dcsimg

Flavivirus ( каталонски; валенсиски )

добавил wikipedia CA

Flavivirus és un gènere de virus de la família Flaviviridae. Aquest gènere inclou el virus del Nil occidental o 'West Nile virus', el virus del dengue, el virus de l'encefalitis transmesa per paparres (en anglès: Tick-borne encephalitis virus -TBEV-), el virus de la febre groga, i altres virus que poden causar encefalitis, com el Zika.[2]

Els flavivirus reben el nom del virus de la febre groga, ja que flavus significa groc en llatí.[3]

Els flavivirus tenen una mida de 40-65 nm.

Aquests virus es transmeten per la mossegada d'un artròpode infectat (mosquit o paparra). Amb excepció de la febre groga i el dengue dins dels humans aquests virus no es poden replicar suficientment per reiniciar el cicle.

Altres formes de replicació són el tocar animals morts infectats, transfusions de sang, el part o consumir lactis no pasteuritzats.


Referències

  1. «ICTV 2009 MASTER SPECIES LIST VERSION 4», 20-03-2010.
  2. Saiz, JC; Vázquez-Calvo, Á; Blázquez, AB; et al «Zika Virus: the Latest Newcomer» (en anglès). Front Microbiol, 2016 Apr 19; 7, pp.496. DOI: 10.3389/fmicb.2016.00496. PMID: 27148186 [Consulta: 7 juliol 2016].
  3. [enllaç sense format] http://microbewiki.kenyon.edu/index.php/Flaviviridae Accessed July 22, 2008

Enllaços externs

 src= A Wikimedia Commons hi ha contingut multimèdia relatiu a: Flavivirus Modifica l'enllaç a Wikidata
лиценца
cc-by-sa-3.0
авторски права
Autors i editors de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia CA

Flavivirus: Brief Summary ( каталонски; валенсиски )

добавил wikipedia CA

Flavivirus és un gènere de virus de la família Flaviviridae. Aquest gènere inclou el virus del Nil occidental o 'West Nile virus', el virus del dengue, el virus de l'encefalitis transmesa per paparres (en anglès: Tick-borne encephalitis virus -TBEV-), el virus de la febre groga, i altres virus que poden causar encefalitis, com el Zika.

Els flavivirus reben el nom del virus de la febre groga, ja que flavus significa groc en llatí.

Els flavivirus tenen una mida de 40-65 nm.

Aquests virus es transmeten per la mossegada d'un artròpode infectat (mosquit o paparra). Amb excepció de la febre groga i el dengue dins dels humans aquests virus no es poden replicar suficientment per reiniciar el cicle.

Altres formes de replicació són el tocar animals morts infectats, transfusions de sang, el part o consumir lactis no pasteuritzats.


лиценца
cc-by-sa-3.0
авторски права
Autors i editors de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia CA

Flavivirus ( германски )

добавил wikipedia DE

Die Gattung Flavivirus umfasst behüllte Viren mit einem positivsträngigen RNA-Einzelstrang als Genom, die durch Arthropoden (Zecken und Stechmücken) als Vektoren auf Vögel und Säugetiere übertragen werden. Der Name der Gattung und der gesamten Virusfamilie Flaviviridae leitet sich vom Gelbfiebervirus beim Menschen ab (von lat. flavus, „gelb“), das bereits 1904 von Walter Reed als durch Stechmücken übertragbar erkannt wurde.

Viren der Gattung Flavivirus verursachen wichtige Erkrankungen bei Tieren und Menschen. Darunter sind Krankheiten, die einem viralen hämorrhagischen Fieber entsprechen oder durch eine Infektion des Zentralnervensystems im Sinne einer Enzephalitis, Meningoenzephalitis oder Leukenzephalitis gekennzeichnet sind. Dies sind neben dem Gelbfieber beispielsweise auch die Frühsommer-Meningoenzephalitis (FSME), die Japanische Enzephalitis, das Dengue-Fieber und das West-Nil-Fieber.[3]

Verbreitung

 src=
Verbreitung der wichtigsten Vertreter der Gattung Flavivirus

Die Karte zeigt die weltweite Verbreitung von Vertretern der Gattung Flavivirus.

Morphologie

Die Viruspartikel (Virionen) der Flaviviren sind etwa 50 nm im Durchmesser groß und in der elektronenmikroskopischen Darstellung von sphärischer, unregelmäßiger Gestalt. Analysen mittels Kryoelektronenmikroskopie zeigten beim Dengue-Virus eine ikosaedrische Symmetrie der Virushülle, was auf eine Interaktion der Hüllproteine mit den Kapsidproteinen schließen lässt.[4] Das Kapsid ist aus nur einem Kapsidprotein (C, 11 kDa) aufgebaut. In die Virushülle des Virions sind 90 Dimere des E-Proteins (50 kDa) eingelagert. Zwischen diesem Netzwerk der E-Dimere findet sich ein weiteres, kleineres Hüllprotein (M-Protein, 26 kDa).[5]

Genomorganisation

Die positivsträngige RNA ist etwa 11.000 Nukleotide lang und umfasst nur einen Offenen Leserahmen, der für ein Polyprotein codiert. Die virale Protease (N-terminaler Teil von NS3) und wirtseigene Proteasen schneiden dieses Polyprotein in die 3 strukturellen (C, prM, E) und in die 7 nicht-strukturellen Proteine (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5); die Aufzählung entspricht der Anordnung der für die Proteine codierenden Gene auf dem Genom.[5] Im Gegensatz zu den anderen Gattungen der Familie Flaviviridae, besitzen Viren der Gattung Flavivirus am 5'-Ende der RNA eine 5'-Cap-Struktur vom Typ 1 (m-7GpppAmp) gefolgt von einem konservierten Dinukleotid AG. Am 3'-Ende findet sich bei Flaviviren im Gegensatz zu den anderen Gattungen kein poly(A)-Schwanz.

Replikation

 src=
Replikationszyklus von Viren der Gattung Flavivirus

Die Viren befallen unter anderem Monozyten, Makrophagen und Dendritische Zellen. Sie heften sich über spezifische Rezeptoren an der Zelloberfläche an und werden durch ein sich ausbildendes Endosomvesikel aufgenommen. Im Innern des Endosoms induziert der saure pH die Fusion von Endosommembran und Virushülle. Dadurch gelangt das Kapsid in das Zytosol, zerfällt und gibt das Genom frei. Sowohl die Rezeptorbindung als auch die Membranfusion werden durch das Protein E katalysiert, das bei saurem pH-Wert eine Konformationsänderung durchlebt, die dazu führt, dass die 90 Homodimere sich zu 60 Homotrimeren neu organisieren.[5]

Nach dem Eindringen in die Wirtszelle wird das virale Genom im rauen Endoplasmatischen Retikulum und in so genannten vesicle packets repliziert. Innerhalb des ER wird zuerst eine unreife Form der Viruspartikel produziert, bei der das M-Protein noch nicht durch einen Reifungsschritt gespalten wurde und als prM (precursor M) in einem Komplex mit E vorliegt. Die unreifen Partikel werden im Golgi-Apparat durch das Wirtsprotein Furin prozessiert, welches prM zu M schneidet. Dadurch wird E aus dem Komplex entlassen und kann seinen Platz im maturen, infektiösen Virion einnehmen.[5]

Übertragung

Flaviviren können indirekt durch blutsaugende Insekten oder in seltenen Fällen (beispielsweise beim Rio-Bravo-Virus) auch direkt von einem Wirbeltier auf ein anderes übertragen werden. Einige Flaviviren zirkulieren zwischen Nagetieren und Fledermäusen, ohne dass ein weiterer Vektor bekannt ist.

Systematik

Die Viren der Gattung Flavivirus wurde aufgrund ihrer Übertragung durch Gliederfüßer (Arthropoden) früher als Arboviren Gruppe B von den Arboviren Gruppe A unterschieden; aus letzteren ging später die Gattung Alphavirus der Familie Togaviridae hervor.

Die Gattung Flavivirus beinhaltet 89 Virusspezies (Stand 2018; 2009 waren es noch 53 Spezies mit 73 Serotypen). Nach der Art des Vektors (Stechmücke, Zecke), unbekanntem Vektor (NKV-Gruppe: no known vector) sowie auf der Grundlage von phylogenetischen Untersuchungen, werden die Spezies in (nicht-taxonomische) Gruppen klassifiziert. Die englischen Bezeichnungen sind die offiziellen Speziesnamen nach ICTV (International Committee on Taxonomy of Viruses), Stand November 2018.[6][7]

1. Durch Zecken übertragene Flaviviren

2. Durch Stechmücken übertragene Flaviviren (Mosquito-Borne-Enzephalitis-Komplex, MBE)

  • Spezies „Bamaga-Virus“ (en. „Bamage virus“, BgV), vom ICTV nicht bestätigt[22]

3. Flaviviren mit unbekanntem Vektor

4. Nicht-Wirbeltier-Virus-Gruppe (englisch Non vertebrate viruses)

5. Weitere nicht klassifizierte Kandidaten für diese Gattung[28]

Literatur

  • H.-J. Thiel, M. S. Collett et al.: Genus Flavivirus. In: C. M. Fauquet, M. A. Mayo et al.: Eighth Report of the International Committee on Taxonomy of Viruses. London / San Diego, 2005, ISBN 0-12-249951-4
  • D. Gubler, G. Kuno, L. Markoff: Flaviviruses. In: David M. Knipe, Peter M. Howley (eds.-in-chief): Fields’ Virology. 5. Auflage. Philadelphia 2007, Band 1, ISBN 0-7817-6060-7, S. 1153 ff.
  • EA Gould, T. Solomon: Pathogenic flaviviruses. Seminar. In: Lancet 2008, 371, S. 500–509

Einzelnachweise

  1. a b c d ICTV: ICTV Taxonomy history: Yellow fever virus, EC 51, Berlin, Germany, July 2019; Email ratification March 2020 (MSL #35)
  2. ICTV Master Species List 2018b.v2. MSL #34, März 2019
  3. EA Gould, T Solomon: Pathogenic flaviviruses. In: The Lancet. 371, Nr. 9611, Februar 2008, S. 500–9. doi:10.1016/S0140-6736(08)60238-X. PMID 18262042.
  4. RJ Kuhn, W Zhang, MG Rossmann et al.: Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. In: Cell. 108, Nr. 5, März 2002, S. 717–25. PMID 11893341.
  5. a b c d A Sampath, R Padmanabhan: Molecular targets for flavivirus drug discovery. In: Antiviral Research. 81, Nr. 1, Januar 2009, S. 6–15. doi:10.1016/j.antiviral.2008.08.004. PMID 18796313.
  6. Master Species List (#33) 2018a v1. ICTV, Herbst 2018
  7. H. Weissenböck, Z. Hubálek, T. Bakonyi, N. Nowotny: Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. In: Veterinary Microbiology, Elsevier, 2010, 140 (3-4), S. 271 ff, doi:10.1016/j.vetmic.2009.08.025
  8. NCBI: Tick-borne encephalitis virus group
  9. Anne Piantadosi, Daniel B Rubin, Daniel P McQuillen, Liangge Hsu, Philip A Lederer: Emerging Cases of Powassan Virus Encephalitis in New England: Clinical Presentation, Imaging, and Review of the Literature. In: Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. Band 62, Nr. 6, 15. März 2016, ISSN 1537-6591, S. 707–713, doi:10.1093/cid/civ1005, PMID 26668338, PMC 4850925 (freier Volltext).
  10. Powassan Basics: About Powassan Virus Disease, Minnesota Department of Health, 11. April 2019
  11. NCBI: Karshi virus
  12. NCBI: Seaborne tick-borne virus group
  13. NCBI: Dengue virus group
  14. NCBI: Japanese encephalitis virus group
  15. NCBI: Kokobera virus group
  16. NCBI: Ntaya virus group
  17. Joel H. Ellwanger et al.: Rocio Virus: An Overview, auf: ResearchGate, Juli 2017
  18. NCBI: T'Ho virus (species)
  19. PMC 5469153 (freier Volltext)
  20. Peipei Liu et al: Genomic and antigenic characterization of the newly emerging Chinese duck egg-drop syndrome flavivirus: genomic comparison with Tembusu and Sitiawan viruses, in: Journal of General Virology, Band 93, Nr. 10, 1. Oktober 2012, doi:10.1099/vir.0.043554-0
  21. NCBI: Yellow fever virus group
  22. Andrew F. van den Hurk, Willy W. Suen, Roy A. Hall, Caitlin A. O’Brien, Helle Bielefeldt-Ohmann, Jody Hobson-Peters, Agathe M. G. Colmant: A newly discovered flavivirus in the yellow fever virus group displays restricted replication in vertebrates. In: Journal of General Virology. 97, Nr. 5, 2016, S. 1087–1093. doi:10.1099/jgv.0.000430. PMID 26878841. PDF
  23. NCBI: Fitzroy river virus (species)
  24. Cheryl A. Johansen et al: Characterization of Fitzroy River Virus and Serologic Evidence of Human and Animal Infection, in: Emerging Infectious Diseases, Band 23, Nr. 8, August 2017
  25. NCBI: Nanay virus (species)
  26. NCBI: Modoc virus group
  27. S Bekal, LL Domier, B Gonfa, NK McCoppin, KN Lambert, K Bhalerao: A novel flavivirus in the soybean cyst nematode. In: Journal of General Virology. 95, Nr. Pt 6, 2014, S. 1272–1280. doi:10.1099/vir.0.060889-0. PMID 24643877.
  28. NCBI: unclassified Flavivirus
 title=
лиценца
cc-by-sa-3.0
авторски права
Autoren und Herausgeber von Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia DE

Flavivirus: Brief Summary ( германски )

добавил wikipedia DE

Die Gattung Flavivirus umfasst behüllte Viren mit einem positivsträngigen RNA-Einzelstrang als Genom, die durch Arthropoden (Zecken und Stechmücken) als Vektoren auf Vögel und Säugetiere übertragen werden. Der Name der Gattung und der gesamten Virusfamilie Flaviviridae leitet sich vom Gelbfiebervirus beim Menschen ab (von lat. flavus, „gelb“), das bereits 1904 von Walter Reed als durch Stechmücken übertragbar erkannt wurde.

Viren der Gattung Flavivirus verursachen wichtige Erkrankungen bei Tieren und Menschen. Darunter sind Krankheiten, die einem viralen hämorrhagischen Fieber entsprechen oder durch eine Infektion des Zentralnervensystems im Sinne einer Enzephalitis, Meningoenzephalitis oder Leukenzephalitis gekennzeichnet sind. Dies sind neben dem Gelbfieber beispielsweise auch die Frühsommer-Meningoenzephalitis (FSME), die Japanische Enzephalitis, das Dengue-Fieber und das West-Nil-Fieber.

лиценца
cc-by-sa-3.0
авторски права
Autoren und Herausgeber von Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia DE

Flavivirus ( севернофризиски )

добавил wikipedia emerging languages
Amrum.pngTekst üüb Öömrang Flavivirus West Nile virus EM PHIL 2290 lores.jpg

Elektronenmikroskop-bil faan en Flavivirus

Süstemaatik Hoodkategorii: Wiiren Kategorii: nian Famile: Flaviviridae Skööl: Flavivirus Taksonomii Genoom: (+)ssRNA Baltimore-klas: Skööl 4 Sümetrii: ikosaedrisk Wiirusskan: as diar Wedenskapelk nööm Flavivirus (ingelsk) Ferwisangen

Flavivirus as en skööl faan wiiren, diar faan tegen an magen üüb fögler an tetjdiarten auerdraanj wurd.

Di nööm komt faan't latiinsk flavus „güül“ uf, auer tu detdiar skööl uk det güülfiiberwiirus hiart.

Bütj güülfiiber wurd uk ööder kraankhaiden, so üs FSME, denguefiiber an zikafiiber faan sok wiiren ütjliaset.

Slacher (ingelsk)

Apoi virusAroa virusBagaza virusBanzi virusBouboui virusBukalasa bat virusCacipacore virusCarey Island virusCowbone Ridge virusDakar bat virusDengue virusEdge Hill virusEntebbe bat virusGadgets Gully virusIlheus virusIsrael turkey meningoencephalomyelitis virusJapanese encephalitis virusJugra virusJutiapa virusKadam virusKedougou virusKokobera virusKoutango virusKyasanur Forest disease virusLangat virusLouping ill virusMeaban virusModoc virusMontana myotis leukoencephalitis virusMurray Valley encephalitis virusNtaya virusOmsk hemorrhagic fever virusPhnom Penh bat virusPowassan virusRio Bravo virusRoyal Farm virusSaboya virusSal Vieja virusSan Perlita virusSaumarez Reef virusSepik virusSt. Louis encephalitis virusTembusu virusTick-borne encephalitis virusTyuleniy virusUganda S virusUsutu virusWesselsbron virusWest Nile virusYaounde virusYellow fever virusYokose virusZika virus

лиценца
cc-by-sa-3.0
авторски права
Wikipedia authors and editors
изворно
посети извор
соработничко мреж. место
wikipedia emerging languages

Flavivirus ( интерлингва )

добавил wikipedia emerging languages

Flavivirus es un taxon.

Classification

Rango taxinomic

  • genere

Supertaxones

Subtaxones

лиценца
cc-by-sa-3.0
авторски права
Wikipedia authors and editors
изворно
посети извор
соработничко мреж. место
wikipedia emerging languages

Flavivirus: Brief Summary ( севернофризиски )

добавил wikipedia emerging languages

Flavivirus as en skööl faan wiiren, diar faan tegen an magen üüb fögler an tetjdiarten auerdraanj wurd.

Di nööm komt faan't latiinsk flavus „güül“ uf, auer tu detdiar skööl uk det güülfiiberwiirus hiart.

Bütj güülfiiber wurd uk ööder kraankhaiden, so üs FSME, denguefiiber an zikafiiber faan sok wiiren ütjliaset.

лиценца
cc-by-sa-3.0
авторски права
Wikipedia authors and editors
изворно
посети извор
соработничко мреж. место
wikipedia emerging languages

पीत विषाणु ( хинди )

добавил wikipedia emerging languages

पीत विषाणु (अंग्रेज़ी: Flavivirus) फ़्लैविविरिडेई विषाणु परिवार Flaviviridae के विषाणुओं की एक जाति है। इस प्राजाति में पश्चिमी नील विषाणु (West Nile virus), डेंगी विषाणु, टिक-बॉर्न मेनिनगो इंसेफ़लाइटिस विषाणु (tick-borne encephalitis virus), पीत जवर विषाणु, ज़ीका विषाणु और कई अन्य विषाणु होते हैं जो इंसेफ़लाईटिस, दिमागी बुखार जैसी खतरनाक बीमारियों का कारण बनते हैं। [2]

पीत विषाणु का नाम पीलिया या पीत ज्वर के विषाणू के नाम से पडा है जो कि इसी विषाणू परिवार का सदस्य है। पीत का संस्कृत में अर्थ पीला होता है। लैटिन भाषा में फ़्लैवी का अर्थ पीला होता है। इसी नाम से इसका जैविक नाम फ़्लैविवायरस पडा। इसका नाम पीले रंग से इसलिये जुडा हुआ है क्योंकि इसके शिकार पीली जान्डिस से पीडित होते हैं। [3]

फ़्लैवीवायरस में कई प्रकार की समानताएँ होती हैं: समान आकार (40–65 नैमी), समरूपता (घिरे हुए, विंशतिफलक न्युक्लियोकैप्सिड), न्यूक्लीक एसिड (पॉजिटिव सेन्स, एकल फँसा हुआ आरएनए लगभग 10,000–11,000 क्षार), और माइक्रोस्कोप में दृष्यता।

इनमें से अधिकांश विषाणु संक्रमित संधिपादों (arthropod) जैसे मच्छर इत्यादि के काटने से फैलती हैं। संधिपादों से फ़ैलने के कारण इन विषाणुओं को संधिविषाणु (arboviruses) भी कहते हैं। अर्थ्रोपॉड यूनानी भाषा का शब्द है जो अर्थ्रो (अर्थात संधि या जोड़) और पॉड यानि पैर से मिलकर बना है। अर्बोवायरस का अर्थ है अर्थ्रोपॉड जनित विषाणु जो कि इस परिभाषा के शब्दों के प्रथम अक्षरों से मिलकर बना है।[4] (arthro borne viruses)

इस विषाणु से संक्रमण का एक और जरिया है संक्रमित जानवरों व उनकी लाशों को छूना, संक्रमित खून से संपर्क, संक्रमित माँ से नवजात बच्चे को, संक्रमित जानवर के दूध पीने से इत्यादि। हालांकि ये विषाणु मानवों में सबसे ज्यादा संधिपादों के काटने से फैलते हैं।

वर्गीकरण

समूह: ssRNA(+)

[5]

ढाँचा

पीतविषाणु लगभग ५० नैनोमीटर के व्यास के खोल या कवच में घिरा होता है। आकार में यह विंशतिफलक या गोलाकार होता है। जीनोम लंबाई में १०-११केबी के रेखीय और अखण्ड होते हैं। [6]

टीका

पीत ज्वर का सबसे सफ़लतम टीका या दवाई पीत ज्वर 17डी टीका, 1937 में बनाया गया था। इस दवा ने महामारी को रोकने में महत्वपूर्ण भूमिका निभाई। जापानी इंसेफ़लाइटिस और अष्टपाद-जनित इंसेफ़लाइटिस विषाणु को मारने की प्रभावकारी दवा/टीका बीसवीं शताब्दी के मध्य तक बना ली गई थी।[7] पहले की दवा के दुष्प्रभावों की वजह से दूसरे पीढी की जापानी इंसेफ़लाइटिस की दवा बनाई गई जो ज्यादा सफल रही। इनका एशिया के विशाल जनसंख्या का इस खतरनाक बीमारी से निपटने में व्यापक इस्तेमाल किया जाता है। 95 प्रतिशत लोगों में टीकाकरण के 10 दिन के बाद इसका असर शुरू होता है और कम से कम 10 वर्ष तक रहता है (81 प्रतिशत मरीज़ों में प्रतिरक्षा 30 साल के बाद तक भी रही)। डब्‍ल्‍यूएचओ स्‍थानिक क्षेत्रों में लोगों को जन्‍म के 9वें और 12 महीनें के बीच नित्‍य टीकाकरण की सिफारिश करता है। 2013 में विश्‍व स्‍वास्‍थ्‍य संगठन ने कहा था ‘पीत ज्‍वर रोग के खिलाफ आजीवन प्रतिरक्षा के लिए टीकाकरण की एक खुराक ही काफी होती है’।[7] विश्वभर में घूमने वाले एडीज मच्छरों की वजह से सालाना लाखों लोग खतरनाक डेंगू के शिकार हो जाते हैं। चूंकि मच्छरों की अनगिनत संख्या पर नियंत्रण मुश्किल है इसलिये डेंगू से बचाव की विभिन्न दवाएँ अपने विकास के विभिन्न चरणों में हैं।

सन्दर्भ

  1. अंतर्राष्ट्रीय विषाणु वर्गीकरण संस्थान (20 मार्च 2010). "ICTV 2009 Master Species List Version 4".
  2. शी, पी-वाई (संपादक) (2012). Molecular Virology and Control of Flaviviruses. कैस्टर अकादमी प्रेस. आई॰ऍस॰बी॰ऍन॰ 978-1-904455-92-9.
  3. पीलिया या येलो फ़ीवर का प्रथम जानकारी १७४४ में वर्जीनिया के एक भूगोलवेत्ता जॉन मिशेल द्वारा लिखे एक पांडुलिपि में मिलती है। देखें:
    (डॉ॰ जॉन मिशेल) (लिखित: 1744 ; पुनर्मुद्रित: 1814) "Account of the Yellow fever which prevailed in Virginia in the years 1737, 1741, and 1742, in a letter to the late Cadwallader Colden, Esq. of New York, from the late John Mitchell, M.D.F.R.S. of Virginia," American Medical and Philosophical Register … , 4 : 181-215. शब्द "yellow fever" पृष्ठ. 186., पृ. 188, पर मिलता है। मिशेल लिखते हैं "… the distemper was what is generally called the yellow fever in America." However, on pages 191–192, he states "… I shall consider the cause of the yellowness which is so remarkable in this distemper, as to have given it the name of the Yellow Fever."
    Dr. Mitchell misdiagnosed the disease that he observed and treated, and the disease was probably Weil's disease or hepatitis. See: Saul Jarcho (1957) "John Mitchell, Benjamin Rush, and Yellow fever". Bulletin of the History of Medicine, 31 (2) : 132–6.
  4. "CDC Information on Arboviral Encephalitides". मूल से January 27, 2007 को पुरालेखित. अभिगमन तिथि 7 फरवरी 2007.
  5. ICTV. "Virus Taxonomy: 2014 Release". अभिगमन तिथि 15 June 2015.
  6. "Viral Zone". ExPASy. अभिगमन तिथि 15 June 2015.
  7. डॉ॰ एच. आर. केशवमूर्ति (30.07.2013). "स्थानिक क्षेत्रों में जाने वाले एशियाई लोगों के लिए पीत ज्‍वर निरोधक टीकाकरण अनिवार्य". पत्र सूचना कार्यालय. अभिगमन तिथि 12.02.2016. |accessdate=, |date= में तिथि प्राचल का मान जाँचें (मदद)
лиценца
cc-by-sa-3.0
авторски права
विकिपीडिया के लेखक और संपादक
изворно
посети извор
соработничко мреж. место
wikipedia emerging languages

पीत विषाणु: Brief Summary ( хинди )

добавил wikipedia emerging languages

पीत विषाणु (अंग्रेज़ी: Flavivirus) फ़्लैविविरिडेई विषाणु परिवार Flaviviridae के विषाणुओं की एक जाति है। इस प्राजाति में पश्चिमी नील विषाणु (West Nile virus), डेंगी विषाणु, टिक-बॉर्न मेनिनगो इंसेफ़लाइटिस विषाणु (tick-borne encephalitis virus), पीत जवर विषाणु, ज़ीका विषाणु और कई अन्य विषाणु होते हैं जो इंसेफ़लाईटिस, दिमागी बुखार जैसी खतरनाक बीमारियों का कारण बनते हैं।

पीत विषाणु का नाम पीलिया या पीत ज्वर के विषाणू के नाम से पडा है जो कि इसी विषाणू परिवार का सदस्य है। पीत का संस्कृत में अर्थ पीला होता है। लैटिन भाषा में फ़्लैवी का अर्थ पीला होता है। इसी नाम से इसका जैविक नाम फ़्लैविवायरस पडा। इसका नाम पीले रंग से इसलिये जुडा हुआ है क्योंकि इसके शिकार पीली जान्डिस से पीडित होते हैं।

फ़्लैवीवायरस में कई प्रकार की समानताएँ होती हैं: समान आकार (40–65 नैमी), समरूपता (घिरे हुए, विंशतिफलक न्युक्लियोकैप्सिड), न्यूक्लीक एसिड (पॉजिटिव सेन्स, एकल फँसा हुआ आरएनए लगभग 10,000–11,000 क्षार), और माइक्रोस्कोप में दृष्यता।

इनमें से अधिकांश विषाणु संक्रमित संधिपादों (arthropod) जैसे मच्छर इत्यादि के काटने से फैलती हैं। संधिपादों से फ़ैलने के कारण इन विषाणुओं को संधिविषाणु (arboviruses) भी कहते हैं। अर्थ्रोपॉड यूनानी भाषा का शब्द है जो अर्थ्रो (अर्थात संधि या जोड़) और पॉड यानि पैर से मिलकर बना है। अर्बोवायरस का अर्थ है अर्थ्रोपॉड जनित विषाणु जो कि इस परिभाषा के शब्दों के प्रथम अक्षरों से मिलकर बना है। (arthro borne viruses)

इस विषाणु से संक्रमण का एक और जरिया है संक्रमित जानवरों व उनकी लाशों को छूना, संक्रमित खून से संपर्क, संक्रमित माँ से नवजात बच्चे को, संक्रमित जानवर के दूध पीने से इत्यादि। हालांकि ये विषाणु मानवों में सबसे ज्यादा संधिपादों के काटने से फैलते हैं।

лиценца
cc-by-sa-3.0
авторски права
विकिपीडिया के लेखक और संपादक
изворно
посети извор
соработничко мреж. место
wikipedia emerging languages

Flavivirus ( англиски )

добавил wikipedia EN

Flavivirus is a genus of positive-strand RNA viruses in the family Flaviviridae. The genus includes the West Nile virus, dengue virus, tick-borne encephalitis virus, yellow fever virus, Zika virus and several other viruses which may cause encephalitis,[3] as well as insect-specific flaviviruses (ISFs) such as cell fusing agent virus (CFAV), Palm Creek virus (PCV), and Parramatta River virus (PaRV).[4] While dual-host flaviviruses can infect vertebrates as well as arthropods, insect-specific flaviviruses are restricted to their competent arthropods.[5] The means by which flaviviruses establish persistent infection in their competent vectors and cause disease in humans depends upon several virus-host interactions, including the intricate interplay between flavivirus-encoded immune antagonists and the host antiviral innate immune effector molecules.[6]

Flaviviruses are named for the yellow fever virus; the word flavus means 'yellow' in Latin, and yellow fever in turn is named from its propensity to cause yellow jaundice in victims.[7]

Flaviviruses share several common aspects: common size (40–65 nm), symmetry (enveloped, icosahedral nucleocapsid), nucleic acid (positive-sense, single-stranded RNA around 10,000–11,000 bases), and appearance under the electron microscope.

Most of these viruses are primarily transmitted by the bite from an infected arthropod (mosquito or tick), and hence are classified as arboviruses. Human infections with most of these arboviruses are incidental, as humans are unable to replicate the virus to high enough titers to reinfect the arthropods needed to continue the virus life-cycle – humans are then a dead end host. The exceptions to this are the yellow fever virus, dengue virus and zika virus. These three viruses still require mosquito vectors but are well-enough adapted to humans as to not necessarily depend upon animal hosts (although they continue to have important animal transmission routes, as well).

Other virus transmission routes for arboviruses include handling infected animal carcasses, blood transfusion, sex, childbirth and consumption of unpasteurised milk products. Transmission from nonhuman vertebrates to humans without an intermediate vector arthropod however mostly occurs with low probability. For example, early tests with yellow fever showed that the disease is not contagious.

The known non-arboviruses of the flavivirus family reproduce in either arthropods or vertebrates, but not both, with one odd member of the genus affecting a nematode.[8]

Structure

Zika virus structure and genome

Flaviviruses are enveloped and spherical and have icosahedral geometries with a pseudo T=3 symmetry. The virus particle diameter is around 50 nm.[9]

Genome

Flaviviruses have positive-sense, single-stranded RNA genomes which are non-segmented and around 10–11 kbp in length.[9] In general, the genome encodes three structural proteins (Capsid, prM, and Envelope) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5).[10] The genomic RNA is modified at the 5′ end of positive-strand genomic RNA with a cap-1 structure (me7-GpppA-me2).[11]

Life cycle

Replication of Japanese encephalitis virus (JEV)

Flaviviruses replicate in the cytoplasm of the host cells. The genome mimics the cellular mRNA molecule in all aspects except for the absence of the poly-adenylated (poly-A) tail. This feature allows the virus to exploit cellular apparatuses to synthesize both structural and non-structural proteins, during replication. The cellular ribosome is crucial to the replication of the flavivirus, as it translates the RNA, in a similar fashion to cellular mRNA, resulting in the synthesis of a single polyprotein.[10]

Cellular RNA cap structures are formed via the action of an RNA triphosphatase, with guanylyltransferase, N7-methyltransferase and 2′-O methyltransferase. The virus encodes these activities in its non-structural proteins. The NS3 protein encodes a RNA triphosphatase within its helicase domain. It uses the helicase ATP hydrolysis site to remove the γ-phosphate from the 5′ end of the RNA. The N-terminal domain of the non-structural protein 5 (NS5) has both the N7-methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. RNA binding affinity is reduced by the presence of ATP or GTP and enhanced by S-adenosyl methionine.[11] This protein also encodes a 2′-O methyltransferase.

Replication complex formed on the cytoplasmic side of the ER membrane

Once translated, the polyprotein is cleaved by a combination of viral and host proteases to release mature polypeptide products.[12] Nevertheless, cellular post-translational modification is dependent on the presence of a poly-A tail; therefore this process is not host-dependent. Instead, the poly-protein contains an autocatalytic feature which automatically releases the first peptide, a virus specific enzyme. This enzyme is then able to cleave the remaining poly-protein into the individual products. One of the products cleaved is a RNA-dependent RNA polymerase, responsible for the synthesis of a negative-sense RNA molecule. Consequently, this molecule acts as the template for the synthesis of the genomic progeny RNA.

Flavivirus genomic RNA replication occurs on rough endoplasmic reticulum membranes in membranous compartments. New viral particles are subsequently assembled. This occurs during the budding process which is also responsible for the accumulation of the envelope and cell lysis.

A G protein-coupled receptor kinase 2 (also known as ADRBK1) appears to be important in entry and replication for several viruses in Flaviviridae.[13]

Humans, mammals, mosquitoes, and ticks serve as the natural host. Transmission routes are zoonosis and bite.[9]

RNA secondary structure elements

Flavivirus RNA genome showing the 3' and 5' UTRs and cyclisation

The positive sense RNA genome of Flavivirus contains 5' and 3' untranslated regions (UTRs).

5'UTR

The 5'UTRs are 95–101 nucleotides long in Dengue virus.[14] There are two conserved structural elements in the Flavivirus 5'UTR, a large stem loop (SLA) and a short stem loop (SLB). SLA folds into a Y-shaped structure with a side stem loop and a small top loop.[14][15] SLA is likely to act as a promoter, and is essential for viral RNA synthesis.[16][17] SLB is involved in interactions between the 5'UTR and 3'UTR which result in the cyclisation of the viral RNA, which is essential for viral replication.[18]

3'UTR

RNA secondary structure elements of different flavivirus 3′UTRs

The 3'UTRs are typically 0.3–0.5 kb in length and contain a number of highly conserved secondary structures which are conserved and restricted to the flavivirus family. The majority of analysis has been carried out using West Nile virus (WNV) to study the function the 3'UTR.

Currently 8 secondary structures have been identified within the 3'UTR of WNV and are (in the order in which they are found with the 3'UTR) SL-I, SL-II, SL-III, SL-IV, DB1, DB2 and CRE.[19][20] Some of these secondary structures have been characterised and are important in facilitating viral replication and protecting the 3'UTR from 5' endonuclease digestion. Nuclease resistance protects the downstream 3' UTR RNA fragment from degradation and is essential for virus-induced cytopathicity and pathogenicity.

  • SL-II

SL-II has been suggested to contribute to nuclease resistance.[20] It may be related to another hairpin loop identified in the 5'UTR of the Japanese encephalitis virus (JEV) genome.[21] The JEV hairpin is significantly over-represented upon host cell infection and it has been suggested that the hairpin structure may play a role in regulating RNA synthesis.

  • SL-IV

This secondary structure is located within the 3'UTR of the genome of Flavivirus upstream of the DB elements. The function of this conserved structure is unknown but is thought to contribute to ribonuclease resistance.

  • DB1/DB2
Secondary structure of the Flavivirus DB element

These two conserved secondary structures are also known as pseudo-repeat elements. They were originally identified within the genome of Dengue virus and are found adjacent to each other within the 3'UTR. They appear to be widely conserved across the Flaviviradae. These DB elements have a secondary structure consisting of three helices and they play a role in ensuring efficient translation. Deletion of DB1 has a small but significant reduction in translation but deletion of DB2 has little effect. Deleting both DB1 and DB2 reduced translation efficiency of the viral genome to 25%.[19]

  • CRE

CRE is the Cis-acting replication element, also known as the 3'SL RNA elements, and is thought to be essential in viral replication by facilitating the formation of a "replication complex".[22] Although evidence has been presented for an existence of a pseudoknot structure in this RNA, it does not appear to be well conserved across flaviviruses.[23] Deletions of the 3' UTR of flaviviruses have been shown to be lethal for infectious clones.

Conserved hairpin cHP

A conserved hairpin (cHP) structure was later found in several Flavivirus genomes and is thought to direct translation of capsid proteins. It is located just downstream of the AUG start codon.[24]

The role of RNA secondary structures in sfRNA production

Different fates of viral RNA of flaviviruses and formation of sfRNA

Subgenomic flavivirus RNA (sfRNA) is an extension of the 3' UTR and has been demonstrated to play a role in flavivirus replication and pathogenesis.[25] sfRNA is produced by incomplete degradation of genomic viral RNA by the host cells 5'-3' exoribonuclease 1 (XRN1).[26] As the XRN1 degrades viral RNA, it stalls at stemloops formed by the secondary structure of the 5' and 3' UTR.[27] This pause results in an undigested fragment of genome RNA known as sfRNA. sfRNA influences the life cycle of the flavivirus in a concentration dependent manner. Accumulation of sfRNA causes (1) antagonization of the cell's innate immune response, thus decreasing host defense against the virus[28] (2) inhibition of XRN1 and Dicer activity to modify RNAi pathways that destroy viral RNA[29] (3) modification of the viral replication complex to increase viral reproduction.[30] Overall, sfRNA is implied in multiple pathways that compromise host defenses and promote infection by flaviviruses.

Evolution

Phylogenetic tree of Flavivirus with corresponding vectors and groups

The flaviviruses can be divided into two clades: one with vector-borne viruses and the other with no known vector.[31] The vector clade, in turn, can be subdivided into a mosquito-borne clade and a tick-borne clade. These groups can be divided again.[32]

The mosquito group can be divided into two branches: one branch contains neurotropic viruses, often associated with encephalitic disease in humans or livestock. This branch tends to be spread by Culex species and to have bird reservoirs. The second branch is the non-neurotropic viruses associated with human haemorrhagic disease. These tend to have Aedes species as vectors and primate hosts.

The tick-borne viruses also form two distinct groups: one is associated with seabirds and the other – the tick-borne encephalitis complex viruses – is associated primarily with rodents.

The viruses that lack a known vector can be divided into three groups: one closely related to the mosquito-borne viruses, which is associated with bats; a second, genetically more distant, is also associated with bats; and a third group is associated with rodents.

Evolutionary relationships between endogenised viral elements of Flaviviruses and contemporary flaviviruses using maximum likelihood approaches have identified that arthropod-vectored flaviviruses likely emerged from an arachnid source.[33] This contradicts earlier work with a smaller number of extant viruses showing that the tick-borne viruses emerged from a mosquito-borne group.[34]

Several partial and complete genomes of flaviviruses have been found in aquatic invertebrates such as the sea spider Endeis spinosa[35] and several crustaceans and cephalopods.[36] These sequences appear to be related to those in the insect-specific flaviviruses and also the Tamana bat virus groupings. While it is not presently clear how aquatic flaviviruses fit into the evolution of this group of viruses, there is some evidence that one of these viruses, Wenzhou shark flavivirus, infects both a crustacean (Portunus trituberculatus) Pacific spadenose shark (Scoliodon macrorhynchos) shark host,[37][36] indicating an aquatic arbovirus life cycle.

Distribution of major flaviviruses

Estimates of divergence times have been made for several of these viruses.[38] The origin of these viruses appears to be at least 9400 to 14,000 years ago. The Old World and New World dengue strains diverged between 150 and 450 years ago. The European and Far Eastern tick-borne encephalitis strains diverged about 1087 (1610–649) years ago. European tick-borne encephalitis and louping ill viruses diverged about 572 (844–328) years ago. This latter estimate is consistent with historical records. Kunjin virus diverged from West Nile virus approximately 277 (475–137) years ago. This time corresponds to the settlement of Australia from Europe. The Japanese encephalitis group appears to have evolved in Africa 2000–3000 years ago and then spread initially to South East Asia before migrating to the rest of Asia.

Phylogenetic studies of the West Nile virus has shown that it emerged as a distinct virus around 1000 years ago.[39] This initial virus developed into two distinct lineages, lineage 1 and its multiple profiles is the source of the epidemic transmission in Africa and throughout the world. Lineage 2 was considered an Africa zoonosis. However, in 2008, lineage 2, previously only seen in horses in sub-Saharan Africa and Madagascar, began to appear in horses in Europe, where the first known outbreak affected 18 animals in Hungary in 2008.[40] Lineage 1 West Nile virus was detected in South Africa in 2010 in a mare and her aborted fetus; previously, only lineage 2 West Nile virus had been detected in horses and humans in South Africa.[41] A 2007 fatal case in a killer whale in Texas broadened the known host range of West Nile virus to include cetaceans.[42]

Omsk haemorrhagic fever virus appears to have evolved within the last 1000 years.[43] The viral genomes can be divided into 2 clades — A and B. Clade A has five genotypes, and clade B has one. These clades separated about 700 years ago. This separation appears to have occurred in the Kurgan province. Clade A subsequently underwent division into clade C, D and E 230 years ago. Clade C and E appear to have originated in the Novosibirsk and Omsk Provinces, respectively. The muskrat Ondatra zibethicus, which is highly susceptible to this virus, was introduced into this area in the 1930s.

Taxonomy

Species

In the genus Flavivirus there are 53 defined species:[44]

Sorted by vector

List of species and strains of flavivirus by vector
Phylogenetic tree of Flavivirus with vectors; tick-borne (black), mosquito-borne (purple), with no known vector (red), invertebrate viruses (blue/green)

Species and strains sorted by vectors:

Tick-borne viruses

Distribution of tick-borne encephalitis virus (TBEV), Kyasanur forest disease virus (KFDV), Omsk hemorrhagic fever virus (OHFV), Powassan virus (POWV), and Louping-ill virus (LIV)

Mammalian tick-borne virus group

Seabird tick-borne virus group

Mosquito-borne viruses

Viruses with no known arthropod vector

Non vertebrate viruses

Viruses known only from sequencing

Vaccines

Time-line of historical highlights of flavivirus research

The very successful yellow fever 17D vaccine, introduced in 1937, produced dramatic reductions in epidemic activity.

Effective inactivated Japanese encephalitis and Tick-borne encephalitis vaccines were introduced in the middle of the 20th century. Unacceptable adverse events have prompted change from a mouse-brain inactivated Japanese encephalitis vaccine to safer and more effective second generation Japanese encephalitis vaccines. These may come into wide use to effectively prevent this severe disease in the huge populations of Asia—North, South and Southeast.

The dengue viruses produce many millions of infections annually due to transmission by a successful global mosquito vector. As mosquito control has failed, several dengue vaccines are in varying stages of development. CYD-TDV, sold under the trade name Dengvaxia, is a tetravalent chimeric vaccine that splices structural genes of the four dengue viruses onto a 17D yellow fever backbone.[49][50] Dengvaxia is approved in five countries.[51]

An alternate approach to the development of flavivirus vaccine vectors is based on the use of viruses that infect insects. Insect-specific flaviviruses, such as Binjari virus, are unable to replicate in vertebrate cells. Nevertheless, recombinant viruses in which structural protein genes (prME) of Binjari virus are exchanged with those of dengue virus, Zika virus, West Nile virus, yellow fever virus, or Japanese encephalitis virus replicate efficiently in insect cells where high titers of infectious virus particles are produced. Immunization of mice with a Binjari vaccine bearing the Zika virus structural proteins protected mice from disease after challenge. A similar approach employs the insect-specific alphavirus Eilat virus as a vaccine platform. ... These new vaccine platforms generated from insect-specific flaviviruses and alphaviruses represent affordable, efficient, and safe approaches to rapid development of infectious, attenuated vaccines against pathogens from these two virus families.[52]

References

  1. ^ "Virus Taxonomy: 2018b Release". International Committee on Taxonomy of Viruses (ICTV). March 2019. Retrieved 16 March 2019.
  2. ^ Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ (April 2016). "The 3.8 Å resolution cryo-EM structure of Zika virus". Science. 352 (6284): 467–470. Bibcode:2016Sci...352..467S. doi:10.1126/science.aaf5316. PMC 4845755. PMID 27033547.
  3. ^ Shi, P-Y, ed. (2012). Molecular Virology and Control of Flaviviruses. Caister Academic Press. ISBN 978-1-904455-92-9.
  4. ^ McLean, Breeanna J.; Hobson-Peters, Jody; Webb, Cameron E.; Watterson, Daniel; Prow, Natalie A.; Nguyen, Hong Duyen; Hall-Mendelin, Sonja; Warrilow, David; Johansen, Cheryl A.; Jansen, Cassie C.; van den Hurk, Andrew F.; Beebe, Nigel W.; Schnettler, Esther; Barnard, Ross T.; Hall, Roy A. (2015). "A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia". Virology. 486: 272–283. doi:10.1016/j.virol.2015.07.021. PMID 26519596.
  5. ^ Elrefaey, Ahmed ME; Abdelnabi, Rana; Rosales Rosas, Ana Lucia; Wang, Lanjiao; Basu, Sanjay; Delang, Leen (September 2020). "Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses". Viruses. 12 (9): 964. doi:10.3390/v12090964. PMC 7552076. PMID 32878245.
  6. ^ Elrefaey, Ahmed M. E.; Hollinghurst, Philippa; Reitmayer, Christine M.; Alphey, Luke; Maringer, Kevin (November 2021). "Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes". Viruses. 13 (11): 2116. doi:10.3390/v13112116. PMC 8624719. PMID 34834923.
  7. ^ The earliest mention of "yellow fever" appears in a manuscript of 1744 by John Mitchell of Virginia; copies of the manuscript were sent to Mr. Cadwallader Colden, a physician in New York, and to Benjamin Rush of Philadelphia; the manuscript was eventually reprinted in 1814. See: The term "yellow fever" appears on p. 186. On p. 188, Mitchell mentions "... the distemper was what is generally called the yellow fever in America." However, on pages 191–192, he states "... I shall consider the cause of the yellowness which is so remarkable in this distemper, as to have given it the name of the Yellow Fever." Mitchell misdiagnosed the disease that he observed and treated, and the disease was probably Weil's disease or hepatitis. See: Saul Jarcho (1957) "John Mitchell, Benjamin Rush, and Yellow fever". Bulletin of the History of Medicine, 31 (2): 132–6.
  8. ^ a b Bekal S, Domier LL, Gonfa B, McCoppin NK, Lambert KN, Bhalerao K (2014). "A novel flavivirus in the soybean cyst nematode". Journal of General Virology. 95 (Pt 6): 1272–1280. doi:10.1099/vir.0.060889-0. PMID 24643877.
  9. ^ a b c "Viral Zone". ExPASy. Retrieved 15 June 2015.
  10. ^ a b Rice, C.; Lenches, E.; Eddy, S.; Shin, S.; Sheets, R.; Strauss, J. (23 August 1985). "Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution". Science. 229 (4715): 726–33. Bibcode:1985Sci...229..726R. doi:10.1126/science.4023707. PMID 4023707. Retrieved 14 November 2016.
  11. ^ a b Henderson BR, Saeedi BJ, Campagnola G, Geiss BJ (2011). Jeang K (ed.). "Analysis of RNA binding by the Dengue virus NS5 RNA capping enzyme". PLOS ONE. 6 (10): e25795. Bibcode:2011PLoSO...625795H. doi:10.1371/journal.pone.0025795. PMC 3192115. PMID 22022449.
  12. ^ Sun, G.; Larsen, C.; Baumgarth, N.; Klem, E; Scheuermann, R. (26 January 2017). "Comprehensive Annotation of Mature Peptides and Genotypes for Zika Virus". PLOS ONE. 12 (1): e0170462. Bibcode:2017PLoSO..1270462S. doi:10.1371/journal.pone.0170462. PMC 5268401. PMID 28125631.
  13. ^ Le Sommer C, Barrows NJ, Bradrick SS, Pearson JL, Garcia-Blanco MA (2012). Michael SF (ed.). "G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication". PLOS Negl Trop Dis. 6 (9): e1820. doi:10.1371/journal.pntd.0001820. PMC 3441407. PMID 23029581.
  14. ^ a b Gebhard LG, Filomatori CV, Gamarnik AV (2011). "Functional RNA elements in the dengue virus genome". Viruses. 3 (9): 1739–56. doi:10.3390/v3091739. PMC 3187688. PMID 21994804.
  15. ^ Brinton MA, Dispoto JH (1988). "Sequence and secondary structure analysis of the 5'-terminal region of flavivirus genome RNA". Virology. 162 (2): 290–9. doi:10.1016/0042-6822(88)90468-0. PMID 2829420.
  16. ^ Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006). "A 5' RNA element promotes dengue virus RNA synthesis on a circular genome". Genes Dev. 20 (16): 2238–49. doi:10.1101/gad.1444206. PMC 1553207. PMID 16882970.
  17. ^ Yu L, Nomaguchi M, Padmanabhan R, Markoff L (2008). "Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication". Virology. 374 (1): 170–85. doi:10.1016/j.virol.2007.12.035. PMC 3368002. PMID 18234265.
  18. ^ Alvarez DE, Lodeiro MF, Ludueña SJ, Pietrasanta LI, Gamarnik AV (2005). "Long-range RNA-RNA interactions circularize the dengue virus genome". J Virol. 79 (11): 6631–43. doi:10.1128/JVI.79.11.6631-6643.2005. PMC 1112138. PMID 15890901.
  19. ^ a b Chiu WW, Kinney RM, Dreher TW (July 2005). "Control of Translation by the 5′- and 3′-Terminal Regions of the Dengue Virus Genome". J. Virol. 79 (13): 8303–15. doi:10.1128/JVI.79.13.8303-8315.2005. PMC 1143759. PMID 15956576.
  20. ^ a b Pijlman GP, Funk A, Kondratieva N, et al. (December 2008). "A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity". Cell Host Microbe. 4 (6): 579–91. doi:10.1016/j.chom.2008.10.007. PMID 19064258.
  21. ^ Lin KC, Chang HL, Chang RY (May 2004). "Accumulation of a 3′-Terminal Genome Fragment in Japanese Encephalitis Virus-Infected Mammalian and Mosquito Cells". J. Virol. 78 (10): 5133–8. doi:10.1128/JVI.78.10.5133-5138.2004. PMC 400339. PMID 15113895.
  22. ^ Zeng L, Falgout B, Markoff L (September 1998). "Identification of Specific Nucleotide Sequences within the Conserved 3′-SL in the Dengue Type 2 Virus Genome Required for Replication". J. Virol. 72 (9): 7510–22. doi:10.1128/JVI.72.9.7510-7522.1998. PMC 109990. PMID 9696848.
  23. ^ Shi PY, Brinton MA, Veal JM, Zhong YY, Wilson WD (April 1996). "Evidence for the existence of a pseudoknot structure at the 3' terminus of the flavivirus genomic RNA". Biochemistry. 35 (13): 4222–30. doi:10.1021/bi952398v. PMID 8672458.
  24. ^ Clyde K, Harris E (2006). "RNA Secondary Structure in the Coding Region of Dengue Virus Type 2 Directs Translation Start Codon Selection and Is Required for Viral Replication". J Virol. 80 (5): 2170–2182. doi:10.1128/JVI.80.5.2170-2182.2006. PMC 1395379. PMID 16474125.
  25. ^ Bidet, Katell; Garcia-Blanco, Mariano A. (1 September 2014). "Flaviviral RNAs: weapons and targets in the war between virus and host". Biochemical Journal. 462 (2): 215–230. doi:10.1042/BJ20140456. ISSN 0264-6021. PMID 25102029.
  26. ^ Chapman, Erich G.; Costantino, David A.; Rabe, Jennifer L.; Moon, Stephanie L.; Wilusz, Jeffrey; Nix, Jay C.; Kieft, Jeffrey S. (18 April 2014). "The Structural Basis of Pathogenic Subgenomic Flavivirus RNA (sfRNA) Production". Science. 344 (6181): 307–310. Bibcode:2014Sci...344..307C. doi:10.1126/science.1250897. ISSN 0036-8075. PMC 4163914. PMID 24744377.
  27. ^ Funk, Anneke; Truong, Katherine; Nagasaki, Tomoko; Torres, Shessy; Floden, Nadia; Melian, Ezequiel Balmori; Edmonds, Judy; Dong, Hongping; Shi, Pei-Yong (1 November 2010). "RNA Structures Required for Production of Subgenomic Flavivirus RNA". Journal of Virology. 84 (21): 11407–11417. doi:10.1128/JVI.01159-10. ISSN 0022-538X. PMC 2953152. PMID 20719943.
  28. ^ Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin (27 September 2013). "Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3". Veterinary Microbiology. 166 (1–2): 11–21. doi:10.1016/j.vetmic.2013.04.026. PMID 23755934.
  29. ^ Moon, Stephanie L.; Anderson, John R.; Kumagai, Yutaro; Wilusz, Carol J.; Akira, Shizuo; Khromykh, Alexander A.; Wilusz, Jeffrey (1 November 2012). "A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability". RNA. 18 (11): 2029–2040. doi:10.1261/rna.034330.112. ISSN 1355-8382. PMC 3479393. PMID 23006624.
  30. ^ Clarke, B. D.; Roby, J. A.; Slonchak, A.; Khromykh, A. A. (3 August 2015). "Functional non-coding RNAs derived from the flavivirus 3′ untranslated region". Virus Research. Special Issue: Functions of the ends of positive strand RNA virus genomes. 206: 53–61. doi:10.1016/j.virusres.2015.01.026. PMID 25660582.
  31. ^ Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998). "Phylogeny of the genus Flavivirus". J Virol. 72 (1): 73–83. doi:10.1128/JVI.72.1.73-83.1998. PMC 109351. PMID 9420202.
  32. ^ Gaunt MW, Sall AA, de Lamballerie X, Falconar AK, Dzhivanian TI, Gould EA (2001). "Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography". J Gen Virol. 82 (8): 1867–1876. doi:10.1099/0022-1317-82-8-1867. PMID 11457992.
  33. ^ Bamford CGG, de Souza WM, Parry R, Gifford RJ (2022). "Comparative analysis of genome-encoded viral sequences reveals the evolutionary history of flavivirids (family Flaviviridae)". Virus Evol. 8 (2): veac085. doi:10.1093/ve/veac085. PMC 9752770. PMID 36533146.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Cook S, Holmes EC (2006). "A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission". Arch Virol. 151 (2): 309–325. doi:10.1007/s00705-005-0626-6. PMID 16172840.
  35. ^ Conway MJ (2015). "Identification of a flavivirus sequence in a marine arthropod". PLOS ONE. 10 (12): e0146037. Bibcode:2015PLoSO..1046037C. doi:10.1371/journal.pone.0146037. PMC 4699914. PMID 26717191.
  36. ^ a b Parry R, Asgari S (2019). "Discovery of Novel Crustacean and Cephalopod Flaviviruses: Insights into the Evolution and Circulation of Flaviviruses between Marine Invertebrate and Vertebrate Hosts". J Virol. 93 (14). doi:10.1128/JVI.00432-19. PMC 6600200. PMID 31068424.
  37. ^ Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K; et al. (2018). "The evolutionary history of vertebrate RNA viruses". Nature. 556 (7700): 197–202. Bibcode:2018Natur.556..197S. doi:10.1038/s41586-018-0012-7. PMID 29618816. S2CID 256771319.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Moureau, Gregory; Cook, Shelley; Lemey, Philippe; Nougairede, Antoine; Forrester, Naomi L.; Khasnatinov, Maxim; Charrel, Remi N.; Firth, Andrew E.; Gould, Ernest A.; De Lamballerie, Xavier (2015). "New Insights into Flavivirus Evolution, Taxonomy and Biogeographic History, Extended by Analysis of Canonical and Alternative Coding Sequences". PLOS ONE. 10 (2): e0117849. Bibcode:2015PLoSO..1017849M. doi:10.1371/journal.pone.0117849. PMC 4342338. PMID 25719412.
  39. ^ Galli M, Bernini F, Zehender G (July 2004). "Alexander the Great and West Nile virus encephalitis". Emerging Infect. Dis. 10 (7): 1330–2, author reply 1332–3. doi:10.3201/eid1007.040396. PMID 15338540.
  40. ^ West, Christy (8 February 2010). "Different West Nile Virus Genetic Lineage Evolving?". The Horse. Retrieved 10 February 2010. From statements by Orsolya Kutasi, DVM, of the Szent Istvan University, Hungary at the 2009 American Association of Equine Practitioners Convention, December 5–9, 2009.
  41. ^ Venter M, Human S, van Niekerk S, Williams J, van Eeden C, Freeman F (August 2011). "Fatal neurologic disease and abortion in mare infected with lineage 1 West Nile virus, South Africa". Emerging Infect. Dis. 17 (8): 1534–6. doi:10.3201/eid1708.101794. PMC 3381566. PMID 21801644.
  42. ^ St Leger J, Wu G, Anderson M, Dalton L, Nilson E, Wang D (2011). "West Nile virus infection in a killer whale, Texas, USA, 2007". Emerging Infect. Dis. 17 (8): 1531–3. doi:10.3201/eid1708.101979. PMC 3381582. PMID 21801643.
  43. ^ Karan, Liudmila S.; Ciccozzi, Massimo; Yakimenko, Valerii V.; Presti, Alessandra Lo; Cella, Eleonora; Zehender, Gianguglielmo; Rezza, Giovanni; Platonov, Alexander E. (2014). "The deduced evolution history of Omsk hemorrhagic fever virus". Journal of Medical Virology. 86 (7): 1181–1187. doi:10.1002/jmv.23856. PMID 24259273. S2CID 36929638.
  44. ^ "International Committee on Taxonomy of Viruses (ICTV)". talk.ictvonline.org. Retrieved 16 November 2020.
  45. ^ Robin Y, Cornet M, Le Gonidec G, Chateau R, Heme G (1978). "[Kedougou virus (Ar D14701): a new Arbovirus ("Flavivirus") isolated in Senegal (author's transl)]". Ann Microbiol (Paris). 129 (2): 239–44. PMID 677616.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Jansen van Vuren P, Parry R, Khromykh AA, Paweska JT (2021). "A 1958 Isolate of Kedougou Virus (KEDV) from Ndumu, South Africa, Expands the Geographic and Temporal Range of KEDV in Africa". Viruses. 13 (7): 1368. doi:10.3390/v13071368. PMC 8309962. PMID 34372574.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ van den Hurk, Andrew F.; Suen, Willy W.; Hall, Roy A.; O'Brien, Caitlin A.; Bielefeldt-Ohmann, Helle; Hobson-Peters, Jody; Colmant, Agathe M. G. (2016). "A newly discovered flavivirus in the yellow fever virus group displays restricted replication in vertebrates". Journal of General Virology. 97 (5): 1087–1093. doi:10.1099/jgv.0.000430. PMID 26878841. S2CID 43127614.
  48. ^ a b c d e Parry, Rhys; Asgari, Sassan (15 July 2019). "Discovery of Novel Crustacean and Cephalopod Flaviviruses: Insights into the Evolution and Circulation of Flaviviruses between Marine Invertebrate and Vertebrate Hosts". Journal of Virology. 93 (14). doi:10.1128/JVI.00432-19. PMC 6600200. PMID 31068424.
  49. ^ Thisyakorn, U. (2014). "Latest developments and future directions in dengue vaccines". Therapeutic Advances in Vaccines. 2 (1): 3–9. doi:10.1177/2051013613507862. PMC 3991153. PMID 24757522.
  50. ^ Yauch, Lauren E. (2014). Dengue Virus Vaccine Development. Advances in Virus Research. Vol. 88. pp. 315–372. doi:10.1016/B978-0-12-800098-4.00007-6. ISBN 9780128000984. PMID 24373316.
  51. ^ "WHO Questions and Answers on Dengue Vaccines". WHO.int. Retrieved 1 October 2016.
  52. ^ Flint J; Racaniello VR; Rall GF; Hatziiannou T; Skalka AM (3 August 2020). Principles of Virology, Volume 2: Pathogenesis and Control (5th ed.). John Wiley & Sons. p. 327. ISBN 9781683672838.
лиценца
cc-by-sa-3.0
авторски права
Wikipedia authors and editors
изворно
посети извор
соработничко мреж. место
wikipedia EN

Flavivirus: Brief Summary ( англиски )

добавил wikipedia EN

Flavivirus is a genus of positive-strand RNA viruses in the family Flaviviridae. The genus includes the West Nile virus, dengue virus, tick-borne encephalitis virus, yellow fever virus, Zika virus and several other viruses which may cause encephalitis, as well as insect-specific flaviviruses (ISFs) such as cell fusing agent virus (CFAV), Palm Creek virus (PCV), and Parramatta River virus (PaRV). While dual-host flaviviruses can infect vertebrates as well as arthropods, insect-specific flaviviruses are restricted to their competent arthropods. The means by which flaviviruses establish persistent infection in their competent vectors and cause disease in humans depends upon several virus-host interactions, including the intricate interplay between flavivirus-encoded immune antagonists and the host antiviral innate immune effector molecules.

Flaviviruses are named for the yellow fever virus; the word flavus means 'yellow' in Latin, and yellow fever in turn is named from its propensity to cause yellow jaundice in victims.

Flaviviruses share several common aspects: common size (40–65 nm), symmetry (enveloped, icosahedral nucleocapsid), nucleic acid (positive-sense, single-stranded RNA around 10,000–11,000 bases), and appearance under the electron microscope.

Most of these viruses are primarily transmitted by the bite from an infected arthropod (mosquito or tick), and hence are classified as arboviruses. Human infections with most of these arboviruses are incidental, as humans are unable to replicate the virus to high enough titers to reinfect the arthropods needed to continue the virus life-cycle – humans are then a dead end host. The exceptions to this are the yellow fever virus, dengue virus and zika virus. These three viruses still require mosquito vectors but are well-enough adapted to humans as to not necessarily depend upon animal hosts (although they continue to have important animal transmission routes, as well).

Other virus transmission routes for arboviruses include handling infected animal carcasses, blood transfusion, sex, childbirth and consumption of unpasteurised milk products. Transmission from nonhuman vertebrates to humans without an intermediate vector arthropod however mostly occurs with low probability. For example, early tests with yellow fever showed that the disease is not contagious.

The known non-arboviruses of the flavivirus family reproduce in either arthropods or vertebrates, but not both, with one odd member of the genus affecting a nematode.

лиценца
cc-by-sa-3.0
авторски права
Wikipedia authors and editors
изворно
посети извор
соработничко мреж. место
wikipedia EN

Flavivirus ( шпански; кастиљски )

добавил wikipedia ES

Flavivirus (del lat. flavus: «amarillo») es un género de virus ARN pertenecientes a la familia Flaviviridae. Los Flavivirus son virus con envoltura, la simetría de la nucleocápside icosaedrica, y cuyo material genético reside en una única cadena de ARN de polaridad positiva.

Son los causantes de numerosas enfermedades en animales y humanos, siendo las más conocidas la fiebre amarilla, dengue y fiebre de Zika.

Todos los Flavivirus tienen en común un tamaño de entre 40 y 60 nanómetros, la envoltura, una nucleocápsida icosaédrica, el ácido nucleico (cadena única de ARN de sentido positivo, de aproximadamente 10 000 a 11 000 bases), y la apariencia en el microscopio electrónico.

Replicación

Los Flavivirus tienen un genoma formado por una sola cadena de ARN (+) y se replica en el citoplasma de las células hospedadoras. El genoma del virus es idéntico a las moléculas de ARNm de la célula en todos sus aspectos excepto en la ausencia de cola poli-A. De este modo el virus puede explotar el aparato celular para sintetizar sus propias proteínas, tanto estructurales como no estructurales. El ribosoma celular es crucial en la replicación de los Flavivirus al traducir el ARN vírico de manera similar al ARNm celular, dando como resultado la síntesis de una sola poliproteína.

Una vez traducida, la poliproteína es subdividida en varios polipéptidos gracias a la acción de proteasas, tanto virales como celulares. Dado que la modificación post-traducción de las proteínas celulares es dependiente de la presencia de la cola poli-A, este proceso no puede depender de la célula hospedadora. En efecto, la poliproteína posee propiedades autocatalíticas que automáticamente libera el primer péptido, un enzima específico del virus. Este enzima es capaz de segmentar el resto de la proteína en péptidos individuales; uno de ellos es una polimerasa responsable de la síntesis de una molécula de ARN(-), la cual actúa de molde para la síntesis del genoma de los virus hijos.

A continuación, se ensamblan las nuevas partículas víricas. Ello ocurre durante la fase de construcción que es también responsable de la acumulación de la envoltura y de la lisis de la célula hospedadora.

Especies

Los Flavivirus se clasifican según el vector, el grupo de animales infectado y/o la zona geográfica de origen.

Referencias

 title=
лиценца
cc-by-sa-3.0
авторски права
Autores y editores de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia ES

Flavivirus: Brief Summary ( шпански; кастиљски )

добавил wikipedia ES

Flavivirus (del lat. flavus: «amarillo») es un género de virus ARN pertenecientes a la familia Flaviviridae. Los Flavivirus son virus con envoltura, la simetría de la nucleocápside icosaedrica, y cuyo material genético reside en una única cadena de ARN de polaridad positiva.

Son los causantes de numerosas enfermedades en animales y humanos, siendo las más conocidas la fiebre amarilla, dengue y fiebre de Zika.

Todos los Flavivirus tienen en común un tamaño de entre 40 y 60 nanómetros, la envoltura, una nucleocápsida icosaédrica, el ácido nucleico (cadena única de ARN de sentido positivo, de aproximadamente 10 000 a 11 000 bases), y la apariencia en el microscopio electrónico.

лиценца
cc-by-sa-3.0
авторски права
Autores y editores de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia ES

Flavivirukset ( фински )

добавил wikipedia FI

Flavivirukset (Flavivirus) ovat niveljalkaisten, yleensä hyttysten tai puutiaisten, levittämiä viruksia. Flaviviruksia tunnetaan tällä hetkellä 70 eri lajia, joista 13 aiheuttaa tautia ihmisessä. Flavivirusryhmään kuuluvat dengue-, keltakuume-, Japanin aivotulehdus-, Länsi-Niilin ja puutiaisaivotulehdusvirukset.[1]

Flavivirukset

Puutiaisten levittämät

  • Gadgets Gully -virus (GGYV)
  • Kadamvirus (KADV)
  • Kyasanur Forest disease virus (KFDV)
  • Langatvirus (LGTV)
  • Omskin verenvuotokuumevirus (OHFV)
  • Powassanvirus (POWV)
  • Royal Farm -virus (RFV)
  • Puutiaisaivotulehdus (TBEV)
  • Louping ill virus (LIV)
  • Meabanvirus (MEAV)
  • Saumarez Reef -virus (SREV)
  • Tyuleniyvirus (TYUV)

Hyttysten levittämät

  • Aroavirus (AROAV)
  • Denguevirus (DENV)
  • Kedougouvirus (KEDV)
  • Cacipacorevirus (CPCV)
  • Koutangovirus (KOUV)
  • Japanin B-enkefaliittivirus (JEV)
  • Murray Valley enkefaliittivirus (MVEV)
  • St. Louis enkefaliittivirus (SLEV)
  • Usutu virus (USUV)
  • Länsi-Niilin virus (WNV)
  • Yaoundevirus (YAOV)
  • Kokoberavirus (KOKV)
  • Bagazavirus (BAGV)
  • Ilheusvirus (ILHV)
  • Israel turkey meningoenkefalomyeliittivirus (ITV)
  • Ntayavirus (NTAV)
  • Tembusuvirus (TMUV)
  • Zikavirus (ZIKV)
  • Banzivirus (BANV)
  • Boubouivirus (BOUV)
  • Edge Hill -virus (EHV)
  • Jugravirus (JUGV)
  • Saboyavirus (SABV)
  • Sepikvirus (SEPV)
  • Uganda S -virus (UGSV)
  • Wesselsbronvirus (WESSV)
  • Keltakuumevirus (YFV)

Muut

  • Entebbe bat virus (ENTV)
  • Yokose virus (YOKV)
  • Apoi virus (APOIV)
  • Cowbone Ridge -virus (CRV)
  • Jutiapavirus (JUTV)
  • Modocvirus (MODV)
  • Sal Vieja -virus (SVV)
  • San Perlita -virus (SPV)
  • Bukalasa bat virus (BBV)
  • Carey Island -virus (CIV)
  • Dakar bat virus (DBV)
  • Montana myotis leukoenkefaliittivirus (MMLV)
  • Phnom Penh bat virus (PPBV)
  • Rio Bravo -virus (RBV)

Lähteet

  1. FLAVIVIRIDAE / PATOGENEESI ([vanhentunut linkki]) virology.utu.fi. 29.4.2003. Viitattu 8.8.2009.
лиценца
cc-by-sa-3.0
авторски права
Wikipedian tekijät ja toimittajat
изворно
посети извор
соработничко мреж. место
wikipedia FI

Flavivirukset: Brief Summary ( фински )

добавил wikipedia FI

Flavivirukset (Flavivirus) ovat niveljalkaisten, yleensä hyttysten tai puutiaisten, levittämiä viruksia. Flaviviruksia tunnetaan tällä hetkellä 70 eri lajia, joista 13 aiheuttaa tautia ihmisessä. Flavivirusryhmään kuuluvat dengue-, keltakuume-, Japanin aivotulehdus-, Länsi-Niilin ja puutiaisaivotulehdusvirukset.

лиценца
cc-by-sa-3.0
авторски права
Wikipedian tekijät ja toimittajat
изворно
посети извор
соработничко мреж. место
wikipedia FI

Flavivirus ( француски )

добавил wikipedia FR

Flavivirus (du latin flavus : jaune) est un genre de virus de la famille des Flaviviridae.

Espèces

Ce groupe comprend entre autres :

Structure

Ce sont des virus à ARN positif simple brin. Ils mesurent entre 40 et 50 nm en moyenne et leur génome fait environ 10 000 paires de bases. Leur génome code 10 protéines : 3 structurales (C, prM, E) et 7 non structurales (NS1, NS2, ...)

Transmission

Ces virus sont principalement transmis par les moustiques. Ils posent des problèmes de santé publique, notamment en zone urbaine (transmission par Aedes aegypti).

Réplication

Ils ont un cycle de réplication semblable entre eux : l'entrée dans la cellule cible se fait grâce à la protéine E qui va se lier aux récepteurs cellulaires et entraîner une endocytose. Le virus est alors embarqué dans une vésicule endosomiale. Le pH acide de cette dernière va entraîner une fusion de l'enveloppe virale et de la membrane endosomiale, relargant alors le génome dans le cytosol[2]. Le génome ARN est alors directement traduit en une polyprotéine qui va donner les 10 protéines virales. La RNA-dependent-RNA-polymérase va alors copier le génome pour créer un brin « matrice » servant à la réplication de tous les ARN viraux. Les virions immatures formés se retrouvent dans le réticulum endoplasmique pour être liés aux proto protéines prM et E, puis vont dans l'appareil de Golgi où une furine va cliver les deux protéines pour permettre aux virions de prendre leur forme finale. Les virions matures sont alors transportés par des vésicules et passent dans le milieu extracellulaire par exocytose[3].

Notes et références

  1. ICTV. International Committee on Taxonomy of Viruses. Taxonomy history. Published on the Internet https://talk.ictvonline.org/., consulté le 1er février 2021
  2. Bressanelli et al. : Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 2004. Article complet
  3. Lindenbach, B.D., Thiel, H.J., and Rice, C.M. : Flaviviridaea: the viruses and their replication. In Fields Virology, Fifth Edition, 2007 [1]

Référence biologique

лиценца
cc-by-sa-3.0
авторски права
Auteurs et éditeurs de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia FR

Flavivirus: Brief Summary ( француски )

добавил wikipedia FR
 src= Virus du Nil occidental
au microscope électronique.

Flavivirus (du latin flavus : jaune) est un genre de virus de la famille des Flaviviridae.

лиценца
cc-by-sa-3.0
авторски права
Auteurs et éditeurs de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia FR

Flavivirus ( индонезиски )

добавил wikipedia ID

Flavivirus adalah genus yang tergolong familia Flaviviridae. Genus ini meliputi virus Nil Barat, virus demam berdarah, virus demam kuning, virus Zika, dan beberapa virus lainnya yang dapat menyebabkan ensefalitis.

Flavivirus memiliki ukuran 40-65 nm.

Spesies

Beberapa spesies virus dari genus ini diantaranya:

Virus yang ditularkan melalui caplak (tick-borne)

  • Kelompok virus tick-borne yang menyerang mamalia
    • Virus Absettarov
    • Virus Alkhurma (ALKV)
    • Virus Deer tick (DT)
    • Virus Gadgets Gully (GGYV)
    • Virus Kadam (KADV)
    • Virus Karshi
    • Virus Kyasanur Forest Disease (KFDV)
    • Virus Langat (LGTV)
    • Virus Louping ill (LIV)
    • Virus Omsk Hemorrhagic Fever (OHFV)
    • Virus Powassan (POWV)
    • Virus Royal Farm (RFV)
    • Virus Sokuluk (SOKV)
    • Virus Tick-borne Encephalitis (TBEV)
    • Virus Turkish Sheep Encephalitis (TSE)
  • Kelompok virus tick-borne yang menyerang burung laut
    • Virus Kama (KAMV)
    • Virus Meaban (MEAV)
    • Virus Saumarez Reef (SREV)
    • Virus Tyuleniy (TYUV)

Virus yang ditularkan melalui nyamuk (mosquito-borne)

  • Tidak diketahui inang vertebratanya
    • Aedes flavivirus
    • Virus Barkedji
    • Virus Calbertado
    • Virus Cell fusing agent
    • Virus Chaoyang
    • Culex flavivirus
    • Culex theileri flavivirus
    • Virus Donggang
    • Virus Ilomantsi
    • Virus Kamiti River
    • Virus Lammi
    • Virus Nyamuk Marisma
    • Virus Nakiwogo
    • Virus Nhumirim
    • Virus Nounane
    • Spanish Culex flavivirus
    • Spanish Ochlerotatus flavivirus
    • Virus Quang Binh
  • Kelompok virus Aroa
    • Virus Aroa (AROAV)
    • Virus Bussuquara
  • Kelompok virus dengue
    • Virus Dengue (DENV)
    • Virus Kedougou (KEDV)
  • Kelompok virus ensefalitis Jepang
    • Virus Bussuquara
    • Virus Cacipacore (CPCV)
    • Virus Koutango (KOUV)
    • Virus Ilheus (ILHV)
    • Virus Ensefalitis Jepang (JEV)
    • Virus Ensefalitis Murray Valley (MVEV)
      • Virus Alfuy
    • Virus Rocio (ROCV)
    • Virus Ensefalitis St. Louis (SLEV)
    • Virus Usutu (USUV)
    • Virus West Nile (WNV)
    • Virus Yaounde (YAOV)
  • Kelompok virus Kokobera
    • Virus Kokobera (KOKV)
  • Kelompok virus Ntaya
    • Virus Bagaza (BAGV)
    • Virus Baiyangdian (BYDV)
    • Virus Sindrom Duck egg drop (BYDV)
    • Virus Ilheus (ILHV)
    • Virus Jiangsu (JSV)
    • Virus Israel turkey meningoencephalomyelitis (ITV)
    • Virus Ntaya (NTAV)
    • Virus Tembusu (TMUV)
  • Kelompok virus Spondweni
  • Kelompok virus demam kuning
    • Virus Banzi (BANV)
    • Virus Bouboui (BOUV)
    • Virus Edge Hill (EHV)
    • Virus Jugra (JUGV)
    • Virus Saboya (SABV)
    • Virus Sepik (SEPV)
    • Virus Uganda S (UGSV)
    • Virus Wesselsbron (WESSV)
    • Virus Demam Kuning (YFV)

Pranala luar

Polio.jpg Artikel bertopik virus ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.
лиценца
cc-by-sa-3.0
авторски права
Penulis dan editor Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia ID

Flavivirus: Brief Summary ( индонезиски )

добавил wikipedia ID

Flavivirus adalah genus yang tergolong familia Flaviviridae. Genus ini meliputi virus Nil Barat, virus demam berdarah, virus demam kuning, virus Zika, dan beberapa virus lainnya yang dapat menyebabkan ensefalitis.

Flavivirus memiliki ukuran 40-65 nm.

лиценца
cc-by-sa-3.0
авторски права
Penulis dan editor Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia ID

Flavivirus ( италијански )

добавил wikipedia IT

Flavivirus è un genere di virus a RNA a singolo filamento positivo (+)ssRNA appartenenti alla famiglia Flaviviridae.

Strutturalmente sono composti da pericapside, capside ed una sola molecola di RNA a polarità positiva. Il genoma dei flavivirus codifica 3 proteine strutturali e 7 non strutturali; con un senso di lettura 3' - 5'. Il capside virale è composto di tre proteine strutturali: proteine di rivestimento E, proteina del capside C, proteina di membrana M; la glicoproteina E svolge un ruolo centrale nella biologia delle infezioni ed è responsabile del legame e della penetrazione nella cellula bersaglio. Essa è il principale bersaglio della risposta immunitaria dell'ospite, essa è costituita da 500 aminoacidi con tre domini antigenici. La proteina capside C è una proteina strutturale coinvolta nell'assemblaggio del virione.

Prove di laboratorio suggeriscono che la maggior parte dei flavivirus si formano nelle cisterne del reticolo endoplasmatico rugoso, sono poi trasferiti all'apparato del Golgi e quindi rilasciati per esocitosi dalla superficie cellulare. Nella dengue il meccanismo scoperto è diverso, in questo caso i virioni si assemblano nel citoplasma e vengono liberati per gemmazione della membrana.

Il genere include 86 virus, di questi 73 sono raggruppati in 53 specie. Di questi flavivirus 40 sono conosciuti come patogeni per l'uomo e altri vertebrati. Essi determinano una varietà di malattie diverse con febbre, talvolta grave encefalite e/o febbre emorragica.[1]

I flavivirus hanno una propensione a diffondere ed emergere in nuove aree geografiche. Le origini di questa evoluzione senza precedenti restano da chiarire.[2]

Essi rappresentano una potenziale fonte di nuova comparsa di malattia. Tra i fattori capaci di determinare malattia sono i cambiamenti nell'uso del suolo e la deforestazione, cose che aumentano i movimenti della popolazione, l'urbanizzazione e l'aumento dei commerci. Inoltre, vi è una forte probabilità che anche il riscaldamento globale possa aumentare in modo significativo il rischio di comparsa della malattia e/o diffusione da flavivirus.[3]

Struttura

 src=
Ricostruzione alla microscopia crioelettronica dei virioni immaturo (sinistra) e maturo (destra) del virus della dengue. Il virus immaturo presenta ancora la proteina precursore prM. Il triangolo rappresenta un'unità icosaedrica.

I virioni sono sferici, dotati di un pericapside di 50 nm che ricopre un nucleocapside di 30 nm di diametro.[4] Le proteine del pericapside sono la E e la M. La proteina M viene prodotta durante l'assemblaggio nella via secretoria dalla lisi di un precursore tradotto dall'RNA del virus detto prM.[4][5] Le 90 glicoproteine dimeriche E, coinvolte nell'attacco e nella penetrazione nella cellula, sono disposte parallelamente alla superficie del virione, formando una struttura "a spina di pesce" a simmetria icosaedrica. Questa struttura inusuale è stata scoperta per mezzo della cristallografia a raggi X applicata al virus della dengue di tipo 2, al virus del Nilo occidentale e al virus dell'encefalite trasmessa da zecche, confermata da immagini ottenute per microscopia crioelettronica.[6][7][8] Il nucleocapside ha una struttura meno ordinata, a forma di gabbia, costituita dalle proteine C. In corrispondenza di esso si ha un'alta densità elettronica, dovuta a un doppio foglietto fosfolipidico che lo circonda.[6]

Genoma e replicazione

 src=
Schema (non in scala) che rappresenta in alto il genoma delimitato dalle due regioni non codificanti, e in basso le proteine ottenute dalla proteolisi della poliproteina. P indica la proteasi NS3, R la RNA elicasi NS3 e R i domini NS5 della RNA replicasi

I flavivirus sono virus a ssRNA positivo. La molecola di RNA è lunga circa 11 kb e, come negli altri flaviviridi, è composta da un unico ORF delimitato alle estremità 3' e 5' da due regioni non codificanti (NCR o UTR), lunghe rispettivamente 400-700 e 100 nucleotidi, coinvolte nei processi di replicazione, traduzione e assemblaggio. Queste sequenze non codificanti hanno una struttura secondaria piuttosto conservata ma possono differire notevolmente per lunghezza e composizione in basi.[9][10][11] L'estremità 5' è dotata di un cappuccio di tipo I m7GpppAmp. L'estremità 3' solitamente non è poli-adenilata, a differenza degli mRNA cellulari,[12] e presenta una sequenza CU altamente conservata.[13]

Il virione lega la cellula attraverso le glicoproteine che interagiscono colle proteine di membrana della cellula. Il virus entra per endocitosi clatrina-dipendente.[14][15][16] Il pH acido all'interno della vescicola determina il rilascio del nucleocapside nel citoplasma,[16][17] cui segue l'uncoating che libera il genoma nella cellula. La replicazione dei flavivirus comporta una notevole trasformazione delle membrane intracellulari, con formazioni di vescicole derivate dal reticolo endoplasmatico perinucleare, sedi della traduzione e del successivo assemblaggio.[18] La replicazione avviene per mezzo di un intermediario di RNA a polarità negativa che fa da stampo per la sintesi della molecola di RNA positiva. L'ORF viene tradotto in un'unica grande poliproteina che a sua volta viene lisata nelle proteine strutturali e funzionali del virus da proteasi cellulari che dalla serin proteasi NS2B-NS3 virale. La gemmazione avviene dalle membrane intracellulari,[14][19][20] ma alcuni studi mostrano una gemmazione che prende luogo nella membrana citoplasmatica.[20] Poco prima che di essere rilasciato fuori dalla cellula per la via secretoria, il prM viene lisato nella proteine M caratteristica del virione maturo.[17]

Biologia molecolare

Proteine

Le proteine strutturali sono la proteina del nucleocapside C (11 kDa), le proteine del peplos E (50 kDa) e prM (26 kDa) nei virioni immaturi e M (8 kDa) in quelli maturi. La proteina E è una emoagglutinina che permette sia l'attacco con un recettore di membrana e l'entrata nella cellula, nonché la successiva fusione nel citosol.[13] La proteina precursore prM crea un complesso dimerico con la E (prM-E) la cui funzione sembra quella di permettere il corretto ripiegamento della E, in particolare di impedire cambiamenti nella conformazione durante la via secretoria, per via dell'ambiente acido.[19] Poco prima del rilascio, la furina cellulare lisa la glicoproteina prM in pr e M, questa'ultima distintiva dei virus infettivi e maturi.[21] Sette proteine strutturali sono sintetizzate nelle cellule infette: NS1 (46 kDa), NS2A (22 kDa), NS2B (14 kDa), NS3 (70 kDa), NS4A (16 kDa), NS4B (27 kDa) and NS5 (103 kDa).[13]

Proprietà antigeniche

Evoluzione

I flavivirus possono essere divisi in 2 cladi: il primo è dato dai virus trasmessi da un vettore e mentre il secondo clade è dato dai virus senza il vettore noto.[22] Il clade vettoriale a sua volta può essere suddiviso in un clade trasmesso dalle zanzare e un clade trasmesso dalle zecche. Questi gruppi possono essere ulteriormente divisi.[23]

Il gruppo delle zanzare può essere diviso in due rami: un ramo contiene i virus neurotropici, spesso associati alla malattia encefalitica nell'uomo o nel bestiame. Questo ramo tende ad essere diffuso dalle specie del genere Culex e ad avere animali serbatoi negli uccelli. Il secondo ramo è dato dai virus non neurotropici associati alla malattia emorragica nell'uomo. Questi tendono ad avere specie del genere Aedes come vettori e come ospiti i primati.

I virus trasmessi da zecche formano anche essi due gruppi distinti: il primo associato agli uccelli marini e l'altro - i virus complessi dell'encefalite da zecche - è associato principalmente ai roditori.

I virus che mancano di un vettore noto possono essere, invece, divisi in tre gruppi: uno strettamente correlato ai virus trasmessi dalle zanzare associati ai pipistrelli; un secondo, geneticamente più distante, anche esso associato ai pipistrelli; e un terzo gruppo è associato ai roditori.[24]

Tassonomia

Inizialmente i flavivirus furono classificati come arbovirus appartenenti al gruppo B. In seguito, il genere è stato assegnato alla famiglia Togaviridae che conteneva anche il genere Alphavirus. Oggi il termine "arbovirus" non ha più alcun significato tassonomico.[25] Nel 1985, per via di differenze che riguardavano la replicazione, la morfogenesi e la struttura, il genere Flavivirus venne assegnato a una famiglia separata, Flaviviridae, avente come specie tipo il virus della febbre gialla.[26]

Specie:

Alcune malattie provocate dai Flavivirus

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Flavivirus patogeni per l'uomo.

Esiste un vaccino e la diagnosi è fatta tramite reazione a catena della polimerasi su liquor e sangue per dimostrare il genoma virale nel materiale biologico.

Altre manifestazioni cliniche e/o sintomi tipici provocate dai Flavivirus sono:[27]

  • Encefaliti
  • Febbre
  • Febbre, rash e vasculopatie
  • Febbre emorragica

Note

  1. ^ Alkan C, Zapata S, Bichaud L, Moureau G, Lemey P, Firth AE, Gritsun TS, Gould EA, de Lamballerie X, Depaquit J, Charrel RN, Ecuador Paraiso Escondido Virus, a New Flavivirus Isolated from New World Sand Flies in Ecuador, Is the First Representative of a Novel Clade in the Genus Flavivirus, in J. Virol., vol. 89, n. 23, 2015, pp. 11773–85, DOI:10.1128/JVI.01543-15, PMC 4645344, PMID 26355096.
  2. ^ (FR) Chastel C, [When some Flaviviruses are throwing our certainties], in Bull Soc Pathol Exot, vol. 105, n. 4, 2012, pp. 251–5, DOI:10.1007/s13149-012-0255-8, PMID 22923343.
  3. ^ Mackenzie JS, Williams DT, The zoonotic flaviviruses of southern, south-eastern and eastern Asia, and Australasia: the potential for emergent viruses, in Zoonoses Public Health, vol. 56, n. 6-7, 2009, pp. 338–56, DOI:10.1111/j.1863-2378.2008.01208.x, PMID 19486319.
  4. ^ a b The Flaviviruses: Structure, Replication and Evolution, p.26
  5. ^ K Stadler, S L Allison e J Schalich, Proteolytic activation of tick-borne encephalitis virus by furin., in Journal of Virology, vol. 71, n. 11, 1997-11, pp. 8475–8481. URL consultato il 14 luglio 2020.
  6. ^ a b (EN) Richard J. Kuhn, Wei Zhang e Michael G. Rossmann, Structure of Dengue Virus: Implications for Flavivirus Organization, Maturation, and Fusion, in Cell, vol. 108, n. 5, 8 marzo 2002, pp. 717–725, DOI:10.1016/S0092-8674(02)00660-8. URL consultato il 14 luglio 2020.
  7. ^ (EN) Suchetana Mukhopadhyay, Bong-Suk Kim e Paul R. Chipman, Structure of West Nile Virus, in Science, vol. 302, n. 5643, 10 ottobre 2003, pp. 248–248, DOI:10.1126/science.1089316. URL consultato il 14 luglio 2020.
  8. ^ (EN) Félix A. Rey, Franz X. Heinz e Christian Mandl, The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution, in Nature, vol. 375, n. 6529, 1995-05, pp. 291–298, DOI:10.1038/375291a0. URL consultato il 14 luglio 2020.
  9. ^ (EN) Margo A. Brinton, Annabellee V. Fernandez e Janice H. Dispoto, The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure, in Virology, vol. 153, n. 1, 1º agosto 1986, pp. 113–121, DOI:10.1016/0042-6822(86)90012-7. URL consultato il 14 luglio 2020.
  10. ^ (EN) Vitali Proutski, Ernest A. Gould e Edward C. Holmes, Secondary Structure of the 3′ Untranslated Region of Flaviviruses: Similarities and Differences, in Nucleic Acids Research, vol. 25, n. 6, 1º marzo 1997, pp. 1194–1202, DOI:10.1093/nar/25.6.1194. URL consultato il 14 luglio 2020.
  11. ^ G. Wallner, C. W. Mandl e C. Kunz, The flavivirus 3'-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus, in Virology, vol. 213, n. 1, 20 ottobre 1995, pp. 169–178, DOI:10.1006/viro.1995.1557. URL consultato il 14 luglio 2020.
  12. ^ (EN) Gerd Wengler, Gisela Wengler e Hans J. Gross, Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses, in Virology, vol. 89, n. 2, 1º settembre 1978, pp. 423–437, DOI:10.1016/0042-6822(78)90185-X. URL consultato il 14 luglio 2020.
  13. ^ a b c (EN) Genus: Flavivirus - Flaviviridae - Positive-sense RNA Viruses, su International Committee on Taxonomy of Viruses (ICTV). URL consultato il 15 luglio 2020.
  14. ^ a b R. Ishak, D. G. Tovey e C. R. Howard, Morphogenesis of Yellow Fever Virus 17D in Infected Cell Cultures, in Journal of General Virology,, vol. 69, n. 2, 1988, pp. 325–335, DOI:10.1099/0022-1317-69-2-325. URL consultato il 14 luglio 2020.
  15. ^ (EN) Mah Lee Ng e Lionel C. L. Lau, Possible involvement of receptors in the entry of Kunjin virus into Vero cells, in Archives of Virology, vol. 100, n. 3, 1º settembre 1988, pp. 199–211, DOI:10.1007/BF01487683. URL consultato il 14 luglio 2020.
  16. ^ a b Tominori Kimura, Simon W. Gollins e James S. Porterfield, The Effect of pH on the Early Interaction of West Nile Virus with P388D1 Cells, in Journal of General Virology,, vol. 67, n. 11, 1986, pp. 2423–2433, DOI:10.1099/0022-1317-67-11-2423. URL consultato il 14 luglio 2020.
  17. ^ a b (EN) F. X. Heinz, G. Auer e K. Stiasny, The interactions of the flavivirus envelope proteins: implications for virus entry and release, in Positive-Strand RNA Viruses, Springer, 1994, pp. 339–348, DOI:10.1007/978-3-7091-9326-6_34. URL consultato il 14 luglio 2020.
  18. ^ (EN) Mah Lee Ng e Saw See Hong, Flavivirus infection: essential ultrastructural changes and association of Kunjin virus NS3 protein with microtubules, in Archives of Virology, vol. 106, n. 1, 1º marzo 1989, pp. 103–120, DOI:10.1007/BF01311042. URL consultato il 14 luglio 2020.
  19. ^ a b (EN) Jason M. Mackenzie e Edwin G. Westaway, Assembly and Maturation of the Flavivirus Kunjin Virus Appear To Occur in the Rough Endoplasmic Reticulum and along the Secretory Pathway, Respectively, in Journal of Virology, vol. 75, n. 22, 15 novembre 2001, pp. 10787–10799, DOI:10.1128/JVI.75.22.10787-10799.2001. URL consultato il 14 luglio 2020.
  20. ^ a b (EN) T. Hase P.L. Summers, K.H. Eckels, W.B. Baze, An Electron and Immunoelectron Microscopic Study of Dengue-2 Virus Infection of (Jultured Mosquito (Jells: Maturation Events (PDF), in Archives of Virology, vol. 92, Washington, Springer, 1987, pp. 273-291. URL consultato il 14 agosto 2020.
  21. ^ Sigrid Elshuber, Steven L. Allison e Franz X. Heinz, Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virusFN1, in Journal of General Virology,, vol. 84, n. 1, 2003, pp. 183–191, DOI:10.1099/vir.0.18723-0. URL consultato il 15 luglio 2020.
  22. ^ Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB, Phylogeny of the genus Flavivirus, in J Virol, vol. 72, n. 1, 1998, pp. 73–83, DOI:10.1128/JVI.72.1.73-83.1998, PMC 109351, PMID 9420202.
  23. ^ Gaunt MW, Sall AA, de Lamballerie X, Falconar AK, Dzhivanian TI, Gould EA, Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography, in J Gen Virol, vol. 82, n. 8, 2001, pp. 1867–1876, DOI:10.1099/0022-1317-82-8-1867, PMID 11457992.
  24. ^ Cook S, Holmes EC, A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission, in Arch Virol, vol. 151, n. 2, 2006, pp. 309–325, DOI:10.1007/s00705-005-0626-6, PMID 16172840.
  25. ^ (EN) J. S. Porterfield, J. Casals e M. P. Chumakov, Togaviridae, in Intervirology, vol. 9, n. 3, 1978, pp. 129–148, DOI:10.1159/000148930. URL consultato il 17 luglio 2020.
  26. ^ (EN) E. G. Westaway, M. A. Brinton e S. Ya Gaidamovich, Flaviviridae, in Intervirology, vol. 24, n. 4, 1985, pp. 183–192, DOI:10.1159/000149642. URL consultato il 17 luglio 2020.
  27. ^ Gould EA, Solomon T, Pathogenic flaviviruses, in Lancet, vol. 371, n. 9611, 2008, pp. 500–9, DOI:10.1016/S0140-6736(08)60238-X, PMID 18262042.

Bibliografia

 title=
лиценца
cc-by-sa-3.0
авторски права
Autori e redattori di Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia IT

Flavivirus: Brief Summary ( италијански )

добавил wikipedia IT

Flavivirus è un genere di virus a RNA a singolo filamento positivo (+)ssRNA appartenenti alla famiglia Flaviviridae.

Strutturalmente sono composti da pericapside, capside ed una sola molecola di RNA a polarità positiva. Il genoma dei flavivirus codifica 3 proteine strutturali e 7 non strutturali; con un senso di lettura 3' - 5'. Il capside virale è composto di tre proteine strutturali: proteine di rivestimento E, proteina del capside C, proteina di membrana M; la glicoproteina E svolge un ruolo centrale nella biologia delle infezioni ed è responsabile del legame e della penetrazione nella cellula bersaglio. Essa è il principale bersaglio della risposta immunitaria dell'ospite, essa è costituita da 500 aminoacidi con tre domini antigenici. La proteina capside C è una proteina strutturale coinvolta nell'assemblaggio del virione.

Prove di laboratorio suggeriscono che la maggior parte dei flavivirus si formano nelle cisterne del reticolo endoplasmatico rugoso, sono poi trasferiti all'apparato del Golgi e quindi rilasciati per esocitosi dalla superficie cellulare. Nella dengue il meccanismo scoperto è diverso, in questo caso i virioni si assemblano nel citoplasma e vengono liberati per gemmazione della membrana.

Il genere include 86 virus, di questi 73 sono raggruppati in 53 specie. Di questi flavivirus 40 sono conosciuti come patogeni per l'uomo e altri vertebrati. Essi determinano una varietà di malattie diverse con febbre, talvolta grave encefalite e/o febbre emorragica.

I flavivirus hanno una propensione a diffondere ed emergere in nuove aree geografiche. Le origini di questa evoluzione senza precedenti restano da chiarire.

Essi rappresentano una potenziale fonte di nuova comparsa di malattia. Tra i fattori capaci di determinare malattia sono i cambiamenti nell'uso del suolo e la deforestazione, cose che aumentano i movimenti della popolazione, l'urbanizzazione e l'aumento dei commerci. Inoltre, vi è una forte probabilità che anche il riscaldamento globale possa aumentare in modo significativo il rischio di comparsa della malattia e/o diffusione da flavivirus.

лиценца
cc-by-sa-3.0
авторски права
Autori e redattori di Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia IT

Flavivirus ( латински )

добавил wikipedia LA

Flavivirus (-i, n.) est genus virorum familiae Flaviviridarum. Quod comprehendit virus Nili Occidentalis, virus febris dengue, virus meningoencephalitidis ab ixodidis latae, virus febris flavae, virus Zikanum, et nonnulla alia vira quae encephalitem et alios morbos efficere possunt.[2]

Appellantur flavivira ex viro febris flavae, typo familiae. Nomen febris flavae ortum est, quia icterum flavum in aegris efficere solet.[3]

Flavivira nonnulla indicia una partiunt: magnitudinem (40–65 nm), symmetriam (involutam, icosahedralem nucleocapsidalem), acidum nucleicum (sensu positivo, RNA fili unius, circa 10 000–11 000 basium), et speciem in microscopio electronico visam.

Plurima ex his viris transmittuntur per ictum arthropodi infecti, (culicis vel ixodidi), atque ergo arthropod-borne virus, ex locutione Anglica, arbovira describuntur. Infectiones humanae ab his viris effectae usitate sunt leves, quia homines virus replicare plerumque non possunt ad titulos tam altos quam arthropoda iterum infici possunt, ut circulum vitae viralis alant; quam ob rem homines hostes cessationis appellantur. Exceptiones sunt febris flava, febris dengue, virusque Zikanum, quae tamen vectorum inter culices egent, sed hominibus tam accommodantur quam non necessario hostibus inter alia animalia nituntur (quamquam vias transmissionis magni momenti in animalibus iam habent).

Aliae viae transmissionis per arbovira sunt cadavera animalium infectorum tractata, transfusio sanguinis, partus, et consumptio operum lactis non pasteurizati. Transmissio ab animalibus ad homines sine arthropodo vectore intermediato haud probabilis putatur. Exempli gratia, prima febris flavae experimenta hunc morbum non contagiosum esse demonstraverunt.

Nota familiae flavivirorum non arbovira in arthropodis aut vertebratis, sed non in ambobus, regenerare possunt.

Nexus interni

Notae

  1. International Committee on Taxonomy of Viruses (20 Martii 2010). "ICTV 2009 Master Species List Version 4" .
  2. Shi 2012.
  3. Prima mentio locutionis febris flavae in manuscripto Doctoris Ioannis Mitchell Virginiensis (1744) legitur; cuius exemplaria Cadwallader Colden, physico NeoEboracensi, et Doctori Beniamino Rush Philadelphiae missa sunt; manuscriptum tandem anno 1814 iterum impressum est: "Account of the Yellow fever which prevailed in Virginia in the years 1737, 1741, and 1742, in a letter to the late Cadwallader Colden, Esq. of New York, from the late John Mitchell, M.D.F.R.S. of Virginia," American Medical and Philosophical Register, 4:181–215; locutio yellow fever in pagina 186 videtur. In pagina 188, Mitchell dicit "the distemper was what is generally called the yellow fever in America"; sed in paginis 191–192, affirmat "I shall consider the cause of the yellowness which is so remarkable in this distemper, as to have given it the name of the Yellow Fever." Hic autem morbus, ut videtur, fuit morbus Weilianus vel hepatitis (Jarcho 1957).

Bibliographia

  • Jarcho, Saul. 1957. John Mitchell, Benjamin Rush, and Yellow fever. Bulletin of the History of Medicine 31(2):132–136.
  • Kalitzky, Matthias. 2005. Molecular Biology of the Flavivirus. Taylor & Francis. ISBN 190493322X.
  • Kuno G., G. J. Chang, K. R. Tsuchiya, N. Karabatsos, et C. B. Cropp. 1998. Phylogeny of the genus Flavivirus. Journal of Virology 72(1):73–83. PMID 9420202. PMC 109351.
  • Murray, Catherine L., Christopher T. Jones, et Charles M. Rice. Architects of Assembly: roles of Flaviviridae nonstructural proteins in virion morphogenesis. PMC 2764292.
  • Shi, Pei-Yong. 2012. Molecular Virology and Control of Flaviviruses. Caister Academic Press. ISBN 9781904455929.
  • Zanotto, P. M., Ernest A. Gould, George F. Gao, Paul H. Harvey, et Edward C. Holmes. 1996. Population dynamics of flaviviruses revealed by molecular phylogenies. Proc. Natl. Acad. Sci. 93(2):548–553. PMID 8570593. PMC 40088. doi:10.1073/pnas.93.2.548.

Nexus externi

лиценца
cc-by-sa-3.0
авторски права
Et auctores varius id editors
изворно
посети извор
соработничко мреж. место
wikipedia LA

Flavivirus: Brief Summary ( латински )

добавил wikipedia LA

Flavivirus (-i, n.) est genus virorum familiae Flaviviridarum. Quod comprehendit virus Nili Occidentalis, virus febris dengue, virus meningoencephalitidis ab ixodidis latae, virus febris flavae, virus Zikanum, et nonnulla alia vira quae encephalitem et alios morbos efficere possunt.

Appellantur flavivira ex viro febris flavae, typo familiae. Nomen febris flavae ortum est, quia icterum flavum in aegris efficere solet.

Flavivira nonnulla indicia una partiunt: magnitudinem (40–65 nm), symmetriam (involutam, icosahedralem nucleocapsidalem), acidum nucleicum (sensu positivo, RNA fili unius, circa 10 000–11 000 basium), et speciem in microscopio electronico visam.

Plurima ex his viris transmittuntur per ictum arthropodi infecti, (culicis vel ixodidi), atque ergo arthropod-borne virus, ex locutione Anglica, arbovira describuntur. Infectiones humanae ab his viris effectae usitate sunt leves, quia homines virus replicare plerumque non possunt ad titulos tam altos quam arthropoda iterum infici possunt, ut circulum vitae viralis alant; quam ob rem homines hostes cessationis appellantur. Exceptiones sunt febris flava, febris dengue, virusque Zikanum, quae tamen vectorum inter culices egent, sed hominibus tam accommodantur quam non necessario hostibus inter alia animalia nituntur (quamquam vias transmissionis magni momenti in animalibus iam habent).

Aliae viae transmissionis per arbovira sunt cadavera animalium infectorum tractata, transfusio sanguinis, partus, et consumptio operum lactis non pasteurizati. Transmissio ab animalibus ad homines sine arthropodo vectore intermediato haud probabilis putatur. Exempli gratia, prima febris flavae experimenta hunc morbum non contagiosum esse demonstraverunt.

Nota familiae flavivirorum non arbovira in arthropodis aut vertebratis, sed non in ambobus, regenerare possunt.

лиценца
cc-by-sa-3.0
авторски права
Et auctores varius id editors
изворно
посети извор
соработничко мреж. место
wikipedia LA

Flavivirus ( холандски; фламански )

добавил wikipedia NL

Flavivirus is een familie van virussen. Het woord Flavivirus komt van het Latijn flavus (geel).

Er zijn vier geslachten binnen de familie:

Flavivirussen zijn positive stranded, lineair ssRNA-virussen met een genoom van gemiddeld zo'n 10.000 nucleotiden lang. Het genoom heeft een karakteristieke opbouw met achtereenvolgens:

  • 5'UTR (UnTranslated Region) met IRES (Internal Ribosome Entry Site)-sequentie
  • C (core proteïne, complexed with the genome)
  • E1 (eerste enveloppe-proteïne)
  • E2 (tweede enveloppe-proteïne)
  • p7 / NS2 (niet-structurele proteïne)
  • NS3
  • NS4A
  • NS4B
  • NS5A
  • NS5B (RNA-dep. RNA polymerase)
  • 3'UTR

Replicatie gebeurt door de productie van enkele negative stranded intermediairen, vanwaar dan de positive stranded genomen kunnen worden gekopieerd. Transmissie gebeurt parenteraal, wat voor de mens neerkomt op muggenbeten zowel overdag als 's nachts, o.a. door Aedes aegypti en Aedes albopictus, bloedtransfusies, intraveneus druggebruik en transmissie van moeder op kind.

Bronnen, noten en/of referenties
лиценца
cc-by-sa-3.0
авторски права
Wikipedia-auteurs en -editors
изворно
посети извор
соработничко мреж. место
wikipedia NL

Flawiwirus ( полски )

добавил wikipedia POL
YellowFeverVirus.jpg
wirus żółtej gorączki pod mikroskopem elektronowym Systematyka Grupa Grupa IV ((+)ssRNA) Rodzina Flawiwirusy Rodzaj Flawiwirus Cechy wiralne Kwas nukleinowy RNA Liczba nici jedna Polaryzacja kwasu nukleinowego dodatnia Wywoływane choroby żółta gorączka, gorączka Zachodniego Nilu, kleszczowe zapalenie mózgu, denga, gorączka Zika Galeria zdjęć w Wikimedia Commons Galeria zdjęć w Wikimedia Commons Wikidane Systematyka królestwo (Regnum) wirusy (Virus) rodzina (Familia) flawiwirusy (Flaviviridae) rodzaj (genus) Flawiwirusy (Flavivirus)

Flawiwirus jest rodzajem wirusów z rodziny Flaviviridae. Rodzaj ten obejmuje wirus Zachodniego Nilu, wirus dengi, wirus kleszczowego zapalenia mózgu, wirus żółtej gorączki, wirus Zika i kilka innych wirusów, które mogą prowadzić do zapalenia mózgu. Nazwa pochodzi od wirusa żółtej gorączki, który jest gatunkiem typowym dla rodzaju; słowo flavus oznacza żółty po łacinie.

Flawiwirusy posiadają rozmiary 40-60 nanometrów, symetrię ikozaedralną nukleokapsydu, otoczkę oraz pojedynczą nić RNA o dodatniej polarności.

лиценца
cc-by-sa-3.0
авторски права
Autorzy i redaktorzy Wikipedii
изворно
посети извор
соработничко мреж. место
wikipedia POL

Flawiwirus: Brief Summary ( полски )

добавил wikipedia POL

Flawiwirus jest rodzajem wirusów z rodziny Flaviviridae. Rodzaj ten obejmuje wirus Zachodniego Nilu, wirus dengi, wirus kleszczowego zapalenia mózgu, wirus żółtej gorączki, wirus Zika i kilka innych wirusów, które mogą prowadzić do zapalenia mózgu. Nazwa pochodzi od wirusa żółtej gorączki, który jest gatunkiem typowym dla rodzaju; słowo flavus oznacza żółty po łacinie.

Flawiwirusy posiadają rozmiary 40-60 nanometrów, symetrię ikozaedralną nukleokapsydu, otoczkę oraz pojedynczą nić RNA o dodatniej polarności.

лиценца
cc-by-sa-3.0
авторски права
Autorzy i redaktorzy Wikipedii
изворно
посети извор
соработничко мреж. место
wikipedia POL

Flavivírus ( португалски )

добавил wikipedia PT

Flavivírus (do latim flavus, amarelo) é um gênero de Vírus RNA de cadeia simples com sentido positivo (grupo IV), da família Flaviviridae. São transmitidos por mosquitos ou carrapatos. Além dele, o vírus da febre amarela e dengue são seus representantes mais conhecidos. Muitos flavivírus causam encefalite viral como o Vírus do Nilo Ocidental.[1]

Morfologia

Os Flavivírus partilham um tamanho comum (40-60 nanômetros), com envoltura simétrica, nucleocapsídeo icosaédrico e uma única fita positiva de RNA. O genoma de RNA contém aproximadamente 10,000 nucleotídeos ou 10 genes contidos em uma cadeia aberta de leitura que codifica uma poliproteína de 3391 aminoácidos (no caso da Dengue 2) que depois é clivada em três proteínas estruturais e sete proteínas não estruturais.[2]. Dentre as arboviroses, aquelas transmitidas por mosquitos, as causadas por Flavivírus são as mais importantes causadoras de surtos ou epidemias [2]

Espécies

Transmitidos por carrapatos[1]:

  • Vírus de Gadgets Gully (GGYV)
  • Vírus da encefalite do carrapato (TBEV)
  • Vírus de Royal Farm (RFV)
  • Vírus de Powassan (POWV)

Transmitidos por mosquitos[1]

Transmissão desconhecida:

Epidemiologia

Até o ano de 2000, eram dez as doenças causadas por flavivirus no Brasil: dengue 1, 2 e 4, Iguapé, Ilhéus, Rocio, encefalite de Saint Louis, Bussuquara, Cacipacoré e febre amarela.[3]

A identificação e caracterização molecular do Flavivírus são importantes para detectar o vírus circulante e alertar a vigilância epidemiológica em uma região. Assim, recentemente o vírus da febre amarela vem ganhando destaque na mídia brasileira, visto que vários casos vêm sendo catalogados na região Centro-Oeste, sobretudo, causando a preocupação da população em geral e providências das autoridades responsáveis pelo combate ao vírus [4].

Tratamento

Algumas complicações podem ser tratadas com ribavirina ou favipiravir(T-705 ou Avigan).[5]

Referências

  1. a b c http://epidemiologiamolecular.com/flavivirus/
  2. a b Bifano, G.S., Vieira D.S, Batista W.C., Pereira da Silva,L.H. «DETECÇÃO E CARACTERIZAÇÃO DE FLAVIVÍRUS ATRAVÉS DE PRIMERS UNIVERSAIS». Consultado em 1 de março de 2010 !CS1 manut: Nomes múltiplos: lista de autores (link)
  3. FIGUEIREDO, L. T. M. (2000). «The Brazilian flaviviruses.». Consultado em 15 de agosto de 2013
  4. Da Reuters (8 de fevereiro de 2008). «Surto de febre amarela no Brasil é 'bastante sério', diz OMS». Consultado em 1 de março de 2009
  5. Caroline AL, Powell DS, Bethel LM, Oury TD, Reed DS, et al. (2014) Broad Spectrum Antiviral Activity of Favipiravir (T-705). PLoS Neglected Tropical Diseases 8(4): e2790. doi:10.1371/journal.pntd.0002790

 title=
лиценца
cc-by-sa-3.0
авторски права
Autores e editores de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia PT

Flavivírus: Brief Summary ( португалски )

добавил wikipedia PT

Flavivírus (do latim flavus, amarelo) é um gênero de Vírus RNA de cadeia simples com sentido positivo (grupo IV), da família Flaviviridae. São transmitidos por mosquitos ou carrapatos. Além dele, o vírus da febre amarela e dengue são seus representantes mais conhecidos. Muitos flavivírus causam encefalite viral como o Vírus do Nilo Ocidental.

лиценца
cc-by-sa-3.0
авторски права
Autores e editores de Wikipedia
изворно
посети извор
соработничко мреж. место
wikipedia PT

Flavivirus ( романски; молдавски )

добавил wikipedia RO

Flavivirus este un gen din familia Flaviviridae.Din categoria flavivirusurilor fac parte: virusul West Nile, virusul Denga, virusul meningoencefalitei acariene, virusul febrei galbene, precum și alte virusuri ce produc encefalită.

Structură

Flavivirusul are circa 40-60 nm, genomul fiind format din ARN monocatenar (circa 10000-10000 nucleotide).Spre deosebire de alphavirus, legarea 5’-3’, nu mai există.Virionul are o proteină C (capsidă) de circa 13 000 Da. Anvelopa este constituită dintr-un strat bilipidic, există o singură proteină E (circa 51000-59000 Da), și o proteină mai mică M neglucozilată, de circa 8500 Da.

Replicarea virală

Replicarea are loc în citoplasma celulei gazdă. Mecanismul de intrare a virusului în celula gazdă include o interacție între proteina E și receptorii celulari urmată de o fuziune post-atașare, fenomen care are loc în vacuolele intracitoplasmice.Genomul ARN își manifestă virulența doar dacă este introdu în citoplasma celulei.Datorită neexistenței legăturii 5’-3’, din aceasta cauză ARN servește de ARNm, pentru sinteza tuturor proteinelor virale.Virusul exploatează la maximum capacitățile celulei gazdă, pe care le utilizează pentru sintetizarea proteinelor structural și non-structurale.Rolul crucial în sinteza proteică îl au ribozomii celulei gazdă , care au un rol important în replicarea virusurilor, în sinteza ARNm,rezultatul fiind o unică poliproteină.Odată sintetizată poliproteina este clivată sub acțiunea proteazei, eliberând compuși polipeptidici.Poliproteina conține o enzimă autocatalitică , acțiunea sa având drept rezultat eliberarea unei peptide inițiale,o enzimă specifică ce va scinda lanțul poliproteic în produși individuali.Unul din acești compuși este polimeraza, responsabilă de sinteza molecului de (-) ARN, ce va servi drept matriță pentru sinteza ARN genomic.

Specii

Bibliografie

Legături externe

лиценца
cc-by-sa-3.0
авторски права
Wikipedia autori și editori
изворно
посети извор
соработничко мреж. место
wikipedia RO

Flavivirus: Brief Summary ( романски; молдавски )

добавил wikipedia RO

Flavivirus este un gen din familia Flaviviridae.Din categoria flavivirusurilor fac parte: virusul West Nile, virusul Denga, virusul meningoencefalitei acariene, virusul febrei galbene, precum și alte virusuri ce produc encefalită.

лиценца
cc-by-sa-3.0
авторски права
Wikipedia autori și editori
изворно
посети извор
соработничко мреж. место
wikipedia RO

Flavivirus ( шведски )

добавил wikipedia SV

Flavivirus (Flaviviridae) är en virusfamilj bestående av RNA-virus. Exempel på sjukdomar orsakade av virus tillhörande familjen är gula febern, hepatit C, TBE, japansk encefalit, zikafeber och denguefeber.

лиценца
cc-by-sa-3.0
авторски права
Wikipedia författare och redaktörer
изворно
посети извор
соработничко мреж. место
wikipedia SV

Flavivirus: Brief Summary ( шведски )

добавил wikipedia SV

Flavivirus (Flaviviridae) är en virusfamilj bestående av RNA-virus. Exempel på sjukdomar orsakade av virus tillhörande familjen är gula febern, hepatit C, TBE, japansk encefalit, zikafeber och denguefeber.

лиценца
cc-by-sa-3.0
авторски права
Wikipedia författare och redaktörer
изворно
посети извор
соработничко мреж. место
wikipedia SV

Sarıhumma virüsü ( турски )

добавил wikipedia TR

Sarıhumma virüsü, maymun, fare, kobay ve sivrisineklerde kolayca üreyen küçük bir RNA virusudur.

Kanamalarla seyreden ve son derece öldürücü bir viral hastalığa neden olur. Isı ve dezenfektanlara dayanıklıdır. Aedes aegypti cinsi Sivrisineğin sokmasıyla bulaşarak, "sarıhumma"ya neden olur. Ateş, ağrı, bulantı, kusma yapar. Deride sararmaya neden olur. Afrika ve Güney Amerika'da yaygındır. Bulaşıcıdır, kontrol altına alınmadığında salgınlar görülür. Aşıyla koruma sağlanır. Sarı humma virüsü, 45-55 nm boyundadır ve genetik materyali RNA'dan oluşur. Siyahi insanlar doğuştan sarıhumma hastalığına karşı dirençlidir.

Stub icon Virüsler ile ilgili bu madde bir taslaktır. Madde içeriğini geliştirerek Vikipedi'ye katkıda bulunabilirsiniz.
лиценца
cc-by-sa-3.0
авторски права
Wikipedia yazarları ve editörleri
изворно
посети извор
соработничко мреж. место
wikipedia TR

Flavivirus ( руски )

добавил wikipedia русскую Википедию
Порядок: incertae sedis
Семейство: Flaviviridae
Род: Flavivirus
Международное научное название

Flavivirus

Группа по Балтимору

IV: (+)оцРНК-вирусы

Wikispecies-logo.svg
Систематика
на Викивидах
Commons-logo.svg
Изображения
на Викискладе
NCBI 11051EOL 67692

Флавивирус (лат. Flavivirus) — род арбовирусов из семейства Flaviviridae. Типовой видвирус жёлтой лихорадки. Преимущественно циркулируют между членистоногими (клещи, комары) и млекопитающими (приматы, летучие мыши, грызуны, скот). При укусе заражённого комара или клеща могут передаваться человеку, вызывая заболевания различной тяжести, варьирующей от бессимптомного протекания до угрожающих жизни геморрагических лихорадок и энцефалитов (лихорадка денге, лихорадка Западного Нила, лихорадка Зика, клещевой энцефалит, японский энцефалит, энцефалит Сент-Луис и др.).

Классификация

По данным Международного комитета по таксономии вирусов (ICTV), на май 2016 г. в род включают 53 вида[2]:

Представители

Флавивирусы, переносимые комарами

Распространены преимущественно в тропических регионах:

Флавивирусы, переносимые клещами

Распространены в основном в регионах умеренного климата:

Флавивирусы с неизвестным переносчиком

Выделены из различных млекопитающих, но не из членистоногих, цикл циркуляции неизвестен:

Примечания

лиценца
cc-by-sa-3.0
авторски права
Авторы и редакторы Википедии
изворно
посети извор
соработничко мреж. место
wikipedia русскую Википедию

Flavivirus: Brief Summary ( руски )

добавил wikipedia русскую Википедию

Флавивирус (лат. Flavivirus) — род арбовирусов из семейства Flaviviridae. Типовой видвирус жёлтой лихорадки. Преимущественно циркулируют между членистоногими (клещи, комары) и млекопитающими (приматы, летучие мыши, грызуны, скот). При укусе заражённого комара или клеща могут передаваться человеку, вызывая заболевания различной тяжести, варьирующей от бессимптомного протекания до угрожающих жизни геморрагических лихорадок и энцефалитов (лихорадка денге, лихорадка Западного Нила, лихорадка Зика, клещевой энцефалит, японский энцефалит, энцефалит Сент-Луис и др.).

лиценца
cc-by-sa-3.0
авторски права
Авторы и редакторы Википедии
изворно
посети извор
соработничко мреж. место
wikipedia русскую Википедию