dcsimg
Image of Tea plant
Creatures » » Plants » » Dicotyledons » » Tea Family »

Tea Plant

Camellia sinensis (L.) Kuntze

Comments

provided by eFloras
Tea is made from the vegetative buds and young leaves of Camellia sinensis var. sinensis and C. sinensis var. assamica. There is a long history of the use and cultivation of tea in China. Tea is usually distinguished by the Chinese people as small leaf tea (var. sinensis) with a more northern distribution and large leaf tea (var. assamica) with a more southern distribution. However, the other varieties of C. sinensis and even some other species of Camellia are locally used as tea. The distinction between green tea and black tea concerns the processing of the leaves whether they are just wilted before drying (green tea) or wilted and then fermented before drying (black tea).

Because of extensive cultivation, it is often difficult to know for certain whether specific collections of var. sinensis and var. assamica are wild, cultivated, or escaped. For this reason, the actual wild distribution of these two varieties is uncertain.

license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 12: 373, 376, 377 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Description

provided by eFloras
Shrubs or trees, 1-5(-9) m tall. Young branches grayish yellow, glabrous; current year branchlets purplish red, white pubescent; terminal buds silvery gray sericeous. Petiole 4-7 mm, pubescent, glabrescent; leaf blade elliptic, oblong-elliptic, or oblong, 5-14 × 2-7.5 cm, leathery, abaxially pale green and glabrous or pubescent, adaxially dark green, shiny, and glabrous, midvein ± raised on both surfaces, secondary veins 7-9 on each side of midvein and ± raised on both surfaces, reticulate veins visible on both surfaces, base cuneate to broadly cuneate, margin serrate to serrulate, apex bluntly acute to acuminate and with an obtuse tip. Flowers axillary, solitary or to 3 in a cluster, 2.5-3.5 cm in diam. Pedicel 5-10 mm, recurved, pubescent or glabrous, thickened toward apex; bracteoles 2, caducous, ovate, ca. 2 mm. Sepals 5, persistent, broadly ovate to suborbicular, 3-5 mm, outside glabrous or white pubescent, inside white sericeous, margin ciliolate. Petals 6-8, white; outer 1-3 petals sepaloid; inner petals obovate to broadly obovate, 1.5-2 × 1.2-2 cm, basally connate, apex rounded. Stamens numerous, 0.8-1.3 cm, glabrous; outer filament whorl basally connate for ca. 2 mm. Ovary globose, densely white pubescent, tomentose, or subglabrous, 3-loculed; style ca. 1 cm, glabrous or base pubescent, apically 3-lobed. Capsule oblate, 2-coccal, or rarely globose, 1-1.5 × 1.5-3 cm, 1- or 2-loculed with 1 seed per locule; pericarp ca. l mm thick. Seeds brown subglobose, 1-1.4 cm in diam. Fl. Oct-Feb, fr. Aug-Oct.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 12: 373, 376, 377 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Distribution

provided by eFloras
Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hainan, Henan, Hubei, Hunan, Jiangsu, Jiangxi, S Shaanxi, Sichuan, Taiwan, SE Xizang, Yunnan, Zhejiang [NE India, S Japan, S Korea, Laos, Myanmar, Thailand, Vietnam].
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 12: 373, 376, 377 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Habitat

provided by eFloras
Evergreen broad-leaved forests, thickets; 100-2200 m.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 12: 373, 376, 377 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Comprehensive Description

provided by EOL staff

The widely consumed beverage we know as tea is made from the leaves of Camellia sinensis. This evergreen shrub or small tree originated near the source of the Irawaddy River (in Burma), then spread eastward into southeastern China and westward into upper Burma and Assam (northeastern India) (this history explains the development of the distinct China and Assam tea types). Tea has been consumed as a beverage in China for 2000 to 3000 years. It was introduced to Japan around 600 A.D. and to Europe in the 1600s. Tea is grown mainly in the subtropics and in the mountainous areas of the tropics between latitudes 41° N and 16° S. It is an intensively managed perennial monoculture crop cultivated on large- and small-scale plantations in a variety of countries including China, India, Sri Lanka, Kenya, Turkey, Vietnam, and Indonesia. Overall, tea is grown on over 2.71 million hectares in more than 34 countries across Asia, Africa, Latin America, and Oceania, with an annual yield of 3.22 million metric tons of processed tea. A tea bush may be harvested for 40 to 50 years (in some cases up to a century). Harvest involves plucking the terminal bud and the 2 or 3 leaves immediately beneath it. (Vaughan and Geissler 1997; Hazarika et al. 2009)

The economies of many tea-growing countries are heavily dependent on tea. Among the greatest challenges faced by tea growers is damage from insect and mite pests, which typically cause losses on the order of a tenth to a half of yield, and can sometimes result in total crop loss. The annual value of yield loss to arthropod pests has been estimated at U.S. $500 million to $1 billion. Hazarika et al. 2009 reviewed the biology of arthropods known to feed on one or more parts of the tea plant, as well as the history of attempts at chemical control with organosynthetic pesticides and prospects for more effective and ecologically sustainable approaches to minimizing losses to pests in the future. (Hazarika et al. 2009 and references therein)

Around 75% of the world's tea production is black tea, which is produced by drying, macerating, and "fermenting", or faciliating the oxidation of, the leaves (this "fermentation" process does not involve microorganisms). Green tea production, which is concentrated in China and Japan, does not involve a fermentation process. Oolong tea (or Wulong Tea) is partially fermented. Some herbal "teas" contain no actual tea, making them caffeine-free. (Vaughan and Geissler 1997)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Derivation of specific name

provided by Flora of Zimbabwe
sinensis: Chinese; of China
license
cc-by-nc
copyright
Mark Hyde, Bart Wursten and Petra Ballings
bibliographic citation
Hyde, M.A., Wursten, B.T. and Ballings, P. (2002-2014). Camellia sinensis (L.) Kuntze Flora of Zimbabwe website. Accessed 28 August 2014 at http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=140340
author
Mark Hyde
author
Bart Wursten
author
Petra Ballings
original
visit source
partner site
Flora of Zimbabwe

Description

provided by Flora of Zimbabwe
Usually a shrub, rarely a small tree.
license
cc-by-nc
copyright
Mark Hyde, Bart Wursten and Petra Ballings
bibliographic citation
Hyde, M.A., Wursten, B.T. and Ballings, P. (2002-2014). Camellia sinensis (L.) Kuntze Flora of Zimbabwe website. Accessed 28 August 2014 at http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=140340
author
Mark Hyde
author
Bart Wursten
author
Petra Ballings
original
visit source
partner site
Flora of Zimbabwe

Frequency

provided by Flora of Zimbabwe
Occasional
license
cc-by-nc
copyright
Mark Hyde, Bart Wursten and Petra Ballings
bibliographic citation
Hyde, M.A., Wursten, B.T. and Ballings, P. (2002-2014). Camellia sinensis (L.) Kuntze Flora of Zimbabwe website. Accessed 28 August 2014 at http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=140340
author
Mark Hyde
author
Bart Wursten
author
Petra Ballings
original
visit source
partner site
Flora of Zimbabwe

Camellia sinensis

provided by wikipedia EN

Camellia sinensis is a species of evergreen shrub or small tree in the flowering plant family Theaceae. Its leaves and leaf buds are used to produce the popular beverage tea. Common names include tea plant, tea shrub, and tea tree (unrelated to Melaleuca alternifolia, the source of tea tree oil, or the genus Leptospermum commonly called tea tree).

White tea, yellow tea, green tea, oolong, dark tea (which includes pu-erh tea) and black tea are all harvested from one of two major varieties grown today, C. sinensis var. sinensis and C. s. var. assamica,[3] but are processed differently to attain varying levels of oxidation with black tea being the most oxidized and green being the least.[4] Kukicha (twig tea) is also harvested from C. sinensis, but uses twigs and stems rather than leaves.

Nomenclature and taxonomy

The generic name Camellia is taken from the Latinized name of Rev. Georg Kamel,[5] SJ (1661–1706), a Moravian-born Jesuit lay brother, pharmacist, and missionary to the Philippines.

Carl Linnaeus chose his name in 1753 for the genus to honor Kamel's contributions to botany[6] (although Kamel did not discover or name this plant, or any Camellia,[7] and Linnaeus did not consider this plant a Camellia but a Thea).[8]

Robert Sweet shifted all formerly Thea species to the genus Camellia in 1818.[9] The name sinensis means "from China" in Latin.

Four varieties of C. sinensis are recognized.[2] Of these, C. sinensis var. sinensis and C. s. var. assamica (JW Masters) Kitamura are most commonly used for tea, and C. s. var. pubilimba Hung T. Chang and C. s. var. dehungensis (Hung T. Chang & BH Chen) TL Ming are sometimes used locally.[2] The Cambodia type tea (C. assamica subsp. lasiocaly) was originally considered a type of assam tea. However, later genetic work showed that it is a hybrid between Chinese small leaf tea and assam type tea.[10]

Tea plants are native to East Asia, and probably originated in the borderlands of north Burma and southwestern China.[11]

  • Chinese (small leaf) tea [C. sinensis var. sinensis]
  • Chinese Western Yunnan Assam (large leaf) tea [C. sinensis var. assamica]
  • Indian Assam (large leaf) tea [C. sinensis var. assamica]
  • Chinese Southern Yunnan Assam (large leaf) tea [C. sinensis var. assamica]

Chinese (small leaf) tea may have originated in southern China possibly with hybridization of unknown wild tea relatives. However, since no wild populations of this tea are known, the precise location of its origin is speculative.[12][13]

Given their genetic differences forming distinct clades, Chinese Assam type tea (C. s. var. assamica) may have two different parentages – one being found in southern Yunnan (Xishuangbanna, Pu'er City) and the other in western Yunnan (Lincang, Baoshan). Many types of Southern Yunnan Assam tea have been hybridized with the closely related species Camellia taliensis. Unlike Southern Yunnan Assam tea, Western Yunnan Assam tea shares many genetic similarities with Indian Assam type tea (also C. s. var. assamica). Thus, Western Yunnan Assam tea and Indian Assam tea both may have originated from the same parent plant in the area where southwestern China, Indo-Burma, and Tibet meet. However, as the Indian Assam tea shares no haplotypes with Western Yunnan Assam tea, Indian Assam tea is likely to have originated from an independent domestication. Some Indian Assam tea appears to have hybridized with the species Camellia pubicosta.[12][13]

Assuming a generation of 12 years, Chinese small leaf tea is estimated to have diverged from Assam tea around 22,000 years ago, while Chinese Assam tea and Indian Assam tea diverged 2,800 years ago. This divergence tea would correspond to the last glacial maximum.[12][13]

Chinese small leaf type tea was introduced into India in 1836 by the British and some Indian Assam type tea (e.g. Darjeeling tea) appear to be genetic hybrids of Chinese small leaf type tea, native Indian Assam, and possibly also closely related wild tea species.[14]

Cultivars

Hundreds,[15] if not thousands of cultivars of C. sinensis are known. Some Japanese cultivars include:

Description

Camellia sinensis is native to East Asia, the Indian Subcontinent, and Southeast Asia, but it is today cultivated all around the world in tropical and subtropical regions. It is an evergreen shrub or small tree that is usually trimmed to below 2 m (6.6 ft) when cultivated for its leaves. It has a strong taproot. The flowers are yellow-white, 2.5–4 cm (0.98–1.57 in) in diameter, with seven or eight petals.

Flower of tea plant

The seeds of C. sinensis and C. oleifera can be pressed to yield tea oil, a sweetish seasoning and cooking oil that should not be confused with tea tree oil, an essential oil that is used for medical and cosmetic purposes, and originates from the leaves of a different plant.

C. sinensis plant, with cross-section of the flower (lower left) and seeds (lower right)
C. sinensis

The leaves are 4–15 cm (1.6–5.9 in) long and 2–5 cm (0.79–1.97 in) broad. Fresh leaves contain about 4% caffeine, as well as related compounds including theobromine.[18] The young, light-green leaves are preferably harvested for tea production; they have short, white hairs on the underside. Older leaves are deeper green. Different leaf ages produce differing tea qualities, since their chemical compositions are different. Usually, the tip (bud) and the first two to three leaves are harvested for processing. This hand picking is repeated every one to two weeks.

In 2017, Chinese scientists sequenced the genome of C. s. var. assamica.[19] It contains about three billion base pairs, which was larger than most plants previously sequenced.[20]

Cultivation

Camellia sinensis is mainly cultivated in tropical and subtropical climates, in areas with at least 127 cm (50 in) of rainfall a year. Tea plants prefer a rich and moist growing location in full to part sun, and can be grown in hardiness zones 7 – 9. However, the clonal one is commercially cultivated from the equator to as far north as Cornwall and Scotland on the UK mainland.[21][22] Many high quality teas are grown at high elevations, up to 2,200 m (7,200 ft), as the plants grow more slowly and acquire more flavor.

Tea plants will grow into a tree if left undisturbed, but cultivated plants are pruned to waist height for ease of plucking. Two principal varieties are used, the small-leaved Chinese variety plant (C. s. sinensis) and the large-leaved Assamese plant (C. s. assamica), used mainly for black tea.

Chinese teas

The Chinese plant is a small-leafed bush with multiple stems that reaches a height of some 3 m (9.8 ft). It is native to southeast China. The first tea plant variety to be discovered, recorded, and used to produce tea dates back 3,000 years ago; it yields some of the most popular teas.

C. s. var. waldenae was considered a different species, C. waldenae by SY Hu,[23] but it was later identified as a variety of C. sinensis.[24] This variety is commonly called Waldenae Camellia. It is seen on Sunset Peak and Tai Mo Shan in Hong Kong. It is also distributed in the Guangxi province.[23]

Indian teas

Three main kinds of tea are produced in India:

  • Assam, from the var. assamica plant, comes from the near sea-level heavily forested northeastern section of India, the state of Assam. Tea from here is rich and full-bodied. The first tea estates of India was established in Assam in 1837. Teas are manufactured in either the orthodox process or the CTC process.
  • Darjeeling, from the var. sinensis plant, is from the cool and wet Darjeeling highland region, tucked in the foothills of the Himalayas. Tea plantations could be at altitudes as high as 2,200 m (7,200 ft). The tea is delicately flavored, and considered to be one of the finest teas in the world. The Darjeeling plantations have three distinct harvests, termed 'flushes', and the tea produced from each flush has a unique flavor. First (spring) flush teas are light and aromatic, while the second (summer) flush produces tea with a bit more bite. The third, or autumn flush gives a tea that is lesser in quality.
  • Nilgiri is from a southern region of India almost as high as Darjeeling. Grown at elevations between 1,000 and 2,500 m (3,300 and 8,200 ft), Nilgiri teas are subtle and rather gentle, and are frequently blended with other, more robust teas.
Seed-bearing fruit of C. sinensis

Pests and diseases

Tea leaves are eaten by some herbivores, such as the caterpillars of the willow beauty (Peribatodes rhomboidaria), a geometer moth.

Health effects

Although health benefits have been assumed throughout the history of using tea as a common beverage, no high-quality evidence shows that tea confers significant benefits.[25][26] In clinical research over the early 21st century, tea has been studied extensively for its potential to lower the risk of human diseases, but none of this research is conclusive as of 2017.[25]

Biosynthesis of caffeine

Caffeine, a molecule produced in C. sinensis, functions as a secondary metabolite and acts as a natural pesticide: it can paralyze and kill herbivorous insects feeding on the plant.[27] Caffeine is a purine alkaloid and its biosynthesis occurs in young tea leaves and is regulated by several enzymes.[28][29] The biosynthetic pathway in C. sinensis differs from other caffeine-producing plants such as coffee or guayusa. Analysis of the pathway was carried out by harvesting young leaves and using reverse transcription PCR to analyze the genes encoding the major enzymes involved in synthesizing caffeine. The gene TCS1 encodes caffeine synthase. Younger leaves feature high concentrations of TCS1 transcripts, allowing more caffeine to be synthesized during this time. Dephosphorylation of xanthosine-5'-monophosphate into xanthosine is the committed step for the xanthosines entering the beginning of the most common pathway. A sequence of reactions turns xanthosine (9β-D-ribofuranosylxanthine) into 7-methylxanthosine, then 7-methylxanthine, then theobromine (3,7-dimethylxanthine), and finally into caffeine (1,3,7-trimethylxanthine).

Biochemical pathway detailing caffeine synthesis in C. sinensis

See also

Primary green tea catechins

References

  1. ^ Rivers, M.C.; Wheeler, L. (2018). "Camellia sinensis". IUCN Red List of Threatened Species. 2018: e.T62037625A62037628. doi:10.2305/IUCN.UK.2018-1.RLTS.T62037625A62037628.en. Retrieved 19 November 2021.
  2. ^ a b c Min T, Bartholomew B. "18. Theaceae". Flora of China. Vol. 12.
  3. ^ ITIS Standard Report Page Camellia Sinensis retrieved 2009-03-28.
  4. ^ Preedy, V.R. (2013). Tea in Health and Disease Prevention. Elsevier Science. pp. 199–200. ISBN 978-0-12-384937-3. Retrieved 24 February 2022.
  5. ^ Stafleu FA, Cowan RS (1976–1988). Taxonomic literature: A selective guide to botanical publications and collections with dates, commentaries and types (2nd ed.). Utrecht: Bohn, Scheltema and Holkema. ISBN 9789031302246.
  6. ^ "Botanics", History of Tea, 10 August 2003, archived from the original on 9 January 2016, retrieved 5 February 2012, Georg Jeoseph Kamel, whose name in Latin was Camellus was missionary to the Philippines, died in Manilla in 1706. […] Camellias were named in posthumous honor of George Joseph Kamel by Carolus Linnæus.
  7. ^ "Botanics", History of Tea, 10 August 2003, archived from the original on 9 January 2016, retrieved 5 February 2012, It is speculated that he never saw a camellia.
  8. ^ Golender L (10 August 2003), "Botanics", History of Tea, archived from the original on 9 January 2016, retrieved 5 February 2012, The first edition of Linnaeus's Species Plantarum published in 1753 suggested calling the tea plant Thea sinensis...
  9. ^ International Association for Plant Taxonomy (2006), "Article 13, example 3", International Code of Botanical Nomenclature (Vienna Code) (electronic ed.), The generic names Thea L. (Sp. Pl.: 515. 24 Mai 1753), and Camellia L. (Sp. Pl.: 698. 16 August 1753; Gen. Pl., ed. 5: 311. 1754), are treated as having been published simultaneously on 1 May 1753. … the combined genus bears the name Camellia, since Sweet (Hort. Suburb. Lond.: 157. 1818), who was the first to unite the two genera, chose that name, and cited Thea as a synonym.
  10. ^ Wambulwa, MC, MK Meegahakumbura, R Chalo, et al. 2016. Nuclear microsatellites reveal the genetic architecture and breeding history of tea germplasm of East Africa. Tree Genetics & Genomes, 12.
  11. ^ Yamamoto, T; Kim, M; Juneja, L R (1997). Chemistry and Applications of Green Tea. CRC Press. p. 4. ISBN 978-0-8493-4006-2. For a long time, botanists have asserted the dualism of tea origin from their observations that there exist distinct differences in the morphological characteristics between Assamese varieties and Chinese varieties... Hashimoto and Shimura reported that the differences in the morphological characteristics in tea plants are not necessarily the evidence of the dualism hypothesis from the researches using the statistical cluster analysis method. In recent investigations, it has also been made clear that both varieties have the same chromosome number (n=15) and can be easily hybridised with each other. In addition, various types of intermediate hybrids or spontaneous polyploids of tea plants have been found in a wide area extending over the regions mentioned above. These facts may prove that the place of origin of Camellia sinensis is in the area including the northern part of the Burma, Yunnan, and Sichuan districts of China.
  12. ^ a b c Meegahakumbura, MK; Wambulwa, MC; Thapa, KK; et al. (2016). "Indications for three independent domestication events for the tea plant (Camellia sinensis (L.) O. Kuntze) and new insights into the origin of tea germplasm in China and India revealed by nuclear microsatellites". PLOS ONE. 11 (5): e0155369. Bibcode:2016PLoSO..1155369M. doi:10.1371/journal.pone.0155369. PMC 4878758. PMID 27218820.
  13. ^ a b c Meegahakumbura MK, Wambulwa MC, Li MM, et al. (2018). "Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India based on nuclear microsatellites and cpDNA sequence data". Frontiers in Plant Science. 8: 2270. doi:10.3389/fpls.2017.02270. PMC 5788969. PMID 29422908.
  14. ^ Wambulwa, M. C.; Meegahakumbura, M. K.; Chalo, R.; Kamunya, S.; Muchugi, A.; Xu, J. C.; Liu, J.; Li, D. Z.; Gao, L. M. (2016). "Nuclear microsatellites reveal the genetic architecture and breeding history of tea germplasm of East Africa". Tree Genetics & Genomes. 12 (1): 11. doi:10.1007/s11295-015-0963-x. S2CID 15909964.
  15. ^ "Tea Cultivar Database - World of Tea". World of Tea. Retrieved 9 May 2017.
  16. ^ a b "Identification of Japanese tea (Camellia sinensis) cultivars using SSR marker". Food and Agriculture Organization. Retrieved 1 November 2018.
  17. ^ a b c d e "Varietal differences in the adaptability of tea [Camellia sinensis] cultivars to light nitrogen application". Food and Agriculture Organization. Retrieved 1 November 2018.
  18. ^ "Camellia sinensis". Purdue. Retrieved 18 February 2008.
  19. ^ Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, et al. (June 2017). "The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis". Molecular Plant. 10 (6): 866–877. doi:10.1016/j.molp.2017.04.002. PMID 28473262.
  20. ^ Briggs, Helen (2 May 2017). "Secrets of tea plant revealed by science". BBC News. Retrieved 2 May 2017.
  21. ^ "English tea service", Telegraph, 17 September 2005, archived from the original on 5 January 2008, retrieved 19 June 2021.
  22. ^ "The world's first Scottish tea (at £10 a cup)", The Independent, 17 November 2014.
  23. ^ a b The International Camellia Society (ICS), DE: Uniklinik Sårland, archived from the original on 21 August 2006
  24. ^ Ming TL (1992). "A revision of Camellia sect. Thea". Acta Botanica Yunnanica (in Chinese). 14 (2): 115–32..
  25. ^ a b "Black tea". MedlinePlus, US National Library of Medicine. 30 November 2017. Retrieved 27 February 2018.
  26. ^ "Green tea". National Center for Complementary and Integrative Health, US National Institutes of Health. 30 November 2016. Retrieved 27 February 2018.
  27. ^ Nathanson JA (October 1984). "Caffeine and related methylxanthines: possible naturally occurring pesticides". Science. 226 (4671): 184–7. Bibcode:1984Sci...226..184N. doi:10.1126/science.6207592. PMID 6207592. S2CID 42711016.
  28. ^ Li Y, Ogita S, Keya CA, Ashihara H (March 2008). "Expression of caffeine biosynthesis genes in tea (Camellia sinensis)". Zeitschrift für Naturforschung C. 63 (3–4): 267–70. doi:10.1515/znc-2008-3-417. PMID 18533472.
  29. ^ Kato M, Mizuno K, Fujimura T, Iwama M, Irie M, Crozier A, Ashihara H (June 1999). "Purification and characterization of caffeine synthase from tea leaves". Plant Physiology. 120 (2): 579–86. doi:10.1104/pp.120.2.579. PMC 59297. PMID 10364410.
  30. ^ Pizzorno JE, Murray MT, eds. (2012). Textbook of Natural Medicine (4th ed.). Edinburgh: Churchill Livingstone. p. 628. ISBN 978-1-4377-2333-5.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Camellia sinensis: Brief Summary

provided by wikipedia EN

Camellia sinensis is a species of evergreen shrub or small tree in the flowering plant family Theaceae. Its leaves and leaf buds are used to produce the popular beverage tea. Common names include tea plant, tea shrub, and tea tree (unrelated to Melaleuca alternifolia, the source of tea tree oil, or the genus Leptospermum commonly called tea tree).

White tea, yellow tea, green tea, oolong, dark tea (which includes pu-erh tea) and black tea are all harvested from one of two major varieties grown today, C. sinensis var. sinensis and C. s. var. assamica, but are processed differently to attain varying levels of oxidation with black tea being the most oxidized and green being the least. Kukicha (twig tea) is also harvested from C. sinensis, but uses twigs and stems rather than leaves.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN