dcsimg

Brief Summary

    Hipposideridae: Brief Summary
    provided by wikipedia

    The Hipposideridae are a family of bats commonly known as the Old World leaf-nosed bats. While it has often been seen as a subfamily, Hipposiderinae, of the family Rhinolophidae, it is now more generally classified as its own family. Nevertheless, it is most closely related to Rhinolophidae within the suborder Pteropodiformes (or Yinpterochiroptera).

    The Hipposideridae contain 10 living genera and more than 70 species, mostly in the widespread genus Hipposideros. In addition, several fossil genera are known; the oldest fossils attributed to the family are from the middle Eocene of Europe. In their 1997 Classification of Mammals, Malcolm C. McKenna and Susan K. Bell proposed a division of Hipposideridae (called Rhinonycterinae in their work) into three tribes, one with two subtribes, but these tribes turned out to be non-monophyletic and have been abandoned. A different classification was proposed by Hand and Kirsch in 2003. More recently, Petr Benda and Peter Vallo (2009) proposed a separate tribe, Triaenopini, for the genera Triaenops, Paratriaenops, and possibly Cloeotis.

Comprehensive Description

Distribution

    Distribution
    provided by Animal Diversity Web

    Members of Hipposideridae are found throughout tropical and subtropical regions of the Old World. These Old World leaf-nosed bats are found in Africa, southern Asia, the Philippine Islands, the Solomon Islands, and Australia.

    Biogeographic Regions: palearctic (Native ); oriental (Native ); ethiopian (Native ); australian (Native )

Morphology

    Morphology
    provided by Animal Diversity Web

    A defining characteristic of Hipposiderids is their elaborate noseleaf. The noseleaf consists of fleshy protrusions on top of a U-shaped rhinarium (i.e., the wet surface surrounding the nostrils). Hipposiderids have an erect transverse leaf within the noseleaf as well as smaller accessory leaflets. The common name of many genera corresponds to the shape of the noseleaf. For example, flower-faced bats have two circular lateral leaflets, the smaller of which is superimposed onto the larger, resulting in a noseleaf resembling the petals of a flower. Differences in noseleaf characteristics are commonly used to discern between genera. These 'appendages' are thought to be related to nasal echolocation, and may help to focus and modify echolocation signals.

    Pelage of hipposiderids varies greatly both between and within taxa. Pelage can be white, light beige, pale yellow, dark yellow, orange, red, red-brown, light brown, dark brown, gray, or dark gray. Some species have white patches of fur, while others have 2 different color phases. Often, venter pelage is lighter than dorsum pelage. Pelage also differs interspecifically by length and texture or silkiness. Hipposiderid skulls have a number of unique features that differentiate them from other bat families. For example, they have no post-orbital processes, the nasal portion of the premaxilla is absent, and the premaxilla is not fused to the maxilla. They have dilambdodont molars , and their dental formula is I1/2 C1/1 P1–2/2–3 M3/3, giving them a total of 28 to 30 teeth. Hipposiderids do not have a tragus, the fleshy protuberance present at the opening of the ear in many bats. A membrane spanning the dorsal surface of the head connects their ears, which exhibit a great deal of variation in size.

    Hipposideridae shares many traits with the family Rhinolophidae, and some accounts consider Hipposideridae a sub-family of Rhinolophidae. Both hipposiderids and rhinolophids lack post-orbital processes and the nasal portion of the premaxilla, as well as having a premaxilla that is not fused to the maxilla, dilambdodont molars, and a U- or horseshoe-shaped rhinarium. However, hipposiderids can be differentiated from rhinolophids using a number of different characteristics. Hipposiderids generally have a more rounded noseleaf, while the noseleaf of rhinolophids is spear-like and pointed. Hipposiderids have only two bones in each toe, while rhinolophids have three in all except the first toe, which has two. Rhinolophids always have three lower premolars on each side of the mandible and hipposiderids have only two. The two families also differ in the structure of their shoulder and hip girdles. Finally, rhinolophids have a sella, a flattened leaflet in the middle of the noseleaf structure, that is not present in hipposiderids.

    Other Physical Features: endothermic ; heterothermic ; homoiothermic; bilateral symmetry

    Sexual Dimorphism: sexes alike

Habitat

    Habitat
    provided by Animal Diversity Web

    Hipposideridae inhabits tropical and subtropical habitats and roosting preferences vary by genera. Hipposiderids have been found roosting in caves, mines, hollow trees, buildings, and man-made underground compartments like cellars and tombs. In Africa, Fulvus round-leaf bats are often found in the burrows of Hystrix (Old World porcupines) and members of the genus Asellia roost in the inner walls of wells, in caves, and in man-made structures. Though Percival's trident bats live in forests and generally roost in trees, in Taiwan they have been discovered in abandoned Japanese bomb shelters, also known as pillboxes.

    Habitat Regions: tropical ; terrestrial

    Terrestrial Biomes: desert or dune ; savanna or grassland ; forest ; rainforest ; scrub forest

Trophic Strategy

    Trophic Strategy
    provided by Animal Diversity Web

    Although little information is available on the diets of most hipposiderid species, they are considered to be primarily insectivorous. Those species that have been studied prefer cicadas, cockroaches, termites, and beetles. The beetle larvae prey of Commerson's roundleaf bats live in wild figs, which results in the addition of small amounts of fruit to their otherwise insectivorous diet.

    Hipposiderids have excellent echolocation, and catch most of their prey via aerial hawking and gleaning. They usually fly only a few meters above the ground while echolocating for potential prey. Although most species are thought to prey on flying insects, some occasionally feed on flightless insects such as ants. Hipposiderids are generally territorial and hunt and feed within a specific range. For example, members of the genus Asellia, have been observed flying more than a mile through the desert to their feeding territory. Often, hipposiderids bring captured prey back to their roost prior to consumption. When chewing, the jaws of hipposiderids move side-to-side and up and down, simultaneously. This shearing motion helps break down the chitinous exoskeleton of insect prey.

    Primary Diet: carnivore (Insectivore )

Associations

    Associations
    provided by Animal Diversity Web

    As insectivores, hipposiderids help control insect pest populations. While little information exists on potential endoparasites of hipposiderids, like most bats, they are probably host to a number of ectoparasitic arthropods including lice, mites and fleas.

    Commensal/Parasitic Species:

    • fleas (Siphonaptera)
    • lice (Phthiraptera)
    • mites (Acari)
    Associations
    provided by Animal Diversity Web

    Hipposiderids are preyed upon by a number of small nocturnal mammals with the ability to capture them mid-flight or locate their roosts. In many localities, the major predator of hipposiderids is snakes, which are sometimes able to locate their roosting sites. During flight, hipposiderids can be captured and eaten by various birds of prey including hawks, falcons, and owls. Furthermore, in Australia, members of the family Dasyuridae have been known to locate hipposiderid roosts. In conjunction with their ability to fly, the nocturnal lifestyle of bats helps reduce predation as does the colonial roosting behavior of many species.

    Known Predators:

    • snakes (Serpentes)
    • hawks (Accipitrinae)
    • owls (Strigiformes)
    • falcons (Falco)
    • dasyurids (Dasyuridae)

Behavior

    Behavior
    provided by Animal Diversity Web

    Like most Microchiroptera, members of the family Hipposideridae have relatively small eyes, indicating that vision may not be as important as echolocation for navigation and foraging purposes. However, vision may be used to detect objects past the range of echolocation. Hipposiderids, like all Microchiroptera, do not have color vision.

    Unlike most microchiropterans that emit echolocation via the mouth, hipposiderids produce echolocation sounds with the larynx and emit the sound through their nostrils. The sounds produced are considered ultrasonic because they have higher frequencies than the normal range of human hearing. Hipposiderid echolocation calls contain a long constant-frequency (CF) component (i.e., one frequency is maintained throughout the duration of the call) and a much shorter frequency-modulated (FM) component. The CF segment of the call is used to determine the general structure of the local environment and to give a coarse location of potential prey and is preceded or followed by a brief FM segment, which aids in homing in on the location of a target. In general, the calls of larger bats have a tendency to be longer and lower in frequency, whereas the calls of smaller bats have a tendency to be shorter and higher in frequency. Evidence suggests that the calls of hipposiderids are typically higher in frequency relative to body mass than other bat families. Little information is available regarding the use of sound and echolocation for intraspecific communication, though audible sounds may be used to communicate during courtship or between mother and pup.

    Many hipposiderid species have a small sac just posterior to the nose leaf. The sac, which is possessed primarily by males, secretes a waxy substance that may be used during mating season to attract mates or fend of potential rivals.

    Communication Channels: acoustic ; chemical

    Perception Channels: visual ; tactile ; acoustic ; ultrasound ; echolocation ; chemical

Life Expectancy

    Life Expectancy
    provided by Animal Diversity Web

    Information regarding the lifespan of hipposiderids is limited, as a majority of species in this family are not well-known. However, some species have been found to live more than 10 years.

Reproduction

    Reproduction
    provided by Animal Diversity Web

    Not enough information is known about hipposiderid mating systems to make accurate generalizations about the family as a whole; however, research on individual species provides limited but important insight. Only one example of a polygynous mating in hipposiderids is known. Colonies of Commerson's roundleaf bat, which can contain up to 500,000 individuals, are divided into small harems consisting of one adult male and several adult females, with whom the male mates. Mating occurs seasonally, during the fall, and females give birth to a single young during spring after storing sperm over winter.

    Mating System: polygynous

    Breeding season and birthing season vary among hipposiderid species. For example, bi-colored leaf-nosed bats and ashy roundleaf bats mate in October and give birth in April. Although birthing season varies slightly, coinciding with peak rainy season when food is most abundant, Sundevall's leafnosed bats give birth in April north of the equator and in October south of the equator. Fulvus roundleaf bats mate in November and give birth in late April. Although the specific times vary among species, birthing among hipposiderids generally occurs during spring. Female hipposiderids give birth to a single young per pregnancy. Gestation lasts from 90 days in cyclops roundleaf bats to 220 days in Sundevall's leafnosed bats in South Africa. Females typically carry their young for a few weeks after giving birth. For example, Fulvus roundleaf bats produce a single young, which the female carries for 20 to 22 days. Age at weaning, age at first flight, and age at independence appears to vary according to latitude. Species subject to greater seasonality appear to mature more quickly than those resident to more tropical regions. In at least one species, Sundevall's leafnosed bats of Nigeria, delayed implantation occurs. The egg does not implant in the uterine lining for up to 2 months after fertilization, and as a result, young are born when prey are more abundant, directly before the rainy season.

    Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; viviparous ; delayed fertilization ; delayed implantation

    Females are the primary care givers in hipposiderids. Female typically carry their young for a few weeks after birth and prior to weaning. Females have "pubic teats", which their young hold on to during the carrying period. Little is known of lactation and weaning in hipposiderids. However, lactation lasts for about 40 days in the genus Asellia, and Taiwanese leaf-nosed bats are usually weaned at 7 weeks old. Tropical species are thought to be weaned by 8 to 20 weeks and time to independence appears to vary according to latitude, as tropical species reach sexual maturity between 16 and 24 months, and temperate species reaching sexual maturity by 6 to 8 months.

    Parental Investment: precocial ; female parental care ; pre-hatching/birth (Provisioning: Female); pre-weaning/fledging (Protecting: Female); pre-independence (Provisioning: Female)

Conservation Status

    Conservation Status
    provided by Animal Diversity Web

    As a family, hipposiderids are not a particularly threatened group. However, many species are not well understood and as a result, potential conservation needs are unknown. The International Union for Conservation of Nature (IUCN) lists 5 species as either endangered or critically endangered, and another 10 species are listed as vulnerable. Of the 84 species listed, 7 are classified as near threatened, 44 are listed as least concern, and the remaining 18 are classified as data deficient. Habitat loss and deforestation are serious concerns and their greatest threats. In specific cases, habitat loss has been so extreme that several species are now classified as endangered and some local populations are nearing extirpation. For example, Thailand leaf-nosed bats have been subjected to severe range contraction due to deforestation, which has resulted in a population reduction of 20% in just the last 5 years. Durga Das's leaf-nosed bats have had nearly all of their native range destroyed and now only roost in the homes of three different villages in central India. Due to deforestation, Orbiculus leaf-nosed bats are now resident to only two locations in Indonesia and Malaysia. Lamotte's roundleaf bats can be found in a single cave on the island of Guinea, and are classified as critically endangered. If conservation efforts are to be successful, habitat loss must be slowed and reforestation projects should be encouraged in critical habitat areas.

Benefits

    Benefits
    provided by Animal Diversity Web

    Hipposiderids cause little economic damage. There are no known pathogens specific to Hipposideridae that are harmful to people or domesticated animals. However, bats occasionally roost in occupied buildings, which can be destructive and has the potential to spread disease. Any species of bat infected with rabies could potentially bite and transmit the pathogen to humans.

    Negative Impacts: injures humans (causes disease in humans , carries human disease); causes or carries domestic animal disease ; household pest

    Benefits
    provided by Animal Diversity Web

    As insectivores, hipposiderids help control insect pest populations that might otherwise spread disease or damage crops. The guano of hipposiderids is locally used as a nitrogen rich fertilizer.

    Positive Impacts: produces fertilizer; controls pest population