navegar sozinha. Apenas não conseguiu encontrar o seu destino quando a deficiência visual foi induzida. Isso implica que, embora a sinalização química seja importante, as pistas visuais desempenham um papel igualmente importante na orientação dos indivíduos. Outros comportamentos incluem a formação de uma “corte real” composta por operárias que lambem e mordem a rainha, ingerindo as suas ferormonas.

Estas ferormonas poderiam comunicar-se directamente entre a rainha e a sua corte, ou indirectamente entre a sua corte e outras operárias, devido às ferormonas ingeridas. Isso é apenas especulação, já que nenhuma evidência directa que sugira que isto aconteça foi recolhida até à data. A V. mandarinia também comunica acusticamente. Quando as larvas estão com fome, raspam as mandíbulas contra as paredes da célula. Além disso, as vespas adultas clicam as suas mandíbulas como um aviso para outras criaturas que invadem o seu território.[12][28]

Marcação por aroma

A V. mandarinia é a única espécie de vespa social conhecida por aplicar um aroma para direccionar a sua colónia a uma fonte de alimento. A vespa secreta o produto químico pela sexta glândula esternal, também conhecida como glândula de Van der Vecht. Este comportamento é observado durante os ataques outonais, após os vespões começarem a caçar em grupos, em vez de individualmente. A capacidade de aplicar aromas pode ter surgido pela grande dependência entre estas vespas, e as colónias de abelhas como a sua principal fonte de alimento. Uma única vespa é incapaz de enfrentar uma colónia inteira de abelhas, uma vez que espécies como Apis cerana têm um mecanismo de defesa bem organizado. As abelhas enxameiam uma vespa e agitam as suas asas para aquecer a vespa e elevar o dióxido de carbono até um nível letal. Por esta razão, ataques organizados são muito mais eficazes e devastam facilmente uma colónia de dezenas de milhar de abelhas.[29]

Domínio entre espécies

Numa experiência em que foram observadas quatro espécies de Vespa, V. ducalis, V. crabro, V. analis e V. mandarinia, V. mandarinia foi a espécie dominante, sendo definidos vários parâmetros para o determinar. O primeiro parâmetro observou partidas mediadas pela interacção, definidas como cenários em que uma espécie deixa a sua posição devido à chegada de um indivíduo mais dominante. A proporção de partidas mediadas por interacção foi a mais baixa para V. mandarinia. Outro parâmetro medido foi a tentativa de entrada do patch. Ao longo do tempo observado, conspecíficos (interações com a mesma espécie) resultaram em entrada recusada muito mais do que heteroespecíficos (interações com espécies diferentes). Por fim, foram observadas brigas entre essas vespas, Pseudotorynorrhina japonica, Neope goschkevitschii e Lethe sicelis, sendo a V. mandarinia mais uma vez a espécie mais dominante. Em 57 lutas separadas, foi observada apenas uma derrota para Neope goschkevitschii, dando a V. mandarinia uma taxa de vitória de 98,3%. Com base em partidas mediadas por interacção, tentativa de entrada de patches e brigas interespecíficas, V. mandarinia é a espécie mais dominante.[30]

Predação

 src=
Vespa-gigante-asiática alimentando-se de um louva-a-deus

A vespa-gigante-asiática é intensamente predatória; caça insectos de tamanho médio a grande, como abelhas, outras espécies de vespas e louva-a-deus. Estes últimos são alvos preferidos no final do Verão e Outono. Insectos grandes como os louva-a-deus são as principais fontes de proteínas para alimentar larvas de rainhas e vespões. As operárias buscam alimentar as suas larvas e, como as presas podem incluir pragas agrícolas, os vespões às vezes são considerados benéficos para a agricultura. O vespão geralmente ataca as colónias de outras espécies de Vespa, sendo a Vespa simillima uma presa comum, e as colmeias de abelhas, para obter adultos, pupas e larvas como alimento para suas próprias larvas; por vezes chegam a canibalizar as colónias umas das outras. Um único batedor, às vezes dois ou três, aproximam-se cautelosamente da colmeia, produzindo ferormonas para levar os seus companheiros de ninho à colmeia. As vespas podem devastar uma colónia de abelhas, sobretudo no caso da abelha-europeia introduzida; um único zangão pode matar até 40 abelhas por minuto devido às suas grandes mandíbulas, que podem rapidamente atacar e decapitar presas. As picadas das abelhas são ineficazes, uma vez que as vespas têm cinco vezes o seu tamanho e são fortemente blindadas. Um número reduzido de vespas, abaixo das 50, consegue exterminar uma colónia de dezenas de milhar de abelhas em poucas horas. As vespas podem voar até 100 quilómetros num único dia, a velocidades de até 40 km/h.[31] As larvas de vespas podem digerir proteínas sólidas, embora os adultos não o consigam fazer; as vespas adultas apenas podem beber os sucos de suas vítimas e mastigar as suas presas numa pasta para alimentar as larvas. As operárias desmembram os corpos de presas para retornar apenas ao ninho as partes mais ricas em nutrientes, como os músculos de vôo.[2] Em geral, as larvas de vespas sociais predatórias, e não apenas as de Vespa, secretam um líquido claro, por vezes chamado de mistura de aminoácidos de Vespa, cuja composição exacta de aminoácidos varia consideravelmente de espécie para espécie, que produzem para alimentar os adultos sob demanda.[32]

 src=
Bola defensiva de abelhas japonesas ( Apis cerana japonica ), na qual duas vespas ( Vespa simillima xanthoptera ) são engolidas, incapacitadas, aquecidas e eventualmente mortas: esse tipo de defesa também é usado contra as vespas gigantes asiáticas.

Abelhas nativas

No Japão, apicultores tentaram introduzir abelhas-europeias (Apis mellifera), em virtude da sua alta produtividade. Estas abelhas não têm defesa inata contra as vespas, as quais podem destruir rapidamente suas colónias.[2] Embora um punhado de vespas gigantes asiáticas possa derrotar facilmente as defesas descoordenadas de uma colónia de abelhas-europeias, a abelha-japonesa (Apis cerana japonica) tem uma estratégia eficaz. Quando uma vespa batedora localiza-se e aproxima-se de uma colmeia japonesa, emite ferormonas que actuam como sinais específicos de caça. Quando as abelhas japonesas detectam essas ferormonas, cerca de cem agrupam-se perto da entrada do ninho e montam uma armadilha, mantendo a entrada aberta, permitindo que a vespa entre na colmeia. Quando esta entra, uma multidão de centenas de abelhas a envolve numa bola, cobrindo-a completamente e impedindo que reaja efectivamente. As abelhas vibram violentamente os seus músculos de voo, da mesma maneira que fazem para aquecer a colmeia em condições frias, elevando a temperatura na bola para o valor crítico de 46 °C. Adicionalemnte, os esforços das abelhas aumentam o nível de dióxido de carbono (CO 2 ) na bola. Nessa concentração de CO 2, as vespas conseguem tolerar até 50 °C, mas o vespão não consegue sobreviver à combinação de alta temperatura e alto nível de dióxido de carbono.[33][34] Algumas abelhas morrem junto com o invasor, assim como acontece quando atacam outros invasores com as suas picadas, mas matando o vespão, evitam que este invoque reforços que destruiriam toda a colónia.[35]

Pesquisas detalhadas sugerem que esse relato do comportamento das abelhas e algumas espécies de vespas é incompleto, e que as abelhas e os predadores estão desenvolvendo estratégias para evitar conflitos caros e mutuamente inúteis. Em vez disso, quando as abelhas detectam vespas exploradoras, transmitem um sinal de "eu a vejo" que normalmente adverte o predador.[36] Outra defesa utilizada pela Apis cerana consiste em acelerar drasticamente o retorno à colónia, a fim de evitar ataques no ar.

Exterminação

Desde 1973, seis métodos diferentes têm sido usados para controlar vespas no Japão. Embora esses métodos diminuam os danos causados por V. mandarinia, controlá-las inteiramente é difícil.

Espancamento: Os vespões são esmagados com varas de madeira de cabeça plana. Estes não contra-atacam quando estão na fase de caça às abelhas ou na fase de ataque de colmeias ("abate"), mas guardam agressivamente uma colmeia quando matam os defensores e a ocupam. O maior gasto nesse método é o tempo, pois o processo é ineficiente.[20]

Remoção de ninhos: A aplicação de venenos ou fogos à noite é uma maneira eficaz de exterminar uma colónia, sendo a parte mais difícil dessa táctica encontrar os ninhos subterrâneos. O método mais comum de descobrir ninhos é dar um pedaço de sapo ou carne de peixe presa a uma bola de algodão a uma vespa, seguindo-a depois de volta ao ninho. Com V. mandarinia, isso é particularmente difícil, uma vez que o seu raio de voo doméstico varia normalmente entre um a dois quilómetros. A V. mandarinia consegue viajar até oito quilómetros de distância do ninho.[20]

Armadilhas para iscas: São colocadas em apiários. O sistema consiste em vários compartimentos que direccionam a vespa para um orifício unilateral difícil de retornar, uma vez que fica num compartimento em cul-de-sac, localizado na parte superior da caixa, da qual as abelhas podem escapar através de uma abertura de malha, mas as vespas não, devido ao seu tamanho grande. As iscas usadas para atrair as vespas incluem uma solução diluída de geleia de milho, solução de açúcar bruto com uma mistura de intoxicantes, vinagre ou essência de frutas.[20]

Envenenamento em massa: As vespas no apiário são capturadas e alimentadas com uma solução de açúcar ou abelha que foi envenenada com malatião. Espera-se que a toxina se espalhe através da trofalaxia. Este método em princípio é bom, mas não foi extensivamente testado.[20]

Armadilha nas entradas da colmeia: Prende-se a armadilha à frente das colmeias. A sua eficácia é determinada pela sua capacidade de capturar vespas, permitindo que as abelhas escapem facilmente. A vespa entra na armadilha e captura uma abelha. Quando tenta voar de volta pela entrada da colmeia, atinge a frente da armadilha. A vespa voa para cima para escapar e entra na câmara de captura, onde as vespas são deixadas para morrer. Algumas vespas encontram uma maneira de escapar da armadilha pela frente, de modo que estas armadilhas podem ser muito ineficientes.[20]

Telas de protecção: Havendo resistência, os vespas perdem o desejo de atacar e, em vez disso, recuam. Diferentes medidas para aplicar resistência incluem ervas daninhas, arame ou redes de pesca ou limitação do tamanho da passagem para que apenas as abelhas possam atravessar. Vespas experientes percebem o truque, e eventualmente ficam nessas armadilhas, aguardando a chegada das abelhas. O melhor método de controle de vespas é combinar essas telas de protecção com armadilhas.[20]

Uso como suplemento nutricional

A mistura de aminoácidos da Vespa é um suplemento nutricional, que consiste em saliva larval vendida com a intenção de melhorar a resistência durante o exercício. Várias empresas na Ásia e na Europa começaram a fabricar suplementos alimentares e bebidas energéticas que contêm versões sintéticas de secreções das larvas de V. mandarinia, que as vespas adultas geralmente consomem. Os fabricantes destes produtos alegam que o consumo das secreções de vespas larvais (comercializadas como "suco de vespas") aumenta a resistência humana devido ao efeito que esta tem no desempenho das vespas adultas. Durante os testes de laboratório em ratos, observou-se um aumento da lipólise nos adipócitos de ratos, além de melhorar a resistência na natação, diminuir o lactato e aumentar a concentração de glicose na corrente sanguínea. Embora os testes com ratos tenham produzido resultados optimistas, os testes em humanos foram inconclusivos. Dez ciclistas treinados receberam uma dose de 80 ml da mistura ou um placebo de bebida desportiva. As variáveis testadas incluíram o tempo para completar os 20 km em corrida, potência de pico, potência média, frequência cardíaca máxima e frequência cardíaca média. Os participantes que consumiram tiveram uma frequência cardíaca máxima significativamente menor, mas nenhuma outra mudança estatisticamente significativa foi observada.[20]

Notas

  1. Termo em latim que compõe o nome científico é mandarinia.[1]
  2. Incluindo a subespécie conhecida como "vespa-gigante-japonesa".[2]

Referências

  1. a b Smith, F. (1852). «VIII. Descriptions of some new and apparently undescribed species of hymenopterous insects from North China, collected by Robert Fortune, Esq.». Transactions of the Royal Entomological Society of London. 7 (2): 33–44. doi:10.1111/j.1365-2311.1852.tb02208.x (Vespa mandarinia: p. 38)
  2. a b c d e Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. [S.l.: s.n.] pp. 9–11. ISBN 978-0-313-33922-6
  3. «New Pest Response Guidelines» (PDF). United States Department of Agriculture
  4. «More 'murder hornets' are turning up. Here's what you need to know». Science News (em inglês). 30 de maio de 2020. Consultado em 8 de junho de 2020
  5. a b Yamane. «Morphological and taxonomic studies on vespine larvae, with reference to the phylogeny of the subfamily Vespinae (Hymenoptera: Vespidae)». Insecta Matsumurana. Series entomology. New series. 8: 1–45
  6. Campbell, Dana. «Vespa mandarinia». Encyclopedia of Life. Arquivado do original em 7 de outubro de 2013
  7. a b c Handwerk, Brian. «"Hornets From Hell" Offer Real-Life Fright». National Geographic News
  8. «A phylogenetic study of the species of the genus Vespa (Hymenoptera: Vespinae)». Entomologica Scandinavica. 24. OCLC 527642543. doi:10.1163/187631293x00226
  9. «Notes on oriental Vespinae, including some species from China and Japan (Hymenoptera, Vespidae)». Zoologische Mededelingen. 36: 205–232
  10. Archer, M.E. (2012). Penney, ed. Vespine wasps of the world: behaviour, ecology and taxonomy of the Vespinae. Siri Scientific. Col: Monograph Series. 4. [S.l.: s.n.] ISBN 9780956779571. OCLC 827754341
  11. «Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae)» (PDF). Natural History Bulletin of Ibaraki University. 1: 51–92. 1997
  12. a b c d Barth, Zach. «Vespa mandarinia». Animal Diversity Web. University of Michigan Museum of Zoology. Cópia arquivada em 8 de outubro de 2015
  13. TV Asahi; broadcast listing for 28 September 2008
  14. a b c «'Murder Hornets' in the U.S.: The Rush to Stop the Asian Giant Hornet». The New York Times
  15. «British Columbia Ministry of Agriculture Pest Alert: Asian Giant Hornet» (PDF)
  16. Berube, C. "Giant Alien Insect Invasion Averted – Canadian Beekeepers Thwart Apicultural Disaster" American Bee Journal, Feb. 2020 pp. 209–214
  17. «Hornets | Washington State Department of Agriculture». agr.wa.gov
  18. Amanda Holpuch (2 May 2020), "'Murder hornets' in Washington state threaten bees and whip up media swarm; Asian giant hornet, which became more active in the state in April, is the world's largest and can kill humans with multiple stings", The Guardian
  19. [1]
  20. a b c d e f g h i j k l m n o p Matsuura. «A bionomic sketch of the Giant Hornet, Vespa mandarinia, a serious pest for Japanese apiculture» (PDF). Journal of the Faculty of Science, Hokkaido University. Series 6, Zoology. 19: 125–162. ISSN 0368-2188
  21. Doumani. «We are Here to Stay». MERIP Middle East Report. 15 páginas. ISSN 0888-0328. doi:10.2307/3011869
  22. «Hornet venoms: Lethalities and lethal capacities» (PDF). Toxicon. 24: 950–954. 1986. PMID 3810666. doi:10.1016/0041-0101(86)90096-6
  23. «ハチ刺されと死亡事故». www2u.biglobe.ne.jp
  24. «Hornet attacks kill dozens in China». The Guardian. Cópia arquivada em 5 de março de 2019
  25. «China hornets kill 41 in north since July». BBC News. Cópia arquivada em 9 de abril de 2018
  26. Yanagawa. «Cutaneous hemorrhage or necrosis findings after Vespa mandarinia (wasp) stings may predict the occurrence of multiple organ injury: A case report and review of literature». Clinical Toxicology. 45: 803–807. PMID 17952752. doi:10.1080/15563650701664871
  27. Makino. «Levels of Parasitism by Xenos moutoni du Buysson (Strepsiptera, Stylopidae) and their Seasonal Changes in Hornets (Hymenoptera: Vespidae, Vespa) Caught with Bait Traps» (PDF). Entomological Science. 1: 537–543. ISSN 1479-8298
  28. «Vespa mandarinia». UWL. Cópia arquivada em 10 de janeiro de 2019
  29. «Recruitment in swarm-founding wasps: Polybia occidentalis does not actively scent-mark carbohydrate food sources». Psyche. 2011. doi:10.1155/2011/378576
  30. «Factors Affecting Behavioral Interactions Among Sap-Attracted Insects». Annals of the Entomological Society of America. 102: 201–209. 2009. doi:10.1603/008.102.0203
  31. Kosmeier, Dieter. «Vespa mandarinia (Asian Giant Hornet) page». Vespa-crabro.de
  32. Hunt. «Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps». Evolution. 36: 1318–1322. JSTOR 2408164. doi:10.2307/2408164
  33. «Heat and carbon dioxide generated by honeybees jointly act to kill hornets». Naturwissenschaften. 96: 1133–1136. Bibcode:2009NW.....96.1133S. PMID 19551367. doi:10.1007/s00114-009-0575-0
  34. «Honeybee mobs overpower hornets». BBC News. Cópia arquivada em 21 de maio de 2012
  35. «Defensive Adaptations: Heat Tolerance As A Weapon». Bio.davidson.edu. Cópia arquivada em 4 de novembro de 2013
  36. «An 'I see you' prey–predator signal between the Asian honeybee, Apis cerana, and the hornet, Vespa velutina». Animal Behaviour. 83: 879–882. 2012. doi:10.1016/j.anbehav.2011.12.031

 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Vespa-mandarina: Brief Summary ( Portuguese )

provided by wikipedia PT

A vespa-mandarina, também conhecida como vespa-gigante-asiática, é a maior vespa do mundo. É nativa do leste asiático temperado e tropical, sul da Ásia, sudeste da Ásia continental e partes do Extremo Oriente russo. Foi também encontrada no Noroeste Pacífico da América do Norte no final de 2019 e cientistas canadenses também confirmaram um espécime descoberto em 2020 em Langley, British Columbia, mas ainda sem informação que sugira que se tenham estabelecido lá. Preferem viver em montanhas e florestas baixas, evitando quase completamente planícies e climas de alta altitude. A Vespa mandarinia cria ninhos cavando, cooptando túneis pré-existentes cavados por roedores ou ocupando espaços perto de raízes de pinheiros podres. Alimenta-se principalmente de insectos maiores, colónias de outros insectos eusociais, seiva de árvores e mel de colónias de abelhas. Esta vespa tem um comprimento de corpo de 45 milímetros, uma envergadura de cerca de 75 milímetros, e um ferrão com 6 milímetros de comprido, que injecta uma grande quantidade de veneno potente.

A vespa-mandarina é frequentemente confundida com a vespa-asiática (Vespa velutina), uma espécie invasora geradora de grande preocupação em toda a Europa.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Orjaški azijski sršen ( Spanish; Castilian )

provided by wikipedia SL

Orjaški azijski sršen (znanstveno ime Vespa mandarinia) je vrsta kožekrilcev iz družine pravih os, izvorno razširjena v Vzhodni in Jugovzhodni Aziji. Z velikostjo delavk do 4,5 cm in matic celo do 5,5 cm so največji predstavniki os in z izjemo nekaterih matic termitov največje socialne žuželke sploh.[1][2]

Telesne značilnosti

 src=
Portret

Poleg velikosti je prepoznavna po veliki oranžno-rumeni glavi brez vzorca in enako obarvani bazi zadka.[1] Mandibule so razmeroma velike, temno oranžne barve, s črnim zobcem, ki ga uporabljajo za kopanje. Oprsje je rjavo, z velikim ščitkom (scutellum) in velikimi sivimi krili, ki jih ob mirovanju držijo navzven in pri maticah dosežejo premer preko 7,5 cm. Matice se od ostalih osebkov ločijo po velikosti, samice od samcev pa predvsem po 6 mm dolgem želu.[3]

Življenjski krog

Ličinke so belkaste barve, brez nog in mehkega telesa, le glavo prekriva hitinast skelet. Delavke in matica jih hranijo s pasto iz prežvečenega plena.[3] V zameno izločajo ličinke z aminokislinami bogato slino, ki jo posredujejo delavkam (temu pojavu pravimo trofalaksa), saj odrasli sršeni ne morejo prebavljati trde hrane.[4] Razvoj od izleganja iz jajčeca do preobrazbe v odraslo žival traja okrog 40 dni. V začetku sezone spomladi se razvijajo predvsem delavke, proti jeseni pa se začnejo razvijati tudi samci in nazadnje še bodoče matice. Ko izletijo slednje, se sparijo s samci pred domačim gnezdom in poiščejo prezimovališče, samci pa kmalu po parjenju poginejo. Naslednjo pomlad najdejo primeren prostor in ustvarijo novo kolonijo in živijo do jeseni, ko propade kolonija in se krog začne znova. Delavke živijo samo eno sezono od pomladi do jeseni. Podobno kot pri ostalih evsocialnih žuželkah so v koloniji skozi sezono prisotne matice dveh generacij, delavke, ki se ne razmnožujejo, in haploidni samci, ki se razvijejo iz neoplojenih jajčec in je njihova edina funkcija oploditev bodočih matic.[3][5]

Ekologija

 src=
Orjaški azijski sršen jé bogomolko

Vrsta je izvorno razširjena v Vzhodni in Jugovzhodni Aziji z izjemo vlažnih tropskih predelov, predvsem v Laosu, na Tajskem, Kitajskem, Korejskem polotoku in Japonskem.[1] Pojavlja se tudi v Indiji, na Šrilanki, v Nepalu, Butanu, Mjanmarju, celinskem delu Malezije, na Tajvanu in skrajnem jugovzhodu Rusije (Primorski kraj).[6] Posebej pogosta je v ruralnih predelih Japonske, kjer je tudi najbolj raziskana.[3] Junija 2014 je v Sloveniji vzbudila veliko pozornost novica, da naj bi en osebek smrtonosnega sršena opazili v bližini Pivke,[7] a je šlo za napačno povzemanje obvestila Čebelarske zveze Slovenije, ki se je nanašalo na drugo azijsko vrsto Vespa velutina, ki je invazivna v Evropi[8] in ne predstavlja bistvene nevarnosti za človeka.

Njihov habitat so nizka gozdnata hribovja, kjer gradijo gnezda pod zemljo, pogosto v opuščenih brlogih glodavcev ali pod preperelimi koreninami dreves.[3] So mesojedi, plenijo predvsem počasne žuželke, kot so odrasli skarabeji in gosenice metuljev,[1] spomladi pred gnezditvijo in pozno jeseni ob razpadu kolonije pa preidejo na ogljikove hidrate rastlinskega izvora, predvsem drevesni sok hrastov. Njihova posebnost je, da kot edine ose napadajo gnezda drugih socialnih žuželk, predvsem manjših os in čebel. To običajno počnejo proti koncu sezone od sredine avgusta dalje, ko se razvija nova spolna generacija in hkrati upade količina razpoložljive hrane v naravi. Dokumentiran potek napada na čebeljo družino je sestavljen iz več faz: sprva pred panjem patruljirajo zgolj posamezni sršeni in lovijo izletajoče čebele. Če je plen dovolj blizu domačemu gnezdu, preide čez nekaj časa napad v naslednjo fazo, to je množičen pokol, pri katerem sodelujeta dva do več deset sršenov iz iste družine. V napadu, ki lahko traja ure, s prekinitvijo ponoči tudi do naslednjega dne, pobijejo sršeni vse čebele, ki izletijo v protinapad. Ko preživele čebele zapustijo svoj panj, se prične faza okupacije, v kateri sršeni odpirajo satje, pobirajo bube in jih prežvečene nosijo svojim ličinkam v gnezdo, medu pa se izognejo. To lahko traja več tednov, dokler hrane ne zmanjka in v tem času zavzet panj tudi branijo kot svoj teritorij.[5] Avtohtone azijske čebele imajo obrambni mehanizem, zaznajo namreč feromon, s katerim sršeni v fazi lova označijo panj za prihodnje napade in izvedejo koordiniran protinapad, ko imajo opravka samo z enim napadalcem.[3] Več sto čebeljih delavk hkrati napade sršena in ga obda v kroglo, nato pa začnejo čebele drgetati z mišicami in intenzivno ventilirati, s čemer proizvajajo toploto ter ogljikov dioksid. Notranjost krogle se segreje na 45 °C, kar ob povišani koncentraciji CO2 ubije napadalca (čebele same so odpornejše). S tem preprečijo, da bi sršen z vrnitvijo v gnezdo rekrutiral nove napadalce.[9]

Naravnih sovražnikov orjaški azijski sršeni nimajo mnogo, le občasno jih plenijo sršenarji, pojavlja pa se tudi kanibalizem.[3] Ob vznemirjenju glasno tleskajo s čeljustmi v svarilo, nato pa motnjo fizično napadejo, pri čemer uporabljajo želo in čeljusti. Njihov strup med sršenjimi ne izstopa bistveno po moči, temveč, spet skladno z velikostjo, po količini. Delavka ima v polnih strupnih žlezah povprečno okrog 4 mikrolitre strupa, ki ima za laboratorijske miši srednji smrtni odmerek (LD50 intravenozno) 4,1 mg/kg, kar pomeni 270 g miši na pik.[10] Preračunano na običajno telesno težo miši (20 g[11]) to pomeni, da bi lahko strup enega sršena ubil šest do sedem miši.

Pomen za človeka

Predvsem na Japonskem so orjaški azijski sršeni znani kot nadloga in nevarnost za človeka, ki posega v njihov življenjski prostor. Največji pomen imajo v čebelarstvu, odkar so na Japonsko zaradi večje produktivnosti uvozili medonosno čebelo kot nadomestilo za avtohtone vrste. Kot omenjeno, evropske čebele nimajo obrambnega mehanizma in so zelo ranljive za napad, ki popolnoma uniči gnezdo. Proti njim se kmetje borijo s palicami, pastmi pred čebelnjaki in uničevanjem sršenjih gnezd.[5] Zaradi agresivnosti in obilnega strupa so ti sršeni smrtno nevarni tudi za človeka, o več deset žrtvah redno poročajo med drugim z Japonske[12] in Kitajske.[13]

Po drugi strani prebivalci kmetijskih delov Japonske te sršene lovijo tudi za hrano. Poleg tega je slina, ki jo izločajo ličinke, na Japonskem osnova za energijsko pijačo, imenovano VAAM (iz angleščine vespid amino acid mixture), ki vsebuje sintetično mešanico aminokislin v enakem razmerju. Po trditvah proizvajalca daje uporabniku vzdržljivost in moč, po čemer slovijo orjaški sršeni, več japonskih vzdržljivostnih športnikov jo je navedlo kot skrivnost svojega uspeha[12][14] (vendar je takšne trditve težko preveriti).

Sklici in opombe

  1. 1,0 1,1 1,2 1,3 Robinson, William H. (2005). "Hymenoptera". Urban Insects and Arachnids: A Handbook of Urban Entomology. Cambridge University Press. str. 275–276. ISBN 9781139443470.
  2. Turillazzi, Stefano (2013). The Biology of Hover Wasps. Springer. str. 20–21. ISBN 9783642326806.
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 Barth, Zach; Kearns, Thomas; Wason, Elizabeth (2013). "Vespa mandarinia". Animal Diversity Web. Museum of Zoology, University of Michigan. Pridobljeno dne 22.6.2014.
  4. Abe, Takashi; Tanaka, Yoshiya; Miyazaki, Hiromitsu; Kawasaki, Yasuko Y. (1991). "Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis". Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 99 (1–2): 79–84. doi:10.1016/0742-8413(91)90079-9.
  5. 5,0 5,1 5,2 Matsuura, Makoto; Sakagami, Shôichi F. (1973). "A Bionomic Sketch of the Giant Hornet, Vespa mandarinia, a Serious Pest for Japanese Apiculture" (PDF). Journal of the Faculty of Science Hokkaido University Series VI. Zoology 19 (1): 125–162.
  6. Carpenter, James M.; Kojima, Jun-ichi (1997). "Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae)" (PDF). Nat. Hist. Bull. Ibaraki Univ 1: 51–92.
  7. "Pri Pivki opazili azijskega sršena". 24ur.com. 20.6.2014. Pridobljeno dne 22.6.2014.
  8. "Je azijski sršen že v Sloveniji". Čebelarska zveza Slovenije. 20.6.2014. Pridobljeno dne 23.6.2014.
  9. Sugahara, Michio; Sakamoto, Fumio (September 2009). "Heat and carbon dioxide generated by honeybees jointly act to kill hornets". Naturwissenschaften 96 (9): 1133–1136. doi:10.1007/s00114-009-0575-0.
  10. Schmidt, Justin O.; Yamane, Soichi; Matsuura, Makoto; Starr, Christopher K. (1986). "Hornet venoms: lethalities and lethal capacities" (PDF). Toxicon 24 (9): 950–954.
  11. "Mouse Facts". Mouse Genome Informatics. Pridobljeno dne 22.6.2014.
  12. 12,0 12,1 Handwerk, Brian (25. oktober 2002). ""Hornets From Hell" Offer Real-Life Fright". National Geographic News. Pridobljeno dne 28.6.2014.
  13. "China hornets kill 41 in north since July". BBC News. 3.10.2013. Pridobljeno dne 28.6.2014.
  14. Hunt, James H. (2007). The Evolution of Social Wasps. Oxford University Press. str. 77. ISBN 9780198042075.

license
cc-by-sa-3.0
copyright
Avtorji in uredniki Wikipedije
original
visit source
partner site
wikipedia SL

Orjaški azijski sršen: Brief Summary ( Spanish; Castilian )

provided by wikipedia SL

Orjaški azijski sršen (znanstveno ime Vespa mandarinia) je vrsta kožekrilcev iz družine pravih os, izvorno razširjena v Vzhodni in Jugovzhodni Aziji. Z velikostjo delavk do 4,5 cm in matic celo do 5,5 cm so največji predstavniki os in z izjemo nekaterih matic termitov največje socialne žuželke sploh.

license
cc-by-sa-3.0
copyright
Avtorji in uredniki Wikipedije
original
visit source
partner site
wikipedia SL

Asiatisk jättebålgeting ( Swedish )

provided by wikipedia SV

Asiatisk jättebålgeting (ibland även: mandaringeting), Vespa mandarinia, är en getingart som beskrevs av Frederick Smith 1852. Vespa luctuosa ingår i släktet bålgetingar, och familjen getingar.[1].

Underarter

Arten har fyra underarter[1]

  • V. m. mandarinia Smith, 1852
  • V. m. bellona Smith, 1871
  • V. m. magnifica Smith, 1852
  • V. m. nobilis Sonan, 1929

Beskrivning

Arten betraktas som världens största getingart. Drottningen har en vingbredd på mer än 76 mm och en kroppslängd som kan överstiga 50 mm. Hanar och arbetare är mindre, med kroppslängder mellan 35 och 39 mm. Huvudet är brett och ljust orangegult med mellan- till mörkbruna antenner och mörkbruna till svarta ögon. Käkarna är stora och mörkt orangefärgade. Mellankroppen är mörkbrun med gråaktiga vingar.[2] Bakkroppen är mörkbrun med smala, gula band baktill på varje tergit (ovansidans segment) utom det sjätte (=bakersta hos honorna), som är helt och hållet gult. Gadden kan bli upptill 6 mm lång.[3]

Ekologi

Den asiatiska jättebålgetingen förekommer i lägre berg och skogar, men undviker slättmark och alltför höga höjder. Arten är en långflygare, och rör sig ofta 1 till 2 km från boet, i undantagsfall upp till 8 km.[2]

Getingarna är mycket giftiga. För en människa är giftet dödligt om man får många stick,[4] och dödsfall är vanliga i Kina.[5] Giftet löser upp vävnader[6] och kan orsaka skador på den stucknes lever och njurar[7].

Arten har få fiender, men det förekommer att bivråkar attackerar bona.[2]

Boet och drottningen

På våren bygger den övervintrande, parade drottningen ett underjordiskt pappersbo i gamla gnagarbon eller bland murkna tallrötter på ett djup mellan 6 och 60 cm. I detta lägger hon en första kull av omkring 40 ägg, som kommer att bli de första arbetarna. Utvecklingstiden från ägg till vuxen arbetare är omkring 40 dagar.[2] Efter ett tag är boet 50 till 60 cm i diameter och har 4 till 7 (vanligen 5 till 6) våningar.[8] Som mest kan drottningen producera en avkomma på 25 000 individer under en säsong; genomsnittet ligger på ungefär 10 000. Mot hösten lägger drottningen ägg som producerar könsdjur, det vill säga nya drottningar (från befruktade ägg) och hanar (från obefruktade). Dessa parar sig, och de unga drottningarna övervintrar, medan resten av kolonin dör.[2]

Jakt och föda

Den asiatiska jättebålgetingen fångar i huvudsak andra insekter till föda åt larverna, som bin, andra getingarter och bönsyrsor. Bytet tuggas sönder till en gröt, som larverna matas med. I gengäld producerar larverna en klar, proteinrik utsöndring, som arbetarna äter.[7] Förutom denna utsöndring, lever de vuxna djuren av sav, speciellt från ekar, och söta, mjukskaliga frukter.[2]

En, ibland två till tre asiatiska jättebålgetingar brukar flyga tillsammans som spejare. Hittar de till exempel en koloni med bin, markeras stället med feromoner som lockar dit andra getingar vilka tillsammans går till attack.[7] Det östasiatiska biet har emellertid utvecklat en effektiv skyddsstategi mot denna och andra rovgetingar. När spejare kommer attackeras de omedelbart av en svärm honungsbin som omger dem och börjar vibrera sina flygmuskler på samma sätt som de gör när de ska värma kupan kalla dagar. På så sätt ökar temperaturen till 45–46° och spejarna dör. Bina själva tål högre temperaturer och påverkas inte.[9]

Utbredning

Arten lever i Indokina, Kina, Taiwan, Korea, Japan, sydöstra, asiatiska Ryssland (Primorje kraj), Nepal, Sri Lanka och Indien.[3]

Källor

  1. ^ [a b] Roskov Y., Kunze T., Orrell T., Abucay L., Paglinawan L., Culham A., Bailly N., Kirk P., Bourgoin T., Baillargeon G., Decock W., De Wever A., Didžiulis V. (red.) (2014). ”Species 2000 & ITIS Catalogue of Life: 2011 Annual Checklist.”. Species 2000: Naturalis, Leiden, Nederländerna. http://www.catalogueoflife.org/annual-checklist/2014/search/all/key/vespa+mandarinia/match/1. Läst 16 augusti 2014.
  2. ^ [a b c d e f] Zach Barth; Thomas Kearns; Elizabeth Wason (2013). ”Vespa mandarinia” (på engelska). Animal Diversity Web (University of Michigan). http://animaldiversity.ummz.umich.edu/accounts/Vespa_mandarinia/. Läst 14 augusti 2014.
  3. ^ [a b] Dieter Kosmeier (13 juni 2014). ”The Asian Giant Hornet Vespa mandarinia Smith, 1852” (på engelska). Hornissenschutz. http://www.vespa-crabro.de/vespa-mandarinia.htm. Läst 14 augusti 2014.
  4. ^ Dödsbringande bålgetingar plågar kinesiska provinser DN 2013-09-27
  5. ^ This Hornet Will Be the Last Thing You See Before You Die GAWKER Caity Weawer 30 september 2013
  6. ^ Handwerk, Brian (25 oktober 2002). ”"Hornets From Hell" Offer Real-Life Fright”. National Geographic News. Arkiverad från originalet den 25 januari 2010. https://web.archive.org/web/20100125011057/http://news.nationalgeographic.com/news/2002/10/1025_021025_GiantHornets.html. Läst 16 augusti 2014.
  7. ^ [a b c] Dana Campbell. Vespa mandarinia Asian Giant Hornet” (på engelska). Encyclopedia of life. http://eol.org/pages/259331/overview. Läst 14 augusti 2014.
  8. ^ Starr, Christopher K.; Jacobson, Robert S. (1973). ”A Bionomic Sketch of the Giant Hornet, Vespa mandarinia, a Serious Pest for Japanese Apiculture (with 12 text-figures and 5 tables)” (PDF, 3,37 MB). Journal of the Faculty of Science (Hokkaidos universitet) 19 (1): sid. 5–7 [128–130]. http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/27557/1/19(1)_P125-162.pdf. Läst 16 augusti 2014.
  9. ^ Björn Fjæstad (2006). ”Honungsbin kokar rovgeting”. Forskning och Framsteg 2/2006. sid. s. 14-17. http://www.fof.se/tidning/2006/2/honungsbin-kokar-rovgeting. Läst 16 augusti 2014.

Externa länkar

license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Asiatisk jättebålgeting: Brief Summary ( Swedish )

provided by wikipedia SV

Asiatisk jättebålgeting (ibland även: mandaringeting), Vespa mandarinia, är en getingart som beskrevs av Frederick Smith 1852. Vespa luctuosa ingår i släktet bålgetingar, och familjen getingar..

license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Гігантський азійський шершень ( Ukrainian )

provided by wikipedia UK

Опис

Трутні

Трутні (самці), схожі на самок, але без жала. Що відповідає характеристикам перетинчастокрилих. [3]

Географічне розповсюдження

 src=
Гігантський азійський шершень

Виявлено у Приморському Краї Російської Федерації, Кореї (де їх називають 장수말벌; «Командирська оса»), Китаї, Тайвані (де їх називають 虎頭蜂; «тигроголова бджола»), Індокитаї, Таїланді, Непалі, Індії, В'єтнамі та Шрі-Ланці, але найбільш поширені в сільських районах Японії, де їх називають гігантська бджола-горобець (大雀蜂 або オオスズメバチ).

 src=
Гігантський азійський шершень
 src=
Гігантський азійський шершень поїдає богомола.
 src=
Оборонна куля японських медоносних бджіл (Apis Cerana японська), в яку охоплено двох шершнів (Vespa simillima xanthoptera), що робить їх недієздатними. Бджоли підвищують їх температуру, що врешті-решт вбиває шершнів. Цей вид захисту також використовується проти гігантського шершня.

Наслідки укусу

Vespa mandarinia мають жало довжиною майже 6 міліметрів і виробляють високотоксичну отруту, тому укус цього шершня дуже небезпечний — значно небезпечніший, ніж в інших видів шершнів. Отрути виробляється досить багато. Японський ентомолог Масато Оно, якого ужалила ця комаха, описав його так: «начебто в ногу встромили розпечений цвях».[4]

Підвиди

  • Vespa mandarinia bellona Smith, 1871
  • Vespa mandarinia mandarinia Smith, 1852
  • Vespa mandarinia japonica Radoszkowski, 1857
  • Vespa mandarinia magnifica Smith, 1852
  • Vespa mandarinia nobilis Sonan, 1929

Примітки

  1. Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. с. 9–11. ISBN 978-0-313-33922-6.
  2. Backshall, Steve (2007). Steve Backshall's venom: poisonous animals in the natural world. New Holland Publishers. ISBN 1-84537-734-6.
  3. Barth, Zach. Vespa mandarinia. Animal Diversity. Процитовано 25 September 2014.
  4. National Geographic News: «Hornets From Hell» Offer Real-Life Fright, 25 жовтня 2002

Посилання

 src= Вікісховище має мультимедійні дані за темою: Vespa mandarinia
species:
license
cc-by-sa-3.0
copyright
Автори та редактори Вікіпедії
original
visit source
partner site
wikipedia UK

Ong bắp cày khổng lồ châu Á ( Vietnamese )

provided by wikipedia VI

Ong bắp cày khổng lồ châu Á, tên khoa học Vespa mandarinia, là một loài côn trùng bản địa khu vực ôn đới và nhiệt đới Đông Á.

Loài này có chiều dài gần 5 cm, được xem là loài ong lớn nhất và nguy hiểm nhất. Nọc độc của chúng tấn công vào hệ thần kinh và đe dọa tính mạng nếu không điều trị kịp thời sau khi bị chúng đốt.

Hình ảnh

Chú thích

Tham khảo

 src= Wikimedia Commons có thêm hình ảnh và phương tiện truyền tải về Ong bắp cày khổng lồ châu Á


Hình tượng sơ khai Bài viết liên quan đến Bộ Cánh màng này vẫn còn sơ khai. Bạn có thể giúp Wikipedia bằng cách mở rộng nội dung để bài được hoàn chỉnh hơn.
license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Ong bắp cày khổng lồ châu Á: Brief Summary ( Vietnamese )

provided by wikipedia VI

Ong bắp cày khổng lồ châu Á, tên khoa học Vespa mandarinia, là một loài côn trùng bản địa khu vực ôn đới và nhiệt đới Đông Á.

Loài này có chiều dài gần 5 cm, được xem là loài ong lớn nhất và nguy hiểm nhất. Nọc độc của chúng tấn công vào hệ thần kinh và đe dọa tính mạng nếu không điều trị kịp thời sau khi bị chúng đốt.

license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Vespa mandarinia ( Russian )

provided by wikipedia русскую Википедию
Царство: Животные
Подцарство: Эуметазои
Без ранга: Первичноротые
Без ранга: Линяющие
Без ранга: Panarthropoda
Надкласс: Шестиногие
Класс: Насекомые
Надотряд: Hymenopterida
Надсемейство: Осообразные
Семейство: Настоящие осы
Подсемейство: Веспины
Род: Шершни
Вид: Vespa mandarinia
Международное научное название

Vespa mandarinia Smith, 1852

Wikispecies-logo.svg
Систематика
на Викивидах
Commons-logo.svg
Изображения
на Викискладе
NCBI 7446EOL 259331FW 346277

Vespa mandarinia (лат.) — самый большой шершень в мире, длина отдельных подвидов этого насекомого превышает 5 сантиметров (в среднем — 50,8 миллиметров), а размах крыльев может превышать 7,5 сантиметров. Основной отличительный признак — очень крупная голова: расстояние от заднего края глаз до заднего края головы (виски) в несколько раз длиннее ширины глаза.

Обитает в Корее, Китае, Японии, Непале, Индии, горных районах Шри-Ланки. В России большое количество этих шершней обитает в Приморском крае, на юге Хабаровского края (самая северная находка — река Анюй) и в Еврейской АО[1].

На Тайване его называют «пчелой-тигром». В Японии подвид этого шершня (японского огромного шершня, который является эндемиком) называют «воробьём-пчелой», из-за огромного размаха его крыльев.

Последствия укуса

 src=
Vespa mandarinia на руке у человека.

Vespa mandarinia имеют жало длиной почти 6 миллиметров и вырабатывают высокотоксичный яд, поэтому ужаление этого шершня очень опасно — значительно опаснее, чем у других видов шершней. Яда вырабатывается весьма много. Японский энтомолог Масато Оно, который подвергся ужалению этого насекомого, описал его так: «словно мне в ногу вогнали раскаленный гвоздь».[2]

Ужаление шершня смертельно опасно для тех, кто страдает аллергией на пчелиный/осиный яд — яд этого шершня имеет сложный химический состав и содержит те же вещества, которые имеются и в осином яде. При ужалении большим количеством шершней умереть может и человек, не страдающий аллергией, так как в яде содержится чрезвычайно токсичное вещество (один из нейротоксиновмандоротоксин). В Японии от ужалений гигантских шершней ежегодно погибает до сорока человек[3].

Помимо этого, в яде этого шершня содержится множество других токсичных веществ, которые разрушают ткани, вызывают боль, а также привлекают других шершней. Привлекает других шершней ацетилхолин, которого в яде содержится не менее 5 %.

Для охоты эти шершни тем не менее используют не жало, а крупные челюсти, которыми дробят жертв. Жалом этот шершень может пользоваться многократно, как обычная оса.

Подвиды

Примечания


Бабочка Это заготовка статьи по энтомологии. Вы можете помочь проекту, дополнив её.
Улучшение статьи
Для улучшения этой статьи желательно:
 title=
license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

Vespa mandarinia: Brief Summary ( Russian )

provided by wikipedia русскую Википедию

Vespa mandarinia (лат.) — самый большой шершень в мире, длина отдельных подвидов этого насекомого превышает 5 сантиметров (в среднем — 50,8 миллиметров), а размах крыльев может превышать 7,5 сантиметров. Основной отличительный признак — очень крупная голова: расстояние от заднего края глаз до заднего края головы (виски) в несколько раз длиннее ширины глаза.

Обитает в Корее, Китае, Японии, Непале, Индии, горных районах Шри-Ланки. В России большое количество этих шершней обитает в Приморском крае, на юге Хабаровского края (самая северная находка — река Анюй) и в Еврейской АО.

На Тайване его называют «пчелой-тигром». В Японии подвид этого шершня (японского огромного шершня, который является эндемиком) называют «воробьём-пчелой», из-за огромного размаха его крыльев.

license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

大虎頭蜂 ( Chinese )

provided by wikipedia 中文维基百科
二名法 Vespa mandarinia
Smith, 1852

大虎頭蜂(學名:Vespa mandarinia)是分佈亞洲地區的黃蜂,亦是全世界體型最大的胡蜂,分布於亞洲東部與東南部的溫帶亞熱帶地區。

大虎頭蜂是亞洲地區最危險的昆蟲之一,有相當多傷人的案例。大虎頭蜂在各地有許多不同的俗名,中華大虎頭蜂台灣大虎頭蜂金環胡蜂、Asian giant hornet 均是指本種,有一個亞種日本大虎頭蜂又名日本大黃蜂(學名:Vespa mandarinia japonica)。各地的本種體色變化很大,有些體色暗棕色,有些體色有明顯的黃色紋路,共同特徵為尾部尖端為黃色。

獵食行為

大虎頭蜂時常襲擊蜜蜂蜂巢,對養蜂業造成毀滅性的危害,特別是對養殖的西方蜜蜂為害重大,5~7隻大虎頭蜂同時進攻一個蜂巢即可輕易攻入蜂窩內部並造成蜜蜂死傷慘重,蜂巢前蜜蜂的屍體堆積如山,因為大虎頭蜂體表外殼堅韌,蜜蜂難以刺穿大虎頭蜂的體表。但大虎頭蜂進攻東方蜜蜂蜂巢則難度較高,東方蜜蜂會群集成為蜂球包圍大虎頭蜂,蜂球內部的高溫會導致大虎頭蜂熱死。

大虎頭蜂進攻蜜蜂蜂巢有不同的模式,單隻大虎頭蜂攻擊蜂巢只會抓取蜂巢門口的蜜蜂工蜂,通常抓取一隻工蜂便會帶回大虎頭蜂蜂巢餵食幼蟲,如果多隻大虎頭蜂同時進攻一個蜜蜂的蜂巢,此時攻擊模式會轉變為聯合進攻模式,大虎頭蜂會將進行防禦的蜜蜂一隻隻咬死,目的是進入蜂巢內部抓取蜜蜂幼蟲。本種也會獵食其他種類的胡蜂與昆蟲,常常攻擊其他種類胡蜂的蜂巢。總而言之,虎頭蜂類的對於其他蜂巢或蜂類的連續快速屠殺行為,在動物界各種掠食者中也是極罕見。

生活周期

成功越冬存活下來的大虎頭蜂蜂后於早春溫度回升開始建立族群,蜂后親力親為各項工作以培育第一批工蜂,第一批工蜂羽化後接手蜂巢內各項工作,蜂后改為專職產卵,春季至秋初因其他生物豐富,可供獵食的小生物很多,蜂群規模不斷擴大。秋季開始培育新一代的蜂王與雄蜂,新蜂王交配發生於巢內或地面上。深秋或冬季整群死亡,但會留下新產生的蜂王越冬,春天氣溫回升新蜂王開始新一輪的生活周期,蜂巢通常建造於地下坑洞內,隨著蜂口數量增加蜂巢也不斷擴大,空間不足會挖土擴增築巢空間,挖出來的土壤會棄置在洞口周圍,此為重要的觀察依據。

危險性

因蜂巢築造於地下,人類或其他動物常不慎一腳踏破蜂巢,大虎頭蜂隨即展開猛烈的攻擊行為,常常造成嚴重的死傷事故。本種不懼怕人類,可近距離觀察其獵食行為,但接近其蜂巢仍非常危險,常會造成成群圍攻導致重大傷亡。

相關

外部連結

 src= 维基共享资源中相关的多媒体资源:大虎頭蜂  src= 维基物种中的分类信息:大虎頭蜂
 title=
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

大虎頭蜂: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

大虎頭蜂(學名:Vespa mandarinia)是分佈亞洲地區的黃蜂,亦是全世界體型最大的胡蜂,分布於亞洲東部與東南部的溫帶亞熱帶地區。

大虎頭蜂是亞洲地區最危險的昆蟲之一,有相當多傷人的案例。大虎頭蜂在各地有許多不同的俗名,中華大虎頭蜂、台灣大虎頭蜂、金環胡蜂、Asian giant hornet 均是指本種,有一個亞種日本大虎頭蜂又名日本大黃蜂(學名:Vespa mandarinia japonica)。各地的本種體色變化很大,有些體色暗棕色,有些體色有明顯的黃色紋路,共同特徵為尾部尖端為黃色。

license
cc-by-sa-3.0
copyright
维基百科作者和编辑

オオスズメバチ ( Japanese )

provided by wikipedia 日本語
オオスズメバチ Vespa mandarinia.jpg
オオスズメバチ
分類 : 動物界 Animalia : 節足動物門 Arthropoda : 昆虫綱 Insecta : ハチ目(膜翅目) Hymenoptera 亜目 : ハチ亜目(細腰亜目) Apocrita 上科 : スズメバチ上科 Vespoidea : スズメバチ科 Vespidae 亜科 : スズメバチ亜科 Vespinae : スズメバチ属 Vespa : オオスズメバチ V. mandarinia 学名 Vespa mandarinia
(Smith, 1852) 和名 オオスズメバチ 英名 Asian giant hornet
Japanese giant hornet

オオスズメバチ(大雀蜂、学名:Vespa mandarinia)は、ハチ目スズメバチ科スズメバチ亜科スズメバチ属の昆虫の一種。

分布[編集]

オオスズメバチは、インドから東南アジア東アジアにかけて広く分布する[1]

亜種[編集]

  • Vespa mandarinia mandarinia - 基亜種。
  • Vespa mandarinia japonica - 日本の北海道から九州に分布しており、南限は屋久島、種子島近辺。英名はJapanese giant hornet

形態[編集]

体長は女王バチが40-55mm、働きバチが27-40mm、雄バチが 27-45mm[2]。頭部はオレンジ色、胸部は黒色、腹部は黄色と黒色の縞模様で、羽は茶色。雄バチは毒針(産卵管)を持たない。

生態[編集]

以前は標準和名としてオオスズメバチのほか、単にスズメバチを用いることも多かった。

木の根元などの土中、樹洞などの閉鎖空間に巣を作る。巣は、枯れ木などから集めた繊維を唾液のタンパク質で和紙のように固めて六角形の管を作り、この管が多数集まった巣盤を数段連ねる。

日本に生息するハチ類の中で最も強力な毒を持ち、かつ攻撃性も高い非常に危険な種である。オオスズメバチ日本亜種の半数致死量(LD50)は4.1mg/kgである[3]。毒液中にはアルコールの一種からなる警報フェロモンが含まれており[4]、巣の危機を仲間に伝える役割も果たしている。 本種は毒針のほか、強力な大顎で相手を噛むことで捕食対象を攻撃する。時速約40kmで飛翔し、狩りをする時は1日につき約100kmもの距離を移動できる[5]

夏季に幼虫に与えられる餌は幅広く、コガネムシゴミムシなどの小、中型甲虫類、他種のハチカメムシなどの半翅目チョウなどの鱗翅目、あるいはスズメガカミキリムシの幼虫など大型のイモムシが頻繁に捕食される。 これらの昆虫が減少するうえ、大量の雄蜂と新女王蜂を養育しなければならない秋口には本種の攻撃性が高まり、セイヨウミツバチキイロスズメバチモンスズメバチニホンミツバチなど、巨大なコロニーを形成する社会性の蜂の巣を襲撃して需要を満たす。襲撃は、スズメバチ類としては例外的に集団で行われる。巣の働き蜂を全滅あるいは逃走させた後には、殺した働き蜂も幼虫の餌とするが、大量の死骸は処理しきる前に腐敗が始まり餌に適さなくなるため、主に占領した巣の中で時間をかけて大量の生きた蛹や幼虫、筋肉に富む成虫の胸部などを噛み砕きペースト状にした後、肉団子状にして運び出す。

より大型の巣を作り、多数の働き蜂を擁するキイロスズメバチやモンスズメバチの巣を襲撃する場合、オオスズメバチ側にも大きな被害が出るケースが多いものの、巣の占領に成功すればその損害を補填できるだけの幼虫やさなぎ、成虫の死骸を収穫できる。しかし、チャイロスズメバチの巣を襲撃する場合には、チャイロスズメバチは他のスズメバチ類に比べて強靭な外骨格をもつため、大顎や毒針による攻撃が必ずしも有効に機能するわけではなく、撃退されることもある。

 src=
樹液を吸うオオスズメバチ

また、クヌギなどの樹液に集まり樹液を採取する。

本種の天敵にはキイロスズメバチやクロスズメバチ類と同様、ヒトのほかに哺乳類のクマや野鳥のハチクマなどが挙げられる。本種を捕食する昆虫にはオニヤンマオオカマキリなどが挙げられるが、これらについては捕食した、もしくは捕食された双方の記録が存在する。なお、捕食関係ではないが、夏場の樹液に集まる際に小型の甲虫(カナブンやコクワガタなど)には強気で対応する一方、大型の甲虫(カブトムシや大型のクワガタムシなど)に対しては強力な顎と針をもつ本種でも抵抗できず、餌場を独占される場合が多い。特にカブトムシが全盛となる7-8月頃にこの風景はよく見受けられるため、この時期の本種はカブトムシなどが活動しない昼間や朝方を狙って樹液に来ることが多くなる[6]。また、大型甲虫以外にも本種を追い立てる昆虫に、オオムラサキがある。オオムラサキのオスの気性は激しく、樹液を争う際に羽を広げて本種を追い立てることが知られている。

本種の腹部に寄生する昆虫には、ネジレバネの一種があげられる。

人との関わり[編集]

養蜂における影響[編集]

日本産亜種であるニホンミツバチを含むトウヨウミツバチ (Apis cerana) の巣を襲撃した場合、集団攻撃前に撃退されなければ巣を占拠できる。集団攻撃前の撃退とは、オオスズメバチの働き蜂が単独で偵察している(集合フェロモンにより同じ巣の働き蜂を集結させる前の)段階で、ミツバチが集団で敵を押し包む行動によって作られる蜂球で蒸し殺されることをいう。蜂球の内部はオオスズメバチの致死温度(44-46℃)に近い46℃になり、かつ蜂球内の二酸化炭素濃度が約3%ほどまで上昇してオオスズメバチの致死温度を下げることがわかっている[7][8]

セイヨウミツバチ (A. mellifera) は蜂球を作れないが、大群で相手の腹の周りを圧迫して呼吸を阻害し、約1時間かけて窒息死させる窒息スクラムという対抗手段を持っている[9][10]。しかし、これはモンスズメバチ以下の敵しか想定していないため、オオスズメバチに対抗する方法にはならず、養蜂家による庇護がなければ高確率での全滅を余儀なくされる(数十匹ほどの本種が、4万匹のセイヨウミツバチを2時間ほどで殲滅できるという説がある)[11]。このことが、飼育群からの分蜂による野生化が毎年あちこちで発生しているにもかかわらず、セイヨウミツバチが日本で勢力拡大するのを防ぐ要因になっている。実際、オオスズメバチの生息していない小笠原諸島ではセイヨウミツバチの野生化群が増加し、在来のハナバチ類を圧迫して減少させていることが確認されており、これらのハナバチ類と共進化して受粉を依存している固有植物への悪影響が懸念されている。

食用[編集]

詳細は「はちのこ」を参照

熊本県球磨地方[12]宮崎県高千穂のように、地方によっては幼虫やさなぎ、成虫を珍味として食す習慣がある。成虫の毒針を取り除き、蜂蜜焼酎につけ込んだものも見られる。 また、本種そのものを食すわけではないが、本種の幼虫が成虫に与える餌の成分を参考にして作られた栄養ドリンクやサプリメントが、日本をはじめとするアジアやヨーロッパで販売されている。

脚注[編集]

[ヘルプ]
  1. ^ オオスズメバチ 上野高敏 -Takatoshi UENO- 2017年12月5日閲覧
  2. ^ オオスズメバチ、森林総合研究所、2010年4月18日閲覧
  3. ^ HORNET VENOMS:LETHALITIES AND LETHAL CAPACITIES, Justin O. Schmidt et al, 1986
  4. ^ Insect signalling: Components of giant hornet alarm pheromone(オオスズメバチの警報フェロモン)、 Nature、 2003
  5. ^ Brian Handwerk, "Hornets From Hell" Offer Real-Life Fright, National Geographic News(October 25, 2002)、2010年4月18日閲覧
  6. ^ 本種は完全な昼行性ではなく、夜間にも多く活動する。
  7. ^ ニホンミツバチ、CO2と熱で天敵撃退、京都新聞ウェブニュース(2009年8月13日)、2010年4月18日閲覧[リンク切れ]
  8. ^ ニホンミツバチの研究、京都学園大学ホームページ(2016年11月11日)、2018年6月11日閲覧
  9. ^ Smothered to death. Hornets asphyxiated by honeybees
  10. ^ ミツバチ、必殺技「窒息スクラム」で天敵スズメバチを撃退
  11. ^ オオスズメバチの「警報フェロモン」の成分を突き止めた、小野正人、MATSUNAGA Waki、環境goo、2010年4月17日閲覧
  12. ^ ススメバチの子(すずめばちのこ)球磨郡、熊本県地域振興部文化企画課博物館プロジェクト班、2010年4月18日閲覧

関連項目[編集]

 src= ウィキメディア・コモンズには、オオスズメバチに関連するメディアおよびカテゴリがあります。  src= ウィキスピーシーズにオオスズメバチに関する情報があります。
 title=
license
cc-by-sa-3.0
copyright
ウィキペディアの著者と編集者
original
visit source
partner site
wikipedia 日本語

オオスズメバチ: Brief Summary ( Japanese )

provided by wikipedia 日本語

オオスズメバチ(大雀蜂、学名:Vespa mandarinia)は、ハチ目スズメバチ科スズメバチ亜科スズメバチ属の昆虫の一種。

license
cc-by-sa-3.0
copyright
ウィキペディアの著者と編集者
original
visit source
partner site
wikipedia 日本語

장수말벌 ( Korean )

provided by wikipedia 한국어 위키백과

장수말벌(將帥말벌, 영어: Asian giant hornet)은 말벌과곤충으로, 지금까지 알려져 있는 종류 중 가장 거대한 말벌이다. 학명은 베스파 만다리니아(라틴어: Vespa mandarinia). 동아시아의 온대-열대기후 지역에 자생한다. 낮은 야산삼림을 서식지로 선호하며, 탁 트인 개활지나 너무 높은 산악지역은 피한다. 장수말벌은 땅굴을 파서 그 안에 벌집을 마련하는데, 대개 땅굴은 설치류 따위 다른 동물이 쓰다 버린 것을 재활용한다. 또는 소나무 같은 큰 식물의 뿌리가 썩어서 구멍이 난 공간을 활용하기도 한다.[2] 주식은 다른 곤충, 나무 수액, 과일, 그리고 꽃벌류의 벌집에서 털어온 벌꿀이다.[3] 몸 길이는 35-45 밀리미터, 날개 편 길이는 75 밀리미터, 독침 길이는 6 밀리미터에 달하여 한 번에 많은 양의 독액을 주입한다.[4]

영국에서는 등검은말벌과, 대한민국일본에서는 좀말벌과 혼동되는 경우가 잦다.

분류학 및 계통발생론

 src=
위에서부터 등검은말벌, 열대말벌, 장수말벌(V. m. magnifica).

장수말벌은 말벌속에 속하며, 장수말벌은 다른 말벌(hornet) 일곱 종과 함께 열대말벌 종군(Vespa tropica species group)을 이룬다. 열대말벌 종군은 수컷의 제7복갑 가장자리 선단에 톱니가 하나 있는 종들의 군으로 정의된다. 그 가운데 장수말벌과 가장 가까운 종은 Vespa soror라는 종이다. 또한 암컷의 두순 가장자리 선단이 삼각형인 것도 기준이 된다. 두 종은 두순(clypeus, 머리방패)이 크고 삽입기(Aedeagus) 모양이 뚜렷하다는 점도 비슷하다.[5] 말벌속을 여러 아속으로 나눠보려는 시도는 예전부터 이루어진 바 있으나,[6] 종들 사이의 해부학적 유사성과 행동학적 유사성을 계통발생학과 결부시킬 수 없었기 때문에 결렬되었다.[2]

2012년 현재 장수말벌의 아종은 3아종이 인정되고 있다.[7] 동중국, 한국, 러시아, 일본에 사는 승명아종 V. m. mandarinia Smith, 1852, 서중국, 인도, 네팔, 버마, 라오스, 말레이반도에 사는 V. mandarinia magnifica Smith, 1852, 타이완에만 사는 V. mandarinia nobilis Sonan, 1929 3아종이 그것이다. 과거에는 일본에 서식하는 장수말벌을 따로 V. mandarinia japonica로 지정했으나 1997년 이 아종은 폐기되었다.[8]

신체 특징

 src=
장수말벌의 머리.

말벌들은 모두 성별 무관하고 밝은 주황색 머리통에 갈색 더듬이를 가지고 있으며, 겹눈홑눈 모두 암갈색에서 검은색 사이 색을 띤다. 장수말벌은 뚜렷하게 두드러지는 두순과 커다란 눈아래 뺨으로 다른 말벌들과 구분된다. 검은색 이빨이 돋은 주황색 큰턱은 땅을 팔 때 쓰인다.[9] 흉부는 암갈색이고, 날개 한 쌍은 갈색이다. 몸 길이는 3.5-4.5 센티미터, 날개 편 길이는 7.5 센티미터다. 앞다리가 중간다리 및 뒷다리보다 색이 밝다. 앞다리 기부 부분이 앞다리의 다른 부분들보다 색이 어둡다. 복부는 7개 분절로 이루어져 있는데, 제1-제6분절은 한 개 분절 안에 암갈색-검은색 띠와 황금색-주황색(머리통 색과 같은 색) 띠가 하나씩 있고, 제7분절은 황금색-주황색으로만 되어 있다. 독침은 길이 최대 10 밀리미터에 풍부한 독액이 저장되어 있다. 장수말벌 여러 마리에게 동시에 쏘이면 사람도 죽을 수 있다.[9]

여왕벌은 일벌에 비해 상당히 크다. 여왕벌의 체장은 50 밀리미터 넘게 자랄 수 있으며, 일벌은 보통 35 밀리미터에서 40 밀리미터 사이다. 생식기관은 똑같지만 일벌은 불임이다. 수펄은 암벌들과 비슷하지만 독침이 없다. 이것은 벌목 곤충들의 공통된 특징이다.[9]

분포

러시아 연방(연해주, 하바롭스키 남부, 유대인 자치주), 한반도(제주도 포함), 중국, 일본, 타이완, 인도차이나 반도(라오스, 태국, 캄보디아, 버마, 베트남), 네팔, 인도, 스리랑카 등지에서 발견된다.

2019년 9월 캐나다 브리티시컬럼비아주 농무부는 장수말벌이 밴쿠버섬에서 발견되었음을 확인했다.[10] 그 밖의 유럽과 북미 지역에서 장수말벌을 보았다는 목격담은 대부분 동양말벌이나 등검은말벌, 말벌 등 다른 종을 오동정한 것이다.

둥지

 src=
장수말벌 둥지.

장수말벌은 낮은 야산 기슭이나 저지대 삼림에 둥지를 튼다. 장수말벌이나 다른 말벌의나 그 서식지를 보존하기 위한 노력 같은 것은 따로 필요 없다. 다른 말벌 종들과 달리 장수말벌은 거의 무조건 지하에 둥지를 만든다. 31개 둥지를 조사한 결과 그 중 25개가 썩은 소나무 뿌리 속에서 발견되었다. 또한 설치류 같은 소혈거동물이 만들어 놓은 땅굴을 재활용하기도 한다. 둥지의 깊이는 대개 6-60 센티미터이고, 땅바닥에서 지하의 둥지까지의 통로 길이는 2-60 센티미터 정도다. 그 통로는 수평일 수도 있고 수직일 수도 있고 경사졌을 수도 있다. 처음 둥지를 세우는 여왕벌은 좁은 공간을 선호한다.[11]

둥지 중심에는 큰 기둥이 있고, 그 밖에 작은 기둥들이 있어서 층층이 만들어진 벌집들을 서로 연결, 지탱한다. 한 둥지는 대개 네 개에서 일곱 개의 벌집으로 이루어져 있다. 꼭대기층의 벌집은 여름이 지나면 버려저서 사용되지 않아 썩게 된다. 가장 큰 벌집은 둥지 가운데에서 바닥 사이에 있다. 현재까지 발견된 가장 큰 말벌속의 벌집은 크기 49.5 cm × 45.5 cm에 벌방 1,192개 (장애물 없음, 원형) 또는 크기 61 cm × 48 cm (나무뿌리 주변에 형성, 타원형)였다.[11]

생활사

 src=
수액을 먹는 장수말벌 암컷.

장수말벌의 생활사는 다른 사회성 곤충들과 거의 같다. 한 생활사는 여섯 개의 단계로 이루어져 있다.[11]

둥지짓기 전 시기 (prenesting period)
4월 초에서 4월 중순 사이부터 동면하던 여왕벌들이 나타나기 시작해 참나무속 나무들의 수액을 먹고 살기 시작한다. 여왕벌들 사이에는 순위제가 형성된다. 최상위 여왕벌이 가운데에서 수액을 먹으면 다른 여왕벌들은 그 주변에 원을 치고 기다린다. 최상위 여왕벌이 먹기를 마치면 2선급 여왕벌들이 수액을 먹는다. 이 과정은 최하위 여왕벌까지 식사를 마칠 때까지 반복된다.[11]
단독시기 (solitary period), 협동시기(cooperative period), 중합시기(polyethic period)
작년에 수정된 여왕벌들은 4월 말이 되면 둥지 틀 자리를 찾기 시작한다. 수정되지 않은 여왕벌들은 난소가 제대로 형성되지 못했기 때문에 자기 둥지를 만들러 떠나지 않고 계속 수액을 먹으며 연명하다가 7월 초가 되면 사라진다.
수정된 여왕벌은 상대적으로 작은 벌방들을 만들고 40여 마리의 일벌을 길러낸다. 7월 전까지는 일벌들은 둥지 밖으로 나가지 않는다. 여왕벌은 7월 중순까지 둥지 안팎을 드나들면서 활동한다. 그 뒤 둥지 안에 눌러앉게 되면 그때부터 일벌들에게 바깥일을 시켜 내보낸다. 8월 초가 되면 둥지가 완전히 발달하여 벌집 3 개, 벌방 500 개, 일벌 100 마리 정도를 갖추게 된다. 9월 중순 이후 어미 여왕벌은 알을 더 이상 낳지 않으며, 군락은 애벌레 양육에 집중한다. 10월 말이 되면 어미 여왕벌이 수명을 다하고 죽는다.[11]
해산시기 (dissolution period), 동면시기 (hibernating period)
9월 중순에는 수펄들이, 10월 중순에는 딸 여왕벌들이 후세대 생산을 위한 소임을 행하기 시작한다. 이 때 유성 개체들은 색이 짙어지고, 특히 여왕벌은 체중이 20% 늘어난다. 수펄들은 둥지 입구에 앉아 여왕벌들이 나오기를 기다린다. 여왕벌이 나오면 수펄들이 공중에서 여왕벌에게 들러붙어 공격한다. 여왕벌을 땅바닥에 떨어뜨린 수펄들은 8-45초 동안 교미하고 둥지 입구로 돌아가 다음 여왕벌을 기다린다. 한편 방금 전 교미로 수정된 여왕벌은 멀리 떠나간다. 적지 않은 딸 여왕벌들은 수펄들을 물리치고 수정되지 않은 채 떠난다. 이렇게 교미비행을 마친 뒤 수펄들과 딸 여왕벌들은 옛 둥지로 돌아가지 않는다.
유성 개체들이 발생하여 교미하고 떠나가는 동안, 무성 일벌들은 먹이를 단백질에서 탄수화물로 교체하여 연명한다. 죽어가는 둥지에서 마지막으로 태어난 유성 개체들은 굶어 죽게 된다.
둥지를 떠나간 새 세대의 여왕벌들은 축축한 지하공간에서 발견된다. 여왕벌들은 수정되었는지 여부에 무관하게 한 해 생활사가 끝나면 동면에 들어간다.[11]

독침

장수말벌의 독침은 길이가 6 밀리미터나 된다.[4] 이 독침으로 주입되는 독액은 대부분의 봉독이 그렇듯이 세포용해 펩티드(특히 마스토파란)가 함유되어 있다. 이 성분들은 인지질분해효소의 작용을 촉진시킴과 동시에,[11] 그 자체로도 인지질분해효소가 들어 있어서[11] 세포조직에 해를 끼친다. 장수말벌에게 쏘이면 “뜨겁게 달군 못이 다리에 박혀 들어오는” 것 같은 느낌을 받게 된다.[4]

또한 장수말벌 봉독에는 만다라톡신이라는 신경독이 함유되어 있다.[11] 만다라톡신은 분자량 약 20 킬로돌턴의 단일사슬형 폴리펩티드다.[11] 한 번 쏘인다고 죽지는 않지만, 여러 마리에게 동시에 쏘이거나 한 마리에게 여러 번 쏘이는 등 충분히 많은 양의 독액이 주입되면 봉독에 알레르기가 없는 사람도 치명적일 수 있다. 알레르기가 있는 사람이 쏘이면 죽을 위험이 더더욱 커진다. 일본에서는 매년 30에서 40명이 장수말벌 독침에 쏘여 죽는다.[11][12]

중국에서는 10방 이상 쏘인 사람은 병원을 찾아야 하고, 30방 이상 쏘인 사람은 응급처치를 받아야 한다고 권고하고 있다. 또한 장수말벌의 독침은 신부전도 일으킬 수 있다.[13] 2013년 한 해 동안 중국 섬서성에서 장수말벌 독침으로 41명이 죽고 1,600명이 부상을 당했다.[14]

장수말벌 독액 주입의 치사율은 주로 알레르기로 인한 과민증이나 심정지와 관련이 있다. 그 밖에 매우 많은 횟수를 쏘인 사람이 다발성 장기부전을 일으켜 죽은 드문 사례가 있다. 장수말벌에게 쏘여 다발성 장기부전으로 죽은 사람들은 피부출혈괴사도 나타났는데, 이것 역시 드문 현상이다. 피부출혈과 괴사의 원인은 신체가 독액을 중화시키는 데 실패했거나, 비정상적으로 많은 독액이 주입된 결과로 보인다. 어느 경우건 그것이 다발성 장기부전으로 이어질 수 있다. 쏘인 모든 사람에게 병변과 괴사가 나타나지는 않지만, 쏘인 횟수와 심각성 사이에는 강한 상관관계가 있다. 쏘여 죽은 사람들은 평균 59회(표준편차 12회)를 쏘였고, 생존자는 평균 28회(표준편차 4회)를 쏘였다.[15]

사회성

장수말벌은 시각신호와 화학신호를 모두 항법에 사용한다. 먹이가 있는 곳에 냄새 표시를 남기면 군락의 다른 말벌들이 그리로 인도된다. 장수말벌은 더듬이가 손상된 상태에서도 항법할 수 있다. 목적지를 완전히 찾을 수 없게 만들려면 눈을 못 쓰게 만들어야 한다. 이것은 화학신호도 중요하지만, 개체 단위에서는 시각신호 역시 똑같이 중요한 역할을 함을 시사한다. 또한 발견되는 행동으로는 여왕벌을 핥고 깨무는 일벌들로 이루어진 "궁정"을 만드는 것이 있다. 이렇게 함으로써 일벌은 여왕벌의 페로몬을 섭취한다. 장수말벌 여왕벌은 페로몬을 통해 궁정의 일벌들과 직접 소통하고, 나머지 일벌들은 궁정의 일벌들이 섭취한 페로몬을 통해 간접 소통하는 것일 수도 있다. 다만 후자의 경우 뒷받침할 수 있는 직접적인 증거가 수집된 바 없기 때문에 아직은 추측의 영역에 머무르고 있다. 또한 장수말벌은 음향으로도 의사소통한다. 배가 고파진 유충은 아래턱으로 벌방 벽을 긁어댄다. 장수말벌 성충은 자신들의 텃세권에 들어온 다른 생물에게 경고의 표시로 아랫턱을 씹는 소리를 낸다.[9][16]

장수말벌은 사회성 벌들 중 먹이가 있는 곳에 냄새 신호를 남긴다는 것이 알려진 유일한 종이다. 제6흉판의 판 데르 페흐트 분비선에서 화학물질이 분비된다. 이 행동은 가을철에 주로 먹이로 삼는 꿀벌 군락에 무리지어 공격할 때 특히 자주 관찰된다. 장수말벌이 아무리 강해도 개체 혼자서는 꿀벌 군락을 털어먹을 수 없다. 동양의 재래꿀벌 같은 종들은 후술할 것과 같이 말벌류의 공격에 대한 효과적인 방어수단을 가지고 있기에 더욱 그러하다. 그래서 장수말벌은 무리를 지어 꿀벌 군락을 털어먹으며, 장수말벌의 조직적인 공격은 수만 마리 꿀벌이 서식하는 군락을 완전히 초토화시킬 수 있다.[17]

종간 상호작용

말벌속의 우점종

일본의 연구결과에 따르면, 일본에 서식하는 말벌속의 네 가지 종(꼬마장수말벌, 말벌, 좀말벌, 장수말벌)을 관찰한 실험에서, 장수말벌이 우점종으로 나타났다. 이것을 밝혀내기 위해 여러 가지 매개변수가 도입되었다. 첫 번째 매개변수는 상호작용 매개적 이탈(interaction-mediated departures)이다. 말인즉슨 한 종이 있는 자리에 더 우월한 종이 도착했을 때 열위의 종이 도망가는지 여부이다. 이 현상이 나타나는 비율은 장수말벌에게서 가장 낮았다. 두 번째 매개변수는 서식지 진입 미수(attempted patch entry)다. 관찰된 시간 동안, 이종간 상호작용보다 동종간 상호작용에서 서식지 침입이 거부되는 경우가 더 많았다. 마지막 매개변수는 풍이왕알락그늘나비(Neope niphonica), 시칠리아그늘나비(Lethe sicelis) 같은 수액을 먹는 다른 곤충들과 싸움이 붙었을 때 누가 이기느냐는 것이다. 총 57회의 싸움에서 장수말벌은 왕알락그늘나비에게 딱 한 번 지면서 98.3%의 승률을 거두었다. 이 모든 결과를 종합해 보았을 때, 장수말벌은 말벌속 중 생태적, 행동적 상호작용에서 가장 우세적인 우점종임을 확인할 수 있다.[18]

포식성

 src=
사마귀를 잡아먹는 장수말벌.

장수말벌은 강렬한 포식성을 가진 사냥벌이다. 꽃벌, 풍뎅이, 잠자리, 메뚜기, 나비와 나방의 유충, 다른 말벌, 심지어 거미사마귀에 이르는 중대형 곤충까지 먹이로 삼는다. 거미, 메뚜기, 사마귀 같은 큰 곤충류는 여름과 가을에 선호되는 주된 먹이이며, 포획된 먹이는 여왕벌이나 수펄이 될 유충에게 먹일 단백질 공급원이 된다.

장수말벌이 가장 선호하는 먹이는 꿀벌과 말벌의 유충이다. 장수말벌은 다른 벌 종의 군락에 쳐들어가 성충, 번데기, 유충을 모조리 털어와 자기네 유충의 먹이로 삼는다. 꿀벌 같은 꽃벌류 뿐 아니라 털보말벌 같은 다른 말벌까지도 먹이로 삼는다. 때로는 다른 장수말벌의 군락에 쳐들어가 전쟁을 벌이기도 한다. 우선 일벌 한두세 마리가 척후로서 표적이 될 군락에 조심스레 접근하고, 페로몬 표시를 남기면 동료 일벌들이 떼로 몰려온다. 장수말벌은 꿀벌 군락을 완전히 초토화시킨다. 특히 서양산 양봉꿀벌이면 속수무책으로 털려나간다. 장수말벌 한 마리가 1분에 꿀벌 40마리를 죽일 수 있는데, 주무기는 큼직한 턱으로, 꿀벌을 붙잡아 목을 잘라 죽인다. 꿀벌은 독침으로 반격하지만 장수말벌이 크기가 다섯 배가 넘을 뿐더러 외골격이 견고하기 때문에 아무 소용이 없다. 50마리 이하의 장수말벌이 몇 시간 만에 수만 마리의 꿀벌을 전멸시킬 수 있다. 장수말벌의 항속거리는 하루에 100 킬로미터 정도이고, 비행속력은 최대 시속 40 킬로미터 정도이다.[19]

장수말벌 유충은 고깃덩어리를 소화할 수 있지만 성충은 소화할 수 없다. 성충은 잡아 죽인 먹이의 체액을 빨아먹을 뿐이며, 큰턱으로 먹이를 다져 고기경단으로 만드는 것은 유충을 먹이기 위한 것이다. 말벌속에 속하는 벌들 뿐 아니라, 일반적으로 사회성을 가진 사냥벌들의 유충은 고기를 먹고 소화한 아미노산을 투명한 액체 형태로 분비한다. 이 아미노산 분비액의 성분은 종마다 다른데, 성충은 필요에 따라 유충에게서 아미노산 분비액을 섭취하여 먹이로 삼는다.[20]

 src=
황말벌 주위에 들러붙어 죽이고 있는 재래꿀벌. 이것은 장수말벌에게도 유효하다.

동양의 양봉가들은 서양의 양봉꿀벌이 꿀 생산량이 높음을 보고 도입해 왔다. 하지만 이들 서양산 꿀벌은 말벌들의 공격에 방어수단이 없기 때문에 군락이 말벌들의 공격에 쉽게 붕괴한다.[21] 조금밖에 안 되는 장수말벌이 양봉꿀벌의 군락을 순식간에 전멸시킬 수 있지만, 오랜 세월 말벌들과 함께 살아온 동양의 재래꿀벌은 효과적인 전략을 마련해냈다. 척후 말벌이 재래꿀벌 군락을 발견하고 페로몬을 발하면, 그것을 감지한 재래꿀벌 수백 마리가 군락 입구를 열고 입구 주변에 숨는다. 척후 말벌이 입구에 들어서면 대기하고 있던 꿀벌들이 말벌을 덮쳐 공 모양으로 완전히 둘러싼다. 이것을 봉구(蜂球)라고 한다. 봉구의 꿀벌들은 죽을 힘을 다해 날개근육을 진동시킨다. 이것은 벌집이 너무 추워지면 온도를 높이기 위해 취하는 행동과 같은 것인데, 그 결과 봉구 안의 온도는 섭씨 46도까지 올라간다. 또한 꿀벌들이 큰 에너지를 소모하면서 봉구 안의 이산화탄소 농도도 높아진다. 이산화탄소가 고이면 봉구 중심의 온도는 섭씨 50도까지 올라간다. 그러면 말벌은 고온 고압을 못 견디고 죽는다.[22][23] 이 과정에서 꿀벌 몇 마리도 죽지만, 척후 말벌을 조기에 처치함으로써 군락 전체가 전멸하는 사태를 막을 수 있다.[24]

상세한 연구 결과, 모든 경우에 이런 행동이 나타나는 것은 아니며, 서로간에 무익한 분쟁을 피하기 위한 전략을 양자 모두 개발하고 있음이 시사된다. 척후 말벌을 발견한 꿀벌들은 봉구를 만드는 대신 “내가 너를 보았다”는 협박성 신호를 먼저 보내서 공격을 단념하게 한다. 다만 이것은 등검은말벌에 대해 이루어진 연구이다.[25] 그 외에 재래꿀벌이 말벌이 침입했을 때 하는 행동으로는 군락으로 복귀할 때 엄청나게 빠른 속도로 비행하는 것이 있다. 공중전에서 우세한 말벌의 공격을 피하기 위한 것이다.[출처 필요]

천적

인간을 제외한 천적은 잘 알려져 있지 않지만, 다른 말벌 종류에서 보편적으로 알려진 천적인 오소리, , , 때까치 등이 천적이 될 수 있다. 곤충 중에서는 사마귀파리매가 말벌의 포식자로 알려져 있으나, 이 두 곤충이 장수말벌을 포식하는지는 아직 알려지지 않았다. 나뭇가지에 장수말벌이 꽂혀져있으면 때까치가 장수말벌 사냥한것이다. 참고로 장수말벌 유충은 사람들이 요리해서 먹기도 한다.

기생 생물

Xenos moutoni라는 부채벌레말벌속의 종에 매우 흔하게 기생한다. 한 연구에서는 장수말벌 암펄의 4.3%가 이 기생충에 감염되어 있었다. 수펄은 전혀 기생되지 않는다. 기생하는 부채벌레의 머리 크기와 숙주의 머리 크기는 양의 상관관계가 있다. 부채벌레에게 기생당하면 다음 해 세대의 생식을 할 수 없게 된다. 즉 부채벌레에게 기생당한 여왕벌들은 교미하지 않은 여왕벌들과 마찬가지로 군락을 만들지 못하고 나무 수액을 먹고 살다가 가을에 죽는 운명을 맞게 되는 것이다. 다른 말벌들의 경우 수펄 역시 기생당할 수 있다. 결과는 마찬가지로 불임이 된다.[26]

장수말벌집대모꽃등에라는 등에는 유충일 때 장수말벌의 벌집에 기생한다.

이용

장수말벌을 포함한 말벌류의 집을 '노봉방'이라고 하며, 약재로 이용한다. 노봉방은 둥지만 이용하기도 하고, 유충과 성충을 함께 이용하기도 한다. 항암 작용·응혈(凝血) 촉진 작용·강심(强心) 작용·이뇨 작용·일시적 혈압 강하 작용 등이 실험에서 밝혀졌다.[27] 그러나 일반인이 말벌주를 만들거나 말벌을 꿀에 절여 불법으로 제조하여 판매하는 것은 식품위생법 위반 행위로 처벌될 수 있다. 부산식약청 관계자는 “말벌은 식품의 원료로 사용할 수 없다”며 “건강정보프로그램 중에는 식품의 원료로 사용할 수 없는 것을 효능만을 강조해서 소개하는 경우도 있으니, 잘 알려지지 않은 식품은 섭취하여도 되는지 여부를 꼭 확인해야 한다”고 당부했다.[28]

퇴치법

각주

  1. Smith, F. (1852). “VIII. Descriptions of some new and apparently undescribed species of hymenopterous insects from North China, collected by Robert Fortune, Esq.”. Transactions of the Royal Entomological Society of London 7 (2): 33–44. doi:10.1111/j.1365-2311.1852.tb02208.x. (Vespa mandarinia: p. 38)
  2. Yamane, Seiki (July 1976). “Morphological and taxonomic studies on vespine larvae, with reference to the phylogeny of the subfamily Vespinae (Hymenoptera: Vespidae)”. Insecta Matsumurana. Series entomology. New series 8: 1–45. hdl:2115/9782.
  3. Campbell, Dana (2014년 11월 11일). Vespa mandarinia. 《Encyclopedia of Life》. 2013년 10월 7일에 원본 문서에서 보존된 문서. 2014년 9월 16일에 확인함.
  4. Handwerk, Brian (2002년 10월 25일). "Hornets From Hell" Offer Real-Life Fright”. National Geographic News. 2010년 1월 25일에 원본 문서에서 보존된 문서.
  5. Archer, Michael E. (1993). “A phylogenetic study of the species of the genus Vespa (Hymenoptera: Vespinae)”. Entomologica Scandinavica 24 (4): 475. doi:10.1163/187631293x00226. OCLC 527642543.[깨진 링크(과거 내용 찾기)]
  6. Vecht, Jacobus van der (1959년 5월 21일). “Notes on oriental Vespinae, including some species from China and Japan (Hymenoptera, Vespidae)”. 《Zoologische Mededelingen》 (Naturalis) 36 (13): 205–232.
  7. Archer, M.E. (2012). Penney, D., 편집. Vespine wasps of the world: behaviour, ecology and taxonomy of the Vespinae. Monograph Series 4. Siri Scientific. ISBN 9780956779571. OCLC 827754341.
  8. James M. Carpenter & Jun-ichi Kojima (1997). “Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae)” (PDF). Natural History Bulletin of Ibaraki University 1: 51–92.
  9. Barth, Zach; Kearns, Thomas; Wason, Elizabeth. “Vespa mandarinia”. 《Animal Diversity Web》. University of Michigan Museum of Zoology. 2015년 10월 8일에 원본 문서에서 보존된 문서. 2014년 9월 25일에 확인함.
  10. “보관된 사본”. 2019년 9월 22일에 원본 문서에서 보존된 문서. 2019년 10월 13일에 확인함.
  11. Matsuura, Makoto; Sakagami, Shôichi F. (October 1973). “A Bionomic Sketch of the Giant Hornet, Vespa mandarinia, a Serious Pest for Japanese Apiculture” (PDF). Journal of the Faculty of Science, Hokkaido University. Series 6, Zoology 19 (1): 125–162. ISSN 0368-2188. 2017년 8월 18일에 원본 문서 (PDF)에서 보존된 문서. 2014년 9월 25일에 확인함.
  12. According to "わが国における蜂刺症 The Topic of This Month Vol.18 No.8(No.210) 国立感染症研究所", this number includes fatalities from other bees and wasps.
  13. Branigan, Tania (2013년 9월 26일). “Hornet attacks kill dozens in China”. 《The Guardian》. 2019년 3월 5일에 원본 문서에서 보존된 문서.
  14. “China hornets kill 41 in north since July”. 《BBC News》. 2013년 10월 3일. 2018년 4월 9일에 원본 문서에서 보존된 문서.
  15. Yanagawa, Youichi; Morita, Kentaro (1980년 10월 10일). “Cutaneous hemorrhage or necrosis findings after Vespa mandarinia (wasp) stings may predict the occurrence of multiple organ injury: A case report and review of literature”. Clinical Toxicology (Informa Healthcare USA) 45 (7): 803–807. doi:10.1080/15563650701664871. PMID 17952752.
  16. Vespa mandarinia. 《UWL》. 2019년 1월 10일에 원본 문서에서 보존된 문서. 2014년 9월 25일에 확인함.
  17. Taylor, Benjamin J.; Nordheim, Erik V.; Schueller, Teresa I.; Jeanne, Robert L. (2011년 2월 28일). “Recruitment in swarm-founding wasps: Polybia occidentalis does not actively scent-mark carbohydrate food sources”. Psyche 2011: 378576. doi:10.1155/2011/378576.
  18. Yoshimoto, J.; Nishida, T. (2009). “Factors Affecting Behavioral Interactions Among Sap-Attracted Insects”. Annals of the Entomological Society of America 102 (2): 201–209. doi:10.1603/008.102.0203.
  19. Kosmeier, Dieter (2013년 1월 27일). Vespa mandarinia (Asian Giant Hornet) page”. 《Vespa-crabro.de》. 2013년 3월 18일에 확인함.
  20. Hunt, James H.; Baker, Irene; Baker, Herbert G. (November 1982). “Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps”. 《Evolution36 (6): 1318–1322. doi:10.2307/2408164. JSTOR 2408164. 지원되지 않는 변수 무시됨: |잍래릭체= (도움말)
  21. Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. 9–11쪽. ISBN 978-0-313-33922-6.
  22. Sugahara, Michio; Sakamoto, Fumio (September 2009). “Heat and carbon dioxide generated by honeybees jointly act to kill hornets”. Naturwissenschaften 96 (9): 1133–1136. Bibcode:2009NW.....96.1133S. doi:10.1007/s00114-009-0575-0. PMID 19551367.
  23. Gill, Victoria (2009년 7월 3일). “Honeybee mobs overpower hornets”. 《BBC News》. 2012년 5월 21일에 원본 문서에서 보존된 문서. 2010년 4월 25일에 확인함.
  24. “Defensive Adaptations: Heat Tolerance As A Weapon”. 《Bio.davidson.edu》. 2001. 2013년 11월 4일에 원본 문서에서 보존된 문서. 2013년 3월 18일에 확인함.
  25. Tan, Ken; Wang, Zhenwei; Li, Hua; Yang, Shuang; Hu, Zongwen; Kastberger, Gerald; Oldroyd, Benjamin P. (2012). “An 'I see you' prey–predator signal between the Asian honeybee, Apis cerana, and the hornet, Vespa velutina”. Animal Behaviour 83 (4): 879–882. doi:10.1016/j.anbehav.2011.12.031.
  26. Makino, Shun'ichi; Yamashita, Yoshiharu (1998년 12월 25일). “Levels of Parasitism by Xenos moutoni du Buysson (Strepsiptera, Stylopidae) and their Seasonal Changes in Hornets (Hymenoptera: Vespidae, Vespa) Caught with Bait Traps” (PDF). Entomological Science 1 (4): 537–543. ISSN 1479-8298. 2019년 3월 20일에 원본 문서 (PDF)에서 보존된 문서. 2014년 9월 25일에 확인함.
  27. 한의학대사전
  28. ‘말벌꿀 유통하면 처벌’ 제조·판매업자 5명 검찰에 송치돼
license
cc-by-sa-3.0
copyright
Wikipedia 작가 및 편집자

장수말벌: Brief Summary ( Korean )

provided by wikipedia 한국어 위키백과

장수말벌(將帥말벌, 영어: Asian giant hornet)은 말벌과곤충으로, 지금까지 알려져 있는 종류 중 가장 거대한 말벌이다. 학명은 베스파 만다리니아(라틴어: Vespa mandarinia). 동아시아의 온대-열대기후 지역에 자생한다. 낮은 야산삼림을 서식지로 선호하며, 탁 트인 개활지나 너무 높은 산악지역은 피한다. 장수말벌은 땅굴을 파서 그 안에 벌집을 마련하는데, 대개 땅굴은 설치류 따위 다른 동물이 쓰다 버린 것을 재활용한다. 또는 소나무 같은 큰 식물의 뿌리가 썩어서 구멍이 난 공간을 활용하기도 한다. 주식은 다른 곤충, 나무 수액, 과일, 그리고 꽃벌류의 벌집에서 털어온 벌꿀이다. 몸 길이는 35-45 밀리미터, 날개 편 길이는 75 밀리미터, 독침 길이는 6 밀리미터에 달하여 한 번에 많은 양의 독액을 주입한다.

영국에서는 등검은말벌과, 대한민국일본에서는 좀말벌과 혼동되는 경우가 잦다.

license
cc-by-sa-3.0
copyright
Wikipedia 작가 및 편집자