Die Desulfobacteraceae bilden eine Familie von innerhalb der Deltaproteobakterien. Wie alle Familien der Ordnung Desulfobacterales sind sie in der Lage Sulfat zu reduzieren (Desulfurikation). Durch die Sulfatreduktion wird Energie gewonnen, welche in den weiteren Stoffwechsel umgesetzt wird. Als Endprodukt wird Schwefelwasserstoff (H2S) ausgeschieden. Man spricht hier auch von der Sulfatatmung.
Die meisten Arten der sulfatreduzierenden Bakterien sind obligat anaerob, sie können nur unter Ausschluss von Sauerstoff leben. Solche Bedingungen herrschen z. B. innerhalb von Schlammböden von Seen oder in unter Wasser stehenden Erdböden. Einige (z. B. Arten der Gattung Desulfobacterium) sind chemolithotroph, sie sind dazu in der Lage sich ausschließlich von anorganischen Stoffen mit Wasserstoff als Elektronendonator zu ernähren. Als Kohlenstoffquelle dient ihnen Kohlendioxid. Einige Arten kommen ausschließlich im Meerwasser vor (z. B. Desulfobacterium).
Die Zellgestalt ist bei den verschiedenen Gattungen unterschiedlich, es gibt fädige (filamentöse) Formen (beispielsweise. bei Desulfonema) aber auch stäbchenförmige (Desulfobakterium) oder kokkoide Zellen die Paketförmig aneinandergelagert sind, sogenannte Sarcinen (Desulfosarcina). Einige Arten besitzen Geißeln (zum Beispiel Desulfobacter).
Diese Familie besteht aus folgenden Gattungen:[1]
Desulfomusa mit der einzigen Art Desulfomusa hansenii wurde zu der Gattung Desulfofaba gestellt.
Die Desulfobacteraceae bilden eine Familie von innerhalb der Deltaproteobakterien. Wie alle Familien der Ordnung Desulfobacterales sind sie in der Lage Sulfat zu reduzieren (Desulfurikation). Durch die Sulfatreduktion wird Energie gewonnen, welche in den weiteren Stoffwechsel umgesetzt wird. Als Endprodukt wird Schwefelwasserstoff (H2S) ausgeschieden. Man spricht hier auch von der Sulfatatmung.
The Desulfobacteraceae are a family of Thermodesulfobacteriota. They reduce sulfates to sulfides to obtain energy and are strictly anaerobic. They have a respiratory and fermentative type of metabolism. Some species are chemolithotrophic and use inorganic materials to obtain energy and use hydrogen as their electron donor.
Desulfobacteraceae vary widely in shape and size across the family. Desulfofaba are straight or slightly curved rods that range in size from 0.8 to 2.1 x 3.2-6.1 μm. Those in the genus Desulfobacterium are spherical or oval shaped and somewhat smaller, ranging in size from 0.9 to 1.3 x 1.5-3.0 μm or 1.5-2.0 x 2.0-2.5 μm. They stain Gram-negative and are not known to produce spores. Some species contain a single polar flagellum used for motility.
Genus and species of Desulfobacteraceae may only be definitively distinguished by analysis of 16S rDNA sequences, but certain genera may be determined through physiological characteristics alone. Desulfofrigus displays an optimal growth rate at very low temperatures compared to other sulfate reducing bacteria. It is also unable to grow in the presence of propionate.
Most species of Desulfobacteraceae use sulfur compounds as their main energy source. The most common source used is sulfate which, through metabolic processes, is reduced to sulfide. In an environment with little or no sulfate, sulfite or elemental sulfur may also be used and reduced into sulfide. In rare cases nitrate may also be used as a food source and reduced into ammonia. They have very efficient sulfate reduction rates (between 12 and 423 mu mol/dm3 day−1) in optimal conditions.[1]
Desulfobacteraceae may be found in a range of locations but are most often found in saline and hypersaline waters including salt lakes and the ocean. They have also been found in polar ice in Antarctica. They may be found trapped within ice, floating within the water column, or living on or in other organisms such as sea sponges.[2]
The Desulfobacteraceae are a family of Thermodesulfobacteriota. They reduce sulfates to sulfides to obtain energy and are strictly anaerobic. They have a respiratory and fermentative type of metabolism. Some species are chemolithotrophic and use inorganic materials to obtain energy and use hydrogen as their electron donor.