dcsimg

Brief Summary

    Spirochaete: Brief Summary
    provided by wikipedia
    This article is about the bacterial phylum. For spiral-shaped bacteria in general, see spiral bacteria.

     src= Cross section of a spirochaete cell  src= Endoflagella Components. Legend: Fig. 1 A cross-section of a typical spirochete cell showing endoflagella located in the periplasm between the inner cytoplasmic membrane and the outer membrane. Periplasm, consisting of a gel-like matrix, provides a semi-stable medium to secure endoflagella during rotation. The axial filament, indicated in red, is composed of bundles of endoflagella. Fig. 2 A side-view of a spirochete cell which shows two axial filaments in opposing motion. One axial filament rotates in a clockwise orientation; an adjacent axial filament rotates in a counter-clockwise orientation. Rotation of the endoflagella creates torsion and drives the corkscrew rotation of the cell. Fig. 3 An expanded view of the cellular membranes that surround endoflagellum. Both the inner and outer membrane contain a phospholipid bi-layer, with non-polar fatty acid chains in-ward of polar phosphorus heads. Peptidoglycan, the cell wall, provides structure in bacterial microorganisms. Axial filaments are superior to the peptidoglycan.

    A spirochaete (/ˈspaɪroʊˌkiːt/) or spirochete is a member of the phylum Spirochaetes (/-ˈkiːtiːz/), which contains distinctive diderm (double-membrane) bacteria, most of which have long, helically coiled (corkscrew-shaped or spiraled, hence the name) cells. Spirochaetes are chemoheterotrophic in nature, with lengths between 3 and 500 µm and diameters around 0.09 to at least 3 µm.

    Spirochaetes are distinguished from other bacterial phyla by the location of their flagella, sometimes called axial filaments, which run lengthwise between the bacterial inner membrane and outer membrane in periplasmic space. These cause a twisting motion which allows the spirochaete to move about. When reproducing, a spirochaete will undergo asexual transverse binary fission. Most spirochaetes are free-living and anaerobic, but there are numerous exceptions. Spirochaetes bacteria are diverse in their pathogenic capacity, the ecological niches that they inhabit, as well as molecular characteristics including guanine-cytosine content and genome size.

Comprehensive Description