Brief Summary

    Western honey bee: Brief Summary
    provided by wikipedia

    The western honey bee or European honey bee (Apis mellifera) is the most common of the 7–12 species of honey bee worldwide. The genus name Apis is Latin for "bee", and mellifera is the Latin for "honey-bearing", referring to the species' production of honey.

    Like all honey bees, the western honey bee is eusocial, creating colonies with a single fertile female (or "queen"), many normally non-reproductive females or "workers," and small proportion of fertile males or "drones." Individual colonies can house tens of thousands of bees. Colony activities are organized by complex communication between individuals, through both pheromones and the dance language.

    The western honey bee was one of the first domesticated insects, and it is the primary species maintained by beekeepers to this day for both its honey production and pollination activities. With human assistance, the western honey bee now occupies every continent except Antarctica. Because of its wide cultivation, this species is the single most important pollinator for agriculture globally. Honey bees are threatened by pests and diseases, especially the varroa mite and colony collapse disorder.

    Western honey bees are an important model organism in scientific studies, particularly in the fields of social evolution, learning, and memory; they are also used in studies of pesticide toxicity, to assess non-target impacts of commercial pesticides.

    Brief Summary
    provided by EOL authors
    The European honey bee, also known as the common or western honey bee (Apis mellifera) is so named because it produces large amounts of honey. It is believed that the honey bee originated in Africa and spread to northern Europe, India, and China. The honey bee is not native to North America, but was brought here with the first colonists. The honey bee is now distributed world wide. European honey bees are variable in color, but are some shade of black or brown intermixed with yellow. The bee ranges from 3/8 to 3/4 of an inch long, with workers being the smallest and the queen being the largest. A queen bee is elongate and has a straight stinger with no barbs. A worker bee has hind legs specialized for collecting pollen - each leg is flattened and covered with long fringed hairs that form a pollen basket. A worker bee's stinger has barbs. A drone bee is stout-bodied and has large eyes. Wild European honey bee nests are found in hollow trees or man-made structures. Managed colonies are often kept in wooden hives. Flowers in meadows, open woods, agricultural areas, and yards and gardens are visited by worker bees.
    Brief Summary
    provided by Ecomare
    Honey bees are insects which make honey and wax. They are held by beekeepers in hives or chests. A colony can consist of 50,000 animals: most of them are workers, a few hundred are drones (males) and one is the queen. Dunes and salt marshes are suitable food areas for honey bees.

Comprehensive Description

    Lifespan, longevity, and ageing
    provided by AnAge articles
    "Maximum longevity: 8 years Observations: As in other social insects, workers and queens have distinct lifespans in the honey bee. Queens have been reported to live up to 8 years. Workers have a short lifespan due to foraging but can live 0.2-0.4 years if prevented from foraging. In the winter, workers can develop into a stress-resistant form called the "diunitus" and live up to 0.9 years (Haddad et al. 2007)."
    Western honey bee
    provided by wikipedia

    The western honey bee or European honey bee (Apis mellifera) is the most common of the 7–12 species of honey bee worldwide.[2][3] The genus name Apis is Latin for "bee", and mellifera is the Latin for "honey-bearing", referring to the species' production of honey.

    Like all honey bees, the western honey bee is eusocial, creating colonies with a single fertile female (or "queen"), many normally non-reproductive females or "workers," and small proportion of fertile males or "drones." Individual colonies can house tens of thousands of bees. Colony activities are organized by complex communication between individuals, through both pheromones and the dance language.

    The western honey bee was one of the first domesticated insects, and it is the primary species maintained by beekeepers to this day for both its honey production and pollination activities. With human assistance, the western honey bee now occupies every continent except Antarctica. Because of its wide cultivation, this species is the single most important pollinator for agriculture globally. Honey bees are threatened by pests and diseases, especially the varroa mite and colony collapse disorder.

    Western honey bees are an important model organism in scientific studies, particularly in the fields of social evolution, learning, and memory; they are also used in studies of pesticide toxicity, to assess non-target impacts of commercial pesticides.

    Distribution and habitat

    Global distribution

    The western honey bee can be found on every continent except Antarctica.[4] The species is believed to have originated in Africa[5] or Asia,[6] and it spread naturally through Africa, the Middle East and Europe.[4] Humans are responsible for its considerable additional range, introducing European subspecies into North America (early 1600s),[7] South America, Australia, New Zealand, and East Asia.[8]

    Western honey bees adapted to the local environments as they spread geographically.[5] These adaptations include synchronizing colony cycles to the timing of local flower resources, forming a winter cluster in colder climates, migratory swarming in Africa, and enhanced foraging behavior in desert areas. All together, these variations resulted in 28 recognized subspecies,[2] all of which are cross-fertile. The subspecies are divided into four major branches, based on work by Ruttner and confirmed by mitochondrial DNA analysis. African subspecies belong to branch A, northwestern European subspecies branch M, southwestern European subspecies branch C and Middle-Eastern subspecies branch O.

    Life cycle

    This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (December 2017) (Learn how and when to remove this template message)
    Main article: Honey bee life cycle

    Colony life cycle

    Swarm of honey bees on a wooden fence rail
    A bee swarm. Bees are non-aggressive in this state, since they have no hive to protect.

    Unlike most other bee species, honey bees have perennial colonies which persist year after year. Because of this high degree of sociality and permanence, honey bee colonies can be considered superorganisms, meaning that reproduction of the colony, rather than individual bees, is the biologically significant unit. Honey bee colonies reproduce through a process called "swarming".

    In most climates, western honey bees swarm in the spring and early summer, when there is an abundance of blooming flowers from which to collect nectar and pollen. In response to these favorable conditions, the hive creates one to two dozen new queens. Just as the pupal stages of these "daughter queens" are nearly complete, the old queen and approximately two-thirds of the adult workers leave the colony in a swarm, traveling some distance to find a new location suitable for building a hive (e.g., a hollow tree trunk). In the old colony, the daughter queens often start "piping", just prior to emerging as adults,[9] and, when the daughter queens eventually emerge, they fight each other until only one remains; the survivor then becomes the new queen. If one of the sisters emerges before the others, she may kill her siblings while they are still pupae, before they have a chance to emerge as adults.

    Once she has dispatched her rivals, the new queen, the only fertile female, lays all the eggs for the old colony, which her mother has left. Virgin females are able to lay eggs, which develop into males (a trait shared with wasps, bees, and ants because of haplodiploidy). However, she requires a mate to produce female offspring, which comprise 90% or more of bees in the colony at any given time. Thus, the new queen goes on one or more nuptial flights, each time mating with 1–17 drones.[10] Once she has finished mating, usually within two weeks of emerging, she remains in the hive, laying eggs.

    Throughout the rest of the growing season, the colony produces many workers, who gather pollen and nectar as cold-season food; the average population of a healthy hive in midsummer may be as high as 40,000 to 80,000 bees. Nectar from flowers is processed by worker bees, who evaporate it until the moisture content is low enough to discourage mold, transforming it into honey, which can then be capped over with wax and stored almost indefinitely. In the temperate climates to which western honey bees are adapted, the bees gather in their hive and wait out the cold season, during which the queen may stop laying. During this time, activity is slow, and the colony consumes its stores of honey used for metabolic heat production in the cold season. In mid- through late winter, the queen starts laying again. This is probably triggered by day length. Depending on the subspecies, new queens (and swarms) may be produced every year, or less frequently, depending on local environmental conditions.

    Individual bee life cycle

    Full (with larvae) and empty (with eggs) honeycomb cells
    Larvae (left) and eggs (right)

    Like other insects that undergo complete metamorphosis, the western honey bee has four distinct life stages: egg, larva, pupa and adult. The complex social structure of honey bee hives means that all of these life stages occur simultaneously throughout much of the year. The queen deposits a single egg into each cell of a honeycomb prepared by worker bees. The egg hatches into a legless, eyeless larva fed by "nurse" bees (worker bees who maintain the interior of the colony). After about a week, the larva is sealed in its cell by the nurse bees and begins its pupal stage. After another week, it emerges as an adult bee. It is common for defined regions of the comb to be filled with young bees (also called "brood"), while others are filled with pollen and honey stores.

    Worker bees secrete the wax used to build the hive, clean, maintain and guard it, raise the young and forage for nectar and pollen; the nature of the worker's role varies with age. For the first ten days of their lives, worker bees clean the hive and feed the larvae. After this, they begin building comb cells. On days 16 through 20, workers receive nectar and pollen from older workers and store it. After the 20th day, a worker leaves the hive and spends the remainder of its life as a forager. Although worker bees are usually infertile females, when some subspecies are stressed they may lay fertile eggs. Since workers are not fully sexually developed, they do not mate with drones and thus can only produce haploid (male) offspring.

    Queens and workers have a modified ovipositor, a stinger, with which they defend the hive. Unlike bees of any other genus and the queens of their own species, the stinger of worker honey bees is barbed. Contrary to popular belief, a bee does not always die soon after stinging; this misconception is based on the fact that a bee will usually die after stinging a human or other mammal. The stinger and its venom sac, with musculature and a ganglion allowing them to continue delivering venom after they are detached, are designed to pull free of the body when they lodge. This apparatus (including barbs on the stinger) is thought to have evolved in response to predation by vertebrates, since the barbs do not function (and the stinger apparatus does not detach) unless the stinger is embedded in elastic material. The barbs do not always "catch", so a bee may occasionally pull its stinger free and fly off unharmed (or sting again).

    Although the average lifespan of a queen in most subspecies is three to five years, reports from the German-European black bee subspecies previously used for beekeeping indicate that a queen can live up to eight years.[11] Because a queen's store of sperm is depleted near the end of her life, she begins laying more unfertilized eggs; for this reason, beekeepers often replace queens every year or two.

    The lifespan of workers varies considerably over the year in regions with long winters. Workers born in spring and summer will work hard, living only a few weeks, but those born in autumn will remain inside for several months as the colony clusters. On average during the year, about one percent of a colony's worker bees die naturally per day.[12] Except for the queen, all of a colony's workers are replaced about every four months.

    Social caste

    Western honey bee on a lavender blossom

    Behavioral and physiological differences between castes and subcastes arise from phenotypic plasticity, which relies on gene expression rather than heritable genotypic differences.[13][14]


    Main article: Queen bee

    The queen bee is a fertile female, who, unlike workers (which are genetically also female), has a fully developed reproductive tract. She is larger than her workers, and has a characteristic rounder, longer abdomen. A female egg can become either a queen or a worker bee. Workers and queens are both fed royal jelly, which is high in protein and low in flavonoid, during the first three days of their larval stage. Workers are then switched to a diet of mixed pollen and nectar (often called "bee bread"), while queens will continue to receive royal jelly. In the absence of flavonoid and the presence of a high-protein diet, queen bees develop a healthy reproductive tract[15]—a task necessary for maintaining a colony of tens of thousands of daughter-workers.

    Periodically, the colony determines that a new queen is needed. There are three general causes:

    1. The hive is filled with honey, leaving little room for new eggs. This will trigger a swarm, where the old queen will take about half the worker bees to found a new colony and leave the new queen with the other half of the workers to continue the old one.
    2. The old queen begins to fail, which is thought to be demonstrated by a decrease in queen pheromones throughout the hive. This is known as supersedure, and at the end of the supersedure the old queen is generally killed.
    3. The old queen dies suddenly, a situation known as emergency supersedure. The worker bees find several eggs (or larvae) of the appropriate age range and attempt to develop them into queens. Emergency supersedure can generally be recognized because new queen cells are built out from comb cells, instead of hanging from the bottom of a frame.

    Regardless of the trigger, workers develop the larvae into queens by continuing to feed them royal jelly.

    See caption
    Peanut-like queen brood cells extend outward from the brood comb

    Queens are not raised in the typical horizontal brood cells of the honeycomb. A queen cell is larger and oriented vertically. If workers sense that an old queen is weakening, they produce emergency cells (known as supersedure cells) made from cells with eggs or young larvae and which protrude from the comb. When the queen finishes her larval feeding and pupates, she moves into a head-downward position and later chews her way out of the cell. At pupation, workers cap (seal) the cell. The queen asserts control over the worker bees by releasing a complex suite of pheromones, known as queen scent.

    After several days of orientation in and around the hive, the young queen flies to a drone congregation point – a site near a clearing and generally about 30 feet (9.1 m) above the ground – where drones from different hives congregate. They detect the presence of a queen in their congregation area by her smell, find her by sight and mate with her in midair; drones can be induced to mate with "dummy" queens with the queen pheromone. A queen will mate multiple times, and may leave to mate several days in a row (weather permitting) until her spermatheca is full.

    The queen lays all the eggs in a healthy colony. The number and pace of egg-laying is controlled by weather, resource availability and specific racial characteristics. Queens generally begin to slow egg-laying in the early fall, and may stop during the winter. Egg-laying generally resumes in late winter when the days lengthen, peaking in the spring. At the height of the season, the queen may lay over 2,500 eggs per day (more than her body mass).

    She fertilizes each egg (with stored sperm from the spermatheca) as it is laid in a worker-sized cell. Eggs laid in drone-sized (larger) cells are left unfertilized; these unfertilized eggs, with half as many genes as queen or worker eggs, develop into drones.


    Workers are females produced by the queen that develop from fertilized, diploid eggs. Workers are essential for social structure and proper colony functioning. They carry out the main tasks of the colony, because the queen is occupied with only reproducing. These females will raise their sister workers and future queens that eventually leave the nest to start their own colony. They also forage and return to the nest with nectar and pollen to feed the young.


    Top and bottom views of a developing pupa against a honeycomb
    Development of a drone pupa
    White and brown pupae filling cells
    Pupae of drones
    Main article: Drone (bee)

    Drones are the colony's male bees. Since they do not have ovipositors, they do not have stingers. Drone honey bees do not forage for nectar or pollen. The primary purpose of a drone is to fertilize a new queen. Many drones will mate with a given queen in flight; each will die immediately after mating, since the process of insemination requires a lethally convulsive effort. Drone honey bees are haploid (single, unpaired chromosomes) in their genetic structure, and are descended only from their mother (the queen). In temperate regions drones are generally expelled from the hive before winter, dying of cold and starvation since they cannot forage, produce honey or care for themselves. There has been research into the role western honey bee drones play in thermoregulation within the hive. Given their larger size (1.5 times that of worker bees), drones may play a significant role. Drones are typically located near the center of hive clusters for unclear reasons. It is postulated that it is to maintain sperm viability, which may be compromised at cooler temperatures. Another possible explanation is that a more central location allows drones to contribute to warmth, since at temperatures below 25 °C (77 °F) their ability to contribute declines.[16]

    Queen-worker conflict

    Main article: Worker policing

    When a fertile female worker produces drones, a conflict arises between her interests and those of the queen. The worker shares half her genes with the drone and one-quarter with her brothers, favouring her offspring over those of the queen. The queen shares half her genes with her sons and one-quarter with the sons of fertile female workers.[17] This pits the worker against the queen and other workers, who try to maximize their reproductive fitness by rearing the offspring most related to them. This relationship leads to a phenomenon known as "worker policing". In these rare situations, other worker bees in the hive who are genetically more related to the queen's sons than those of the fertile workers will patrol the hive and remove worker-laid eggs. Another form of worker-based policing is aggression toward fertile females.[18] Some studies have suggested a queen pheromone which may help workers distinguish worker- and queen-laid eggs, but others indicate egg viability as the key factor in eliciting the behavior.[19][20] Worker policing is an example of forced altruism, where the benefits of worker reproduction are minimized and that of rearing the queen's offspring maximized.

    In very rare instances workers subvert the policing mechanisms of the hive, laying eggs which are removed at a lower rate by other workers; this is known as anarchic syndrome. Anarchic workers can activate their ovaries at a higher rate and contribute a greater proportion of males to the hive. Although an increase in the number of drones would decrease the overall productivity of the hive, the reproductive fitness of the drones' mother would increase. Anarchic syndrome is an example of selection working in opposite directions at the individual and group levels for the stability of the hive.[21]

    Under ordinary circumstances the death (or removal) of a queen increases reproduction in workers, and a significant proportion of workers will have active ovaries in the absence of a queen. The workers of the hive produce a last batch of drones before the hive eventually collapses. Although during this period worker policing is usually absent, in certain groups of bees it continues.[22]

    According to the strategy of kin selection, worker policing is not favored if a queen does not mate multiple times. Workers would be related by three-quarters of their genes, and the difference in relationship between sons of the queen and those of the other workers would decrease. The benefit of policing is negated, and policing is less favored. Experiments confirming this hypothesis have shown a correlation between higher mating rates and increased rates of worker policing in many species of social hymenoptera.[23]



    Foraging honey bee

    The honey bee needs an internal body temperature of 35 °C (95 °F) to fly; this temperature is maintained in the nest to develop the brood, and is the optimal temperature for the creation of wax. The temperature on the periphery of the cluster varies with outside air temperature, and the winter cluster's internal temperature may be as low as 20–22 °C (68–72 °F).

    Honey bees can forage over a 30 °C (86 °F) air-temperature range because of behavioral and physiological mechanisms for regulating the temperature of their flight muscles. From low to high air temperatures, the mechanisms are: shivering before flight, and stopping flight for additional shivering; passive body-temperature regulation based on work, and evaporative cooling from regurgitated honey-sac contents. Body temperatures differ, depending on caste and expected foraging rewards.[24]

    The optimal air temperature for foraging is 22–25 °C (72–77 °F). During flight, the bee's relatively large flight muscles create heat which must be dissipated. The honey bee uses evaporative cooling to release heat through its mouth. Under hot conditions, heat from the thorax is dissipated through the head; the bee regurgitates a droplet of warm internal fluid — a "honeycrop droplet" – which reduces the temperature of its head by 10 °C (18 °F).[25]

    Below 7–10 °C (45–50 °F) bees are immobile, and above 38 °C (100 °F) their activity slows. Honey bees can tolerate temperatures up to 50 °C (122 °F) for short periods.


    Bees completely covering the base of a fallen tree
    A large honey-bee swarm on a fallen tree trunk

    Honey-bee behavior has been extensively studied, since bees are widespread and familiar. Karl von Frisch, who received the 1973 Nobel Prize in Physiology or Medicine for his study of honey-bee communication, noticed that bees communicate with dance. Through these dances, bees communicate information regarding the distance, the situation, and the direction of a food source by the dances of the returning (honey bee) worker bee on the vertical comb of the hive.[26] Honey bees direct other bees to food sources with the round dance and the waggle dance. Although the round dance tells other foragers that food is within 50 metres (160 ft) of the hive, it provides insufficient information about direction. The waggle dance, which may be vertical or horizontal, provides more detail about the distance and direction of a food source. Foragers are also thought to rely on their olfactory sense to help locate a food source after they are directed by the dances. Unlike western honey bees, the dwarf honey bee do not change the precision of the waggle dance to indicate the type of site that is set as a new goal.[27] Therefore, western honey bees are better at conveying information than its closely related species and this further supports the notion that former are more evolved than latter.[28]

    Another means of communication is the shaking signal, also known as the jerking dance, vibration dance or vibration signal. Although the shaking signal is most common in worker communication, it also appears in reproductive swarming. A worker bee vibrates its body dorsoventrally while holding another bee with its front legs. Jacobus Biesmeijer, who examined shaking signals in a forager's life and the conditions leading to its performance, found that experienced foragers executed 92 percent of observed shaking signals and 64 percent of these signals were made after the discovery of a food source. About 71 percent of shaking signals occurred before the first five successful foraging flights of the day; other communication signals, such as the waggle dance, were performed more often after the first five successes. Biesmeijer demonstrated that most shakers are foragers and the shaking signal is most often executed by foraging bees on pre-foraging bees, concluding that it is a transfer message for several activities (or activity levels). Sometimes the signal increases activity, as when active bees shake inactive ones. At other times, such as the end of the day, the signal is an inhibitory mechanism. However, the shaking signal is preferentially directed towards inactive bees. All three forms of communication among honey bees are effective in foraging and task management.


    Main article: Honey bee pheromones

    Pheromones (substances involved in chemical communication) are essential to honey-bee survival. Honey bees rely on pheromones for nearly all behaviors, including mating, alarm, defense, orientation, kin and colony recognition, food production and integrating colony activities.[29][30]


    A honey hunter in a cave painting at Cuevas de la Araña, Spain, c. 8,000–6,000 BC
    Bee hieroglyph from the tomb complex of Senusret I (d. 1926 BCE)
    Further information: Domestication

    Humans have been collecting honey from bees for thousands of years, with evidence in the form of rock art found in France and Spain,[31] dating to around 7000 BCE.[32] The honey bee is one of the few invertebrate animals to have been domesticated. Bees were likely first domesticated in ancient Egypt, where tomb paintings depict bee-keeping. Europeans brought bees to North America in 1622.[33][34]

    Beekeepers have selected bees for several desirable features:[33]

    • the ability of a colony to survive periods with little food[33]
    • the ability of a colony to survive cold weather[33]
    • resistance to disease[33]
    • increased honey-production[33]
    • reduced aggressiveness[33]
    • reduced tendency to swarm[33]
    • reduced nest-building[33]
    • easy pacification with smoke[33]

    These modifications, along with artificial change of location, have improved bees from the point of view of the beekeeper, and simultaneously made them more dependent on beekeepers for their survival. In Europe, cold-weather survival was likely selected for, consciously or not, while in Africa, selection probably favoured the ability to survive heat, drought, and heavy rain.[33]

    Authors do not agree on whether this degree of artificial selection constitutes genuine domestication. In 1603, John Guillim wrote "The Bee I may well reckon a domestic insect, being so pliable to the benefit of the keeper."[35] More recently, many biologists working on pollination take the domesticated status of honey bees for granted.[36][37] For example, Rachael Winfree and colleagues write "We used crop pollination as a model system, and investigated whether the loss of a domesticated pollinator (the honey bee) could be compensated for by native, wild bee species."[38] Similarly, Brian Dennis and William Kemp write: "Although the domestication of the honey bee is closely connected to the evolution of food-based socio-economic systems in many cultures throughout the world, in current economic terms, and in the U.S. alone, the estimated wholesale value of honey, more than $317 million dollars in 2013, pales in comparison to aggregate estimated annual value of pollination services, variously valued at $11–15 billion."[39]

    On the other hand, P. R. Oxley and B. P. Oldroyd (2010) consider the domestication of bees at best partial.[40] Oldroyd observes that the lack of full domestication is somewhat surprising, given that people have kept bees for at least 7000 years. Instead, bee-keepers have found ways to manage bees using hives, while the bees remain "largely unchanged from their wild cousins".[41]

    Leslie Bailey and B. V. Ball, in their book Honey Bee Pathology, call honey bees "feral insects", in contrast to the silkworm (Bombyx mori) which they call "the only insect that has been domesticated", and refer to the "popular belief among many biologists as well as beekeepers that bees are domesticated". They argue that honey bees are able to survive without man's help, and in fact require to "be left at liberty" to survive. They argue further that even if bees could be raised away from the wild, they would still have to fly freely to gather nectar and pollinate plants. Therefore, they argue, bee-keeping is "the exploitation of colonies of a wild insect", with little more than the provision of a weatherproof cavity for them to nest in.[42] Pilar de la Rua and colleagues likewise argue that honey bees are not fully domesticated, since "endemic subspecies-specific genetic footprints can still be identified in Europe and Africa", making conservation of wild-bee diversity important. They further argue that the difficulty of controlling drones for mating is a serious handicap and a sign that domestication is not complete, in particular as "extensive gene flow usually occurs between wild/feral and managed honeybee populations".[43]


    Main article: Beekeeping
    This section needs additional citations for verification. Relevant discussion may be found on Talk:Western honey bee. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (March 2017) (Learn how and when to remove this template message)
    Larger, solid-brown queen with striped workers
    Queen bee with workers

    The honey bee is a colonial insect which is housed, transported by and sometimes fed by beekeepers. Honey bees do not survive and reproduce individually, but as part of the colony (a superorganism).

    Honey bees collect flower nectar and convert it to honey, which is stored in the hive. The nectar, transported in the bees' stomachs, is converted with the addition of digestive enzymes and storage in a honey cell for partial dehydration. Nectar and honey provide the energy for the bees' flight muscles and for heating the hive during the winter. Honey bees also collect pollen, which after being processed to bee bread supplies protein and fat for the bee brood to grow. Centuries of selective breeding by humans have created bees which produce far more honey than the colony needs, and beekeepers (also known as apiarists) harvest the surplus honey.

    Many honey bees on a comb
    Honey bees removed from the hive for inspection by a beekeeper

    Beekeepers provide a place for the colony to live and store honey. There are seven basic types of beehive: skeps, Langstroth hives, top-bar hives, box hives, log gums, D. E. hive, and miller hives. All U.S. states require beekeepers to use movable frames to allow bee inspectors to check the brood for disease. This allows beekeepers to keep Langstroth, top-bar and D.E. hives without special permission, granted for purposes such as museum use. Modern hives also enable beekeepers to transport bees, moving from field to field as crops require pollinating (a source of income for beekeepers).

    In cold climates, some beekeepers have kept colonies alive (with varying degrees of success) by moving them indoors for winter. While this can protect the colonies from extremes of temperature and make winter care and feeding more convenient for the beekeeper, it increases the risk of dysentery and causes an excessive buildup of carbon dioxide from the bees' respiration. Inside wintering has been refined by Canadian beekeepers, who use large barns solely for the wintering of bees; automated ventilation systems assist in carbon-dioxide dispersal.


    Honeybee in a park in Tokyo
    Beehives in a planted field
    Beehives set up for pollination
    Video of bee collecting pollen from crocuses
    Bee in flight, carrying pollen in a yellow container large for its size
    Bee carrying pollen in a basket back to the hive

    Honey bees

    A primary product of honey bees is more honey bees. Honey bees are bought as mated queens, in spring packages of a queen with 2 to 5 pounds (0.91 to 2.27 kg) of bees, as nucleus colonies (which include frames of brood) and as full colonies. Commerce in bees dates to prehistory, and modern methods of producing queens and dividing colonies for increase date to the late 1800s. Bees are typically produced in temperate to tropical regions and sold to colder areas; for example packages of bees produced in the U.S. state of Florida are sold to beekeepers in Michigan.[citation needed]


    Honey bee pollinating a flower

    The honey bee is an important pollinator of crops; this service accounts for much of the species' commercial value. A large number of the crop species farmed worldwide depend on it,[44] Although orchards and fields have increased in size, wild pollinators have dwindled. In a number of regions the pollination shortage is addressed by migratory beekeepers, who supply hives during a crop bloom and move them after the blooming period. Commercial beekeepers plan their movements and wintering locations according to anticipated pollination services. At higher latitudes it is difficult (or impossible) to winter over sufficient bees, or to have them ready for early blooming plants. Much migration is seasonal, with hives wintering in warmer climates and moving to follow the bloom at higher latitudes. In California almond pollination occurs in February, early in the growing season before local hives have built up their populations.

    Almond orchards require two hives per acre, or 2,000 m2 (22,000 sq ft) per hive, for maximum yield, and pollination is dependent on the importation of hives from warmer climates. Almond pollination (in February and March in the U.S.) is the largest managed pollination event in the world, requiring more than one-third of all managed honey bees in the country. Mass movements of bees are also made for apples in New York, Michigan, and Washington. Despite honey bees' inefficiency as blueberry pollinators,[45] large numbers are moved to Maine because they are the only pollinators who can be easily moved and concentrated for this and other monoculture crops. Bees and other insects maintain flower constancy by transferring pollen to other biologically specific plants;[46] this prevents flower stigmas from being clogged with pollen from other species.[47]

    Claims of human dependency

    European honey bees are often described as being essential to all human food production, leading to claims that without their pollination, all of humanity would starve, or even die out.[48][49] Einstein is sometimes misquoted as saying If bees disappeared off the face of the earth, man would only have four years left to live.[50] But not only did the scientist not say that, there is no science to support the prediction, itself.[51] In fact, many important crops need no insect pollination at all. The ten most important crops,[52] comprising 60% of all human food energy,[53] all fall into this category: Plantains are sterile and propagated by cuttings, as are cassava. Potatoes, yams, and sweet potatoes are root vegetables propagated by tubers. Soybeans are self-pollinated. Rice, wheat, and corn are all wind-pollinated, because this is true of all grasses.

    Similarly, no crops originating in the New World depend on the domesticated honey bee Apis mellifera at all, as the insect is invasive, having been brought over with colonists in the last few centuries. Thomas Jefferson mentioned this in his Notes on the State of Virginia:

    “ The honey-bee is not a native of our continent. Marcgrave indeed mentions a species of honey-bee in Brasil. But this has no sting, and is therefore different from the one we have, which resembles perfectly that of Europe. The Indians concur with us in the tradition that it was brought from Europe; but, when, and by whom, we know not. The bees have generally extended themselves into the country, a little in advance of the white settlers. The Indians therefore call them the white man's fly, and consider their approach as indicating the approach of the settlements of the whites.[54]

    Tomatoes, peppers, squash, and all other New World crops evolved with native pollinators like squash bees, bumble bees, other native bees. The stingless bees mentioned by Jefferson are distant relatives of the honey bees, in the genus Melipona.


    Main article: Honey

    Honey is the complex substance made from nectar and sweet deposits from plants and trees which are gathered, modified and stored in the comb by honey bees.[55] Honey is a biological mixture of inverted sugars, primarily glucose and fructose. It has antibacterial and antifungal properties. Honey from the western honey bee, along with the bee Tetragonisca angustula, has specific antibacterial activity towards an infection causing bacteria, Staphylococcus aureus.[56] Honey will not rot or ferment when stored under normal conditions, however it will crystallize over time. Although crystallized honey is acceptable for human use, bees can only use liquid honey and will remove and discard crystallized honey from the hive.

    Honey bee with "tongue" partially extended

    Bees produce honey by collecting nectar, a clear liquid consisting of nearly 80 percent water and complex sugars. The collecting bees store the nectar in a second stomach and return to the hive, where worker bees remove the nectar. The worker bees digest the raw nectar for about 30 minutes, using digestive enzymes to break down the complex sugars into simpler ones. Raw honey is then spread in empty honeycomb cells to dry, reducing its water content to less than 20 percent. When nectar is being processed, honey bees create a draft through the hive by fanning with their wings. When the honey has dried, the honeycomb cells are sealed (capped) with wax to preserve it.


    Main article: Beeswax

    Mature worker bees secrete beeswax from glands on their abdomen, using it to form the walls and caps of the comb.[57] When honey is harvested, the wax can be collected for use in products like candles and seals.

    Bee bread

    Further information: Bee pollen

    Bees collect pollen in a pollen basket and carry it back to the hive, where after undergoing fermentation and turning into bee bread becomes a protein source for brood-rearing.[58] Excess pollen can be collected from the hive; although it is sometimes consumed as a dietary supplement by humans, bee pollen may cause an allergic reaction in susceptible individuals.

    Bee brood

    Main article: Bee brood § As_food

    Bee brood, the eggs, larvae, or pupae of honey bees, is edible and highly nutritious. Bee brood contains the same amount of protein that beef or poultry does. Bee brood is often harvested as a byproduct when the farmer has excess bees and does not wish for more.


    Main article: Propolis

    Propolis is a resinous mixture collected by honey bees from tree buds, sap flows or other botanical sources, which is used as a sealant for unwanted open spaces in the hive.[59] Although propolis is alleged to have health benefits (tincture of Propolis is marketed as a cold and flu remedy), it may cause severe allergic reactions in some individuals.[60] Propolis is also used in wood finishes, and gives a Stradivarius violin its unique red color.[61]

    Royal jelly

    Main article: Royal jelly

    Royal jelly is a honey-bee secretion used to nourish the larvae and queen.[62] It is marketed for its alleged but unsupported claims of health benefits.[63][64] On the other hand, it may cause severe allergic reactions in some individuals.[65]


    Further information: DNA methylation

    As of October 28, 2006, the Honey Bee Genome Sequencing Consortium fully sequenced and analyzed the genome of Apis mellifera, the western honey bee. Since 2007, attention has been devoted to colony collapse disorder, a decline in European honey bee colonies in a number of regions.

    The European honey bee is the third insect, after the fruit fly and the mosquito, to have its genome mapped. According to scientists who analyzed its genetic code, the honey bee originated in Africa and spread to Europe in two ancient migrations.[5] Scientists have found that genes related to smell outnumber those for taste, and the European honey bee has fewer genes regulating immunity than the fruit fly and the mosquito.[66] The genome sequence also revealed that several groups of genes, particularly those related to circadian rhythm, resembled those of vertebrates more than other insects. Another significant finding from the honey bee genome study, was that the honey bee was the first insect to be discovered with a functional DNA methylation system since functional key enzymes (DNA methyltransferase-1 and -3) were identified in the genome. DNA methylation is one of the important mechanisms in epigenetics to study gene expression and regulation without changing the DNA sequence, but modifications on DNA activity.[67] DNA methylation later was identified to play an important role in gene regulation and gene splicing.[68] The genome is unusual in having few transposable elements, although they were present in the evolutionary past (remains and fossils have been found) and evolved more slowly than those in fly-species.[66]

    Hazards and survival

    European honey-bee populations face threats to their survival increasing interests into other pollinator species, like the common eastern bumblebee.[69] North American and European populations were severely depleted by varroa-mite infestations during the early 1990s, and U.S. beekeepers were further affected by colony collapse disorder in 2006 and 2007.[70] Improved cultural practices and chemical treatments against varroa mites saved most commercial operations; new bee breeds are beginning to reduce beekeeper dependence on acaricides. Feral bee populations were greatly reduced during this period; they are slowly recovering, primarily in mild climates, due to natural selection for varroa resistance and repopulation by resistant breeds. Insecticides, particularly when used in excess of label directions, have also depleted bee populations[citation needed] as bee pests and diseases (including American foulbrood and tracheal mites) are becoming resistant to medications.

    Environmental hazards

    Bee on an orange flower
    An African honey bee in Tanzania extracts nectar from a flower, as pollen grains stick to its body

    Africanized bees have spread across the southern United States, where they pose a slight danger to humans (making beekeeping—particularly hobby beekeeping—difficult). As an invasive species, feral honey bees have become a significant environmental problem in non-native areas. Imported bees may displace native bees and birds, and may also promote the reproduction of invasive plants ignored by native pollinators. Unlike native bees, they do not properly extract or transfer pollen from plants with pore anthers (anthers which only release pollen through tiny apical pores); this requires buzz pollination, a behavior rarely exhibited by honey bees. Honey bees reduce fruiting in Melastoma affine, a plant with pore anthers, by robbing its stigmas of previously deposited pollen.[71]


    Insect predators of honeybees include the Asian giant hornet and other wasps, robber flies, dragonflies such as the green darner, the European beewolf, some praying mantises, and the water strider.

    Arachnid predators of honeybees include fishing spiders, lynx spiders, goldenrod spiders[72] and the St Andrew's Cross spider.

    Reptile and amphibian predators of honeybees include the American toad, Anole lizards, the American bullfrog and the wood frog.

    Specialist bird predators include the bee-eaters; other birds that may take bees include grackles, hummingbirds, Summer tanager, and tyrant flycatchers. Most birds that eat bees do so opportunistically, however, summer tanagers will sit on a limb and catch dozens of bees from the hive entrance.[73]

    Mammals that sometimes take bees include bears, least shrews, opossums, raccoons, honey badgers and skunks.

    Close relatives

    Apart from Apis mellifera, there are 6 other species in the genus Apis. These are Apis andreniformis, Apis florea, Apis dorsata, Apis cerana, Apis koschevnikovi, and Apis nigrocincta.[74] These other species all originated in South and Southeast Asia. Only Apis mellifera is thought to have originated in Europe, Asia, and Africa.[75]

    See also


    1. ^ De la Rúa, P., Paxton, R.J., Moritz, R.F.A., Roberts, S., Allen, D.J., Pinto, M.A., Cauia, E., Fontana, P., Kryger, P., Bouga, M., Buechler, R., Costa, C., Crailsheim, K., Meixner, M., Siceanu, A. & Kemp, J.R. (2014). "Apis mellifera". IUCN Red List of Threatened Species. IUCN. 2014: e.T42463639A42463665. Retrieved 23 July 2017.CS1 maint: Uses authors parameter (link) .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""'"'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    2. ^ a b c Michael S. Engel (1999). "The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis)". Journal of Hymenoptera Research. 8: 165–196.
    3. ^ Lo, N.; Golag, R.S.; Anderson, D.L.; Oldroyd, B.P. (2010). "A molecular phylogeny of the genus Apis suggests that the Giant Honey Bee of the Philippines, A. breviligula Maa, and the Plains Honey Bee of southern India, A. indica Fabricius, are valid species". Systematic Entomology. 35 (2): 226–233. doi:10.1111/j.1365-3113.2009.00504.x.
    4. ^ a b Mortensen, Ashley N.; Schmehl, Daniel R.; Ellis, Jamie (August 2013). "European honey bee". Entomology and Nematology Department, University of Florida. Retrieved 1 September 2018.
    5. ^ a b c Charles W. Whitfield, Susanta K. Behura , Stewart H. Berlocher, Andrew G. Clark, J. Spencer Johnston, Walter S. Sheppard, Deborah R. Smith, Andrew V. Suarez, Daniel Weaver & Neil D. Tsutsui (2006). "Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera" (PDF). Science. 314 (5799): 642–645. Bibcode:2006Sci...314..642W. doi:10.1126/science.1132772. PMID 17068261. Archived from the original (PDF) on September 29, 2015.CS1 maint: Multiple names: authors list (link)
    6. ^ Han, Fan; Wallberg, Andreas; Webster, Matthew T (2012). "From where did the Western honeybee (Apis mellifera) originate?". Ecology and Evolution. 2 (8): 1949–1957. doi:10.1002/ece3.312. PMC 3433997. PMID 22957195.
    7. ^ "Research upsetting some notions about honey bees". ScienceDaily. December 29, 2006.
    8. ^ Winston, M.; Dropkin, J.; Taylor, O. (1981). "Demography and life history characteristics of two honey bee races (Apis mellifera)". Oecologia. 48: 407–413. Bibcode:1981Oecol..48..407W. doi:10.1007/bf00346502.
    9. ^ Piping Queens After a Swarm on YouTube
    10. ^ Page, Robert E. (1980). "The Evolution of Multiple Mating Behavior by Honey Bee Queens (Apis mellifera L.)" (PDF). Genetics. 96: 253–273. PMC 1214294. PMID 7203010. Retrieved 24 March 2017.
    11. ^ "Apis mellifera". AnAge database. Human Ageing Genomic Resources. Retrieved June 2, 2011.
    12. ^ Tautz, J. Phaenomen Honigbiene Springer 2003, 280 pages, pg 47
    13. ^ Toth, A. L.; Robinson, G. E. (2009). "Evo-Devo and the Evolution of Social Behavior: Brain Gene Expression Analyses in Social Insects". Cold Spring Harbor Symposia on Quantitative Biology. 74: 419–426. doi:10.1101/sqb.2009.74.026. PMID 19850850.
    14. ^ Yan, Hua; Bonasio, Roberto; Simola, Daniel F.; Liebig, Jürgen; Berger, Shelley L.; Reinberg, Danny (2015). "DNA Methylation in Social Insects: How Epigenetics Can Control Behavior and Longevity". Annual Review of Entomology. 60 (1): 435–452. doi:10.1146/annurev-ento-010814-020803. PMID 25341091.
    15. ^ Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R. (2015). "A dietary phytochemical alters caste-associated gene expression in honey bees". Science Advances. 1 (7): e1500795. Bibcode:2015SciA....1E0795M. doi:10.1126/sciadv.1500795.
    16. ^ Harrison, J H (1 May 1987). "Roles of individual honeybee workers and drones in colonial thermogenesis" (PDF). Journal of Experimental Biology. 129: 60. Retrieved 17 October 2014.
    17. ^ Wenseleers, T.; Helanterä, H.; Hart, A.; Ratnieks, F. L. W. (2004). "Worker reproduction and policing in insect societies: an ESS analysis". Journal of Evolutionary Biology. 17: 1035–1047. doi:10.1111/j.1420-9101.2004.00751.x.
    18. ^ Ratnieks, F.; Visscher, P. Kirk (1989). "Worker policing in the honeybee". Nature. 342: 796–797. Bibcode:1989Natur.342..796R. doi:10.1038/342796a0.
    19. ^ Pirk, C.; Neumann, P.; Hepburn, R.; Moritz, R.; Tautz, J. (2003). "Egg viability and worker policing in honey bees". PNAS. 101: 8649–8651. Bibcode:2004PNAS..101.8649P. doi:10.1073/pnas.0402506101. PMC 423249.
    20. ^ Oldroyd, B., and Francis Ratnieks. (2002) Egg-marking pheromones in honey-bees Apis mellifera. Behavior Ecology and Sociobiology, 51: 590–591. doi:10.1007/s00265-002-0480-4
    21. ^ Barron, A. , Oldroyd, B, and Ratnieks, F.L.W. (2001) Worker reproduction in honey-bees (Apis) and the anarchic syndrome: a review. Behavior Ecology and Sociobiology, 50: 199–208. doi:10.1007/s002650100362
    22. ^ Châline, N., Martin, S.J., and Ratnieks, F.L.W. Worker policing persists in a hopelessly queenless honey bee colony (Apis mellifera). (2004) Insectes Soc, 51: 1–4. doi:10.1007/s00040-003-0708-0
    23. ^ Davies, N.R., Krebs, J.R., and West, S.A. An Introduction to Behavioral Ecology. 4th ed. West Sussex: Wiley-Blackwell, 2012. Print. pp. 387–388
    24. ^ Bernd Heinrich (1996). "How the honey bee regulates its body temperature". Bee World. 77: 130–137.
    25. ^ Bernd Heinrich (1979). "Keeping a cool head: honeybee thermoregulation". Science. 205 (4412): 1269–1271. Bibcode:1979Sci...205.1269H. doi:10.1126/science.205.4412.1269. PMID 17750151.
    26. ^ John L. Capinera (11 August 2008). Encyclopedia of Entomology. Springer Science & Business Media. pp. 1534–. ISBN 978-1-4020-6242-1.
    27. ^ Beekman, Madeleine; et al. (2008). "Dance Precision of Apis florea—Clues to the Evolution of the Honeybee Dance Language?". Behavioral Ecology and Sociobiology. 62 (8): 1259–1265. doi:10.1007/s00265-008-0554-z.
    28. ^ Biewer, Matthias; Schlesinger, Francisca; Hasselmann, Martin (10 April 2015). "The evolutionary dynamics of major regulators for sexual development among Hymenoptera species". Frontiers in Genetics. 6: 124. doi:10.3389/fgene.2015.00124. PMC 4392698. PMID 25914717.
    29. ^ Free, John B., Pheromones of social bees. Ithaca, N.Y.: Comstock, 1987.
    30. ^ Blum, M.S. 1992. Honey bee pheromones in The Hive and the Honey Bee, revised edition (Dadant and Sons: Hamilton, Illinois), pages 385–389.
    31. ^ Weber, Ella (Spring 2012). "Apis mellifera: The Domestication and Spread of European Honey Bees for Agriculture in North America" (PDF). University of Michigan Undergraduate Research Journal (9): 21.
    32. ^ Mallory,, J. P.; Adams, Douglas Q. (1997). Encyclopedia of Indo-European Culture. Taylor & Francis. p. 58. ISBN 9781884964985.
    33. ^ a b c d e f g h i j k Weber, Ella (2012). "Apis mellifera The Domestication and Spread of European Honey Bees for Agriculture in North America" (PDF). University of Michigan Undergraduate Research Journal (9). Retrieved 21 March 2017.
    34. ^ Crane, Eva (1984). Mason, I. L., ed. Honeybees. Evolution of Domesticated Animals. Longman. pp. 403–415.
    35. ^ Guillim, John (1603). A Display of Heraldry.
    36. ^ Aizen, Marcelo A.; Harder, Lawrence D. (2009). "The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination". Current Biology. 19 (11): 915–918. doi:10.1016/j.cub.2009.03.071.
    37. ^ Potts, Simon G.; et al. (2010). "Global pollinator declines: Trends, impacts and drivers". Trends in Ecology & Evolution. 25 (6): 345–353. doi:10.1016/j.tree.2010.01.007. PMID 20188434.CS1 maint: Explicit use of et al. (link)
    38. ^ Winfree, Rachael; et al. (2007). "Native bees provide insurance against ongoing honey bee loss". Ecology Letters. 10 (11): 1105–1113. doi:10.1111/j.1461-0248.2007.01110.x.CS1 maint: Explicit use of et al. (link)
    39. ^ Dennis, Brian; Kemp, William (1 October 2015). "Allee effects and colony collapse disorder in honey bees". United States Department of Agriculture. Retrieved 22 March 2017.
    40. ^ Oxley, P.R.; Oldroyd, B. P. (2010). "The genetic architecture of bee breeding". Advances in Insect Physiology. 39: 83–118.CS1 maint: Multiple names: authors list (link)
    41. ^ Oldroyd, Benjamin P. (2012). "Domestication of honey bees was associated with expansion of genetic diversity". Molecular Ecology. 21: 4409–4411. doi:10.1111/j.1365-294X.2012.05641.x.
    42. ^ Bailey, Leslie; Ball, B. V. (2013). Honey Bee Pathology. Elsevier. pp. 7–8. ISBN 978-1-4832-8809-3.
    43. ^ De la Rua, Pilar; et al. (2013). "Conserving genetic diversity in the honeybee: Comments on Harpur et al. (2012)". Molecular Ecology. 22 (12): 3208–3210. doi:10.1111/mec.12333.CS1 maint: Explicit use of et al. (link)
    44. ^ "Pollinators and agriculture: Agricultural productivity and pollinator protection" (PDF). European Crop Protection. p. 1. Retrieved 1 September 2018.
    45. ^ S. K. Javorekac; K. E. Mackenziec; S. P. Vander Kloetbc (2002). "Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: Vaccinium angustifolium)". Annals of the Entomological Society of America. 95 (3): 345–351. doi:10.1603/0013-8746(2002)095[0345:CPEABH]2.0.CO;2.
    46. ^ Lawrence D. Harder, Neal M. Williams, Crispin Y. Jordan & William A. Nelson (2001). "The effects of floral design and display on pollinator economics and pollen dispersal". In Lars Chittka; James D. Thomson. Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution. Cambridge University Press. pp. 297–317. doi:10.1017/CBO9780511542268.016. ISBN 978-0-511-54226-8.CS1 maint: Multiple names: authors list (link)
    47. ^ Lars Chittka, James D. Thomson & Nickolas M. Waser (1999). "Flower constancy, insect psychology, and plant evolution" (PDF). Naturwissenschaften. 86: 361–377. Bibcode:1999NW.....86..361C. doi:10.1007/s001140050636.
    48. ^ If All The Bees In The World Die, Humans Will Not Survive
    49. ^ A Devastating Look At Our World If Honeybees Disappeared
      "A world without honeybees would also mean a world without fruits, vegetables, nuts, and seeds."
    50. ^ What Would Happen if All the Bees Went Extinct?
      "First, the easy part: "I've never seen anything definitively link the quote to Einstein," says Mark Dykes, the chief inspector for Texas Apiary Inspection Service. Quote checkers like this one, and this one agree. But debunking its message? That's more complicated."
    51. ^ Would a World Without Bees Be a World Without Us?
      "Albert Einstein is sometimes quoted as saying, “If the bee disappears from the surface of the earth, man would have no more than four years to live.” It’s highly unlikely that Einstein said that. For one thing, there’s no evidence of him saying it. For another, the statement is hyperbolic and wrong (and Einstein was rarely wrong)."
    52. ^ The 10 Most Important Crops In The World
    53. ^ What Are The World's Most Important Staple Foods?
    54. ^ Bees and Honey
    55. ^ Crane E (1990). "Honey from honeybees and other insects". Ethology Ecology & Evolution. 3 (sup1): 100–105. doi:10.1080/03949370.1991.10721919.
    56. ^ Miorin, P.L.; Levy Junior, N.C.; Custodio, A.R.; Bretz, W.A.; Marcucci, M.C. (November 2003). "Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus". Journal of Applied Microbiology. 95 (5): 913–920. doi:10.1046/j.1365-2672.2003.02050.x.
    57. ^ Sanford, M.T.; Dietz, A. (1976). "The fine structure of the wax gland of the honey bee (Apis mellifera L.)". Apidologie. 7: 197–207. doi:10.1051/apido:19760301.
    58. ^ Gillott, Cedric (1995). Entomology. Springer. p. 79.
    59. ^ Simone-Finstrom, Michael; Spivak, Marla (May–June 2010). "Propolis and bee health: The natural history and significance of resin use by honey bees". Apidologie. 41 (3): 295–311. doi:10.1051/apido/2010016.
    60. ^ "Propolis:MedlinePlus Supplements". U.S. National Library of Medicine. January 19, 2012.
    61. ^ Gambichler T; Boms S; Freitag M (April 2004). "Contact dermatitis and other skin conditions in instrumental musicians". BMC Dermatol. 4: 3. doi:10.1186/1471-5945-4-3. PMC 416484. PMID 15090069.
    62. ^ Jung-Hoffmann, L (1966). "Die Determination von Königin und Arbeiterin der Honigbiene". Z Bienenforsch. 8: 296–322.
    63. ^ "Scientific Opinion". EFSA Journal. 9 (4): 2083. 2011. doi:10.2903/j.efsa.2011.2083.
    64. ^ "Federal Government Seizes Dozens of Misbranded Drug Products: FDA warned company about making medical claims for bee-derived products". Food and Drug Administration. Apr 5, 2010.
    65. ^ Leung, R; Ho, A; Chan, J; Choy, D; Lai, CK (March 1997). "Royal jelly consumption and hypersensitivity in the community". Clin. Exp. Allergy. 27 (3): 333–6. doi:10.1111/j.1365-2222.1997.tb00712.x. PMID 9088660.
    66. ^ a b Honey Bee Genome Sequencing Consortium (2006). "Insights into social insects from the genome of the honeybee Apis mellifera". Nature. 443 (7114): 931–949. Bibcode:2006Natur.443..931T. doi:10.1038/nature05260. PMC 2048586. PMID 17073008.
    67. ^ Ying Wang, Mireia Jorda, Peter L. Jones, Ryszard Maleszka, Xu Ling, Hugh M. Robertson, Craig A. Mizzen, Miguel A. Peinado & Gene E. Robinson (2006). "Functional CpG methylation system in a social insect". Science. 314 (5799): 645–647. Bibcode:2006Sci...314..645W. doi:10.1126/science.1135213. PMID 17068262.CS1 maint: Multiple names: authors list (link)
    68. ^ Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C; Kaneda, Megan; Hou, Kirk K; Worley, Kim C; Elsik, Christine G; Wickline, Samuel A; Jacobsen, Steven E; Ma, Jian; Robinson, Gene E (2013). "RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee". Proceedings of the National Academy of Sciences. 110 (31): 12750–12755. Bibcode:2013PNAS..11012750L. doi:10.1073/pnas.1310735110. PMC 3732956. PMID 23852726.
    69. ^ Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A.; Ollerton, Jeff (24 July 2013). "Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented". PLoS ONE. 8 (7): e69819. Bibcode:2013PLoSO...869819P. doi:10.1371/journal.pone.0069819. PMC 3722171. PMID 23894544.
    70. ^ Stefan Lovgren (February 23, 2007). "Mystery bee disappearances sweeping U.S." National Geographic News. Retrieved March 10, 2007.
    71. ^ C. L. Gross & D. Mackay (1998). "Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae)". Biological Conservation. 86 (2): 169–178. doi:10.1016/S0006-3207(98)00010-X.
    72. ^ "Goldenrod Spider (Misumena vatia)". Royal Alberta Museum. August 31, 2004. Archived from the original on May 11, 2011. Retrieved June 2, 2011.
    73. ^ "The Bird that Loves the Bees". Smithsonian National Zoo. Jul 15, 1998.
    74. ^ Winston, Mark L. The biology of the honey bee. Harvard University Press, 1991.
    75. ^ Deborah R. Smith, Lynn Villafuerte, Gard Otisc & Michael R. Palmer (2000). "Biogeography of Apis cerana F. and A. nigrocincta Smith: insights from mtDNA studies" (PDF). Apidologie 31 (2): 265–279. doi:10.1051/apido:2000121. Archived from the original (PDF) on February 29, 2012.


    .mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{list-style-type:none;margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>dd{margin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none}.mw-parser-output .refbegin-100{font-size:100%}


    provided by Animal Diversity Web

    Apis mellifera is native to Europe, western Asia, and Africa. Human introduction of Apis mellifera to other continents started in the 17th century, and now they are found all around the world, including east Asia, Australia and North and South America.

    Biogeographic Regions: nearctic (Introduced ); palearctic (Native ); oriental (Introduced ); ethiopian (Native ); neotropical (Introduced ); australian (Introduced )

    Other Geographic Terms: cosmopolitan


    provided by Animal Diversity Web

    Generally, Apis mellifera are red/brown with black bands and orange yellow rings on abdomen. They have hair on thorax and less hair on abdomen. They also have a pollen basket on their hind legs. Honeybee legs are mostly dark brown/black.

    There are two castes of females, sterile workers are smaller (adults 10-15 mm long), fertile queens are larger (18-20 mm). Males, called drones, are 15-17 mm long at maturity. Though smaller, workers have longer wings than drones. Both castes of females have a stinger that is formed from modified ovipositor structures. In workers, the sting is barbed, and tears away from the body when used. In both castes, the stinger is supplied with venom from glands in the abdomen. Males have much larger eyes than females, probably to help locate flying queens during mating flights.

    There are currently 26 recognized subspecies of Apis mellifera, with differences based on differences in morphology and molecular characteristics. The differences among the subspecies is usually discussed in terms of their agricultural output in particular environmental conditions. Some subspecies have the ability to tolerate warmer or colder climates. Subspecies may also vary in their defensive behavior, tongue length, wingspan, and coloration. Abdominal banding patterns also differ - some darker and some with more of a mix between darker and lighter banding patterns.

    Honeybees are partially endothermic -- they can warm their bodies and the temperature in their hive by working their flight muscles.

    Range length: 10 to 20 mm.

    Other Physical Features: endothermic ; ectothermic ; heterothermic ; bilateral symmetry ; venomous

    Sexual Dimorphism: female larger; sexes shaped differently



    provided by Animal Diversity Web

    European honeybees prefer habitats that have an abundant supply of suitable flowering plants, such as meadows, open wooded areas, and gardens. They can survive in grasslands, deserts, and wetlands if there is sufficient water, food, and shelter. They need cavities (e.g. in hollow trees) to nest in.

    Habitat Regions: temperate ; tropical ; terrestrial

    Terrestrial Biomes: desert or dune ; savanna or grassland ; chaparral ; forest

    Wetlands: swamp

    Other Habitat Features: urban ; suburban ; agricultural

Trophic Strategy

    Trophic Strategy
    provided by Animal Diversity Web

    Apis mellifera feed on pollen and nectar collected from blooming flowers. They also eat honey (stored, concentrated nectar) and secretions produced by other members of their colony.

    Workers forage for food (nectar and pollen) for the entire colony. They use their tongues to suck up nectar, and store it in the anterior section of the digestive tract, called the crop. They collect pollen by grooming it off the bodies and onto special structures on their hind legs called pollen baskets.

    Returning foragers transfer the nectar they have collected to younger worker bees that in turn feed other members of the hive, or process it into honey for long-term storage. They add enzymes to the honey, and store it in open cells where the water can evaporate, concentrating the sugars.

    Young workers eat pollen and nectar, and secrete food materials, called “royal jelly” and “worker jelly”, from glands in their heads. This material is fed to young larvae, and the amount and type they get determines if they will be queens or workers.

    Honeybees forage during daylight hours, but are equally active on cloudy or sunny days. They will not fly in heavy rain or high winds, or if the temperature is too extreme (workers can't fly when they get below 10°C). During the warm, calm weather the honeybees collect the most pollen even if it is cloudy. If the light intensity changes rapidly, they immediately stop working and return to the hive. If it lightly rains, pollen collection stops, because moisture inhibits the bee’s ability to collect it. However, nectar collection is not inhibited by light rain. Wind also affects the rate of pollen collection.

    Honeybee workers are opportunistic. They will steal from other hives if they can. Hive-robbing can be dangerous, but a weakened or damaged hive may be raided by workers from other hives, especially when nectar flows in flowers are not abundant. Honeybees will also collect “honeydew,” the sweet fluid excreted by sap-feeding insects like aphids.

    Plant Foods: nectar; pollen; sap or other plant fluids

    Foraging Behavior: stores or caches food

    Primary Diet: herbivore (Nectarivore )


    provided by Animal Diversity Web

    Honeybees are very important pollinators, and are the primary pollinator for many plants. Without honeybees, these plants have greatly reduced fertility. In North America and Australia, where there are no native bee species with large colonies, honeybees can have especially strong effects on native flowers, and on other pollinators such as solitary bee species. Honeybees ability to recruit fellow workers by “dancing” allows them to be more efficient than other pollinators at exploiting patches of flowers. This can create strong impacts on their competitors, especially solitary bees.

    Like all social insects, honeybees are hosts to a variety of parasites, commensal organisms, and pathogenic microbes. Some of these can be serious problems for apiculture, and have been studied intensively. At least 18 types of viruses have been found to cause disease in bees, including Sacbrood disease. Several of them (but not sacbrood virus) are associated with parasitic mites. Bacteria infect bees, notably Bacillus larvae, agent of American Foulbrood disease, and Melissococcus pluton, agent of European Foulbrood. Fungi grow in bee hives, and Ascosphaera apis can cause Chalkbrood disease. One of the most common diseases in domesticated hives is Nosema disease, caused by a protozoan, Nosema apis. An amoeba, Malphigamoeba mellificae, also causes disease in honeybees.

    In recent decades, two mite species have spread through domesticated and feral honeybee populations around the world. Acarapis woodi is a small mite species that lives in the tracheae of adult bees and feeds on bee hemolymph. It was first discovered in Europe, but its origin is unknown. Infestations of these mites weaken bees, and in cold climates, whole colonies may fail when the bees are confined in the hive during the winter. A much worse threat is Varroa destructor. This might evolved on an Asian honeybee, Apis cerana, but switched on to Apis mellifera colonies that were set up in east Asia. It has since spread all around the world, except Australia. Juvenile mites feed on bee larvae and pupae, and adult female mites feed and disperse on adult workers. This mite is known to spread several viruses as well. Infestations of V. destructor often wipe out colonies. Nearly all the feral, untended honeybee colonies in North American are believed to have been wiped out by mite infestations, along with a large proportion of domesticated colonies. Other mite species are known from honeybee colonies, but they are not considered harmful.

    Another commensal or parasitic species is Braula coeca, the bee louse. Despite the common name, this is actually a wingless fly, that apparently feeds by intercepting food being transferred from one bee to another.

    Beetles in the genera Hylostoma and Aethina are found in African honeybee nests, where they seem to do little harm. However, the "small hive beetle", Aethina tumida, has become a significant problem in European and North American hives. The larvae eat all the contents of comb: honey, pollen, and bee eggs and larvae.

    Ecosystem Impact: pollinates; keystone species

    Commensal/Parasitic Species:

    • Melissococcus pluton (agent of European Foulbrood)
    • Ascophaera apis (agent of Chalkbrood)
    • honey bee tracheal mite Acarapis woodi
    • a wax moth Galleria mellonella
    • a wax moth Achroia grisella
    • the small hive beetle Aethina tumida
    • Varroa destructor
    • bee louse Braula coeca
    • large hive beetles Hylostoma
    • small hive beetles Aethina
    provided by Animal Diversity Web

    Honeybees have many adaptations for defense: Adults have orange and black striping that acts as warning coloration. Predators can learn to associate that pattern with a painful sting, and avoid them. Honeybees prefer to build their hives in protected cavities (small caves or tree hollows). They seal small openings with a mix of wax and resins called propolis, leaving only one small opening. Worker bees guard the entrance of the hive. They are able to recognize members of their colony by scent, and will attack any non-members that try to enter the hive. Workers and queens have a venomous sting at the end of the abdomen. Unlike queens, and unusual among stinging insects, the stings of Apis workers are heavily barbed and the sting and venom glands tear out of the abdomen, remaining embedded in the target. This causes the death of the worker, but may also cause a more painful sting, and discourage the predator from attacking other bees or the hive. A stinging worker releases an alarm pheromone which causes other workers to become agitated and more likely to sting, and signals the location of the first sting.

    Honeybees are subject to many types of predators, some attacking the bees themselves, others consuming the wax and stored food in the hive. Some predators are specialists on bees, including honeybees.

    Important invertebrate enemies of adult bees include crab spiders and orb-weaver spiders, wasps in the genus Philanthus (called “beewolves”), and many species of social wasps in the family Vespidae. Vespid wasp colonies are known to attack honeybee colonies en masse, and can wipe out a hive in one attack. Many vertebrate insectivores also eat adult honeybees. Toads (Bufo) that can reach the entrance of hive will sit and eat many workers, as will opossums (Didelphis). Birds are an important threat – the Meropidae (bee-eaters) in particular in Africa and southern Europe, but also flycatchers around the world (Tyrranidae and Muscicapidae). Apis mellifera in Africa are also subject to attack by honeyguides. These birds eat hive comb, consuming bees, wax, and stored honey. At least one species, the greater honeyguide (Indicator indicator) will guide mammal hive predators to hives, and then feed on the hive after the mammal has opened it up.

    The main vertebrate predators of hives are mammals. Bears frequently attack the nests of social bees and wasps, as do many mustelids such as the tayra in the Neotropics and especially the honey badger of Africa and southern and western Asia. In the Western Hemisphere skunks, armadillos and anteaters also raid hives, as do pangolins (Manis) in Africa. Large primates, including baboons, chimpanzees (<>) and gorillas are reported to attack hives too. Smaller mammals such as mice (Mus) and rats (Rattus) will burrow into hives as well.

    Some insects are predators in hives as well, including wax moth larvae (Galleria mellonella, Achroia grisella), and hive beetles (Hylostoma, Aethina), and some species of ants. In their native regions these tend not to be important enemies, but where honeybees have not co-evolved with these insects and have no defense, they can do great harm to hives.

    See Ecosystem Roles section for information on honeybee parasites and pathogens.

    Known Predators:

    • Beewolves (Philanthus)
    • Crab spiders (Thomisidae)
    • vespid wasps (Vespidae)
    • bee-eaters (Meropidae)
    • honeyguides (Indicatoridae)
    • bears (Ursidae)
    • honey badgers (Mellivora capensis)
    • skunks (Mephitidae)
    • toads (Bufo)

    Anti-predator Adaptations: aposematic


    provided by Animal Diversity Web

    Apis mellifera communication is based on chemical signals, and most of their communication and perception behaviors are centered around scent and taste. The members of the hive colony are bound chemically to each other. Each hive has a unique chemical signature that hivemates use to recognize each other and detect bees from other colonies.

    Within the hive, bees are in constant chemical communication with each other. Workers feed and groom each other, as well as larvae, drones, and the queen. In the process they pass on pheromones, chemical signals that indicate information about the health of the queen and the state of the colony.

    Chemicals not only help with detecting the right signature of hives but also with foraging. Honeybees use scent to locate flowers from a distance. When a successful forager returns to the hive, it passes the scent of the flowers to its nest mates, to help them find the same patch of flowers.

    Bees also use chemicals to signal outside the hive. When a worker stings something, her stinger releases an alarm pheromone that causes other bees to become agitated, and helps them locate the enemy.

    Thought it's always dark in the hive, vision is important to honeybees outside. They can see other animals, and recognize flowers. The eyes of Apis species can detect ultraviolet light wavelengths that are beyond the visible spectrum. This allows them to locate the sun on cloudy days, and see markings on flowers that are only visible in ultraviolet light. One portion of honeybee's eyes is sensitive to polarized light, and they use this to navigate.

    Workers and queens can hear vibrations. New queens call to each other and workers when they first emerge. Workers hear the vibrations of the waggle dances made by returning foragers.

    Apis species have a particularly notable form of communication called "dancing." Foragers that have located an abundant supply of food do a dance to communicate the location of the patch to other foragers. A "round dance" indicates food within about 300 meters of the hive, and only communicates the presence of the flowers, not the direction, though workers will also get the scent from the food the forager has brought back. The more complicated "waggle dance" indicates the direction and distance of food further away, using the location of the sun and the bee's memory of the distance it flew to return to the hive. Symbolic communication is quite unusual among invertebrates, and these honeybee "dances" have been intensively studied.

    Communication Channels: visual ; tactile ; acoustic ; chemical

    Other Communication Modes: pheromones ; scent marks ; vibrations

    Perception Channels: visual ; ultraviolet; polarized light ; tactile ; acoustic ; chemical

Life Cycle

    Life Cycle
    provided by Animal Diversity Web

    Honeybees build a hive out of wax secretions from their bodies, and queens lay their eggs in cells in the wax. The speed of subsequent development of the young is strongly affected by temperature, and is fastest at 33-36°C.

    Honeybees are holometabolous insects, and have four stages in the life cycle: egg, larva, pupa, and adult.

    A. mellifera eggs hatch in 28-144 hours, depending on their temperature. The larva that emerges is a small white grub. It stays in its wax cell, growing, and is fed and groomed by adult workers. The food that a female larva receives determines whether it will be a queen or worker. At 34°C, larvae feed and grow for 4-5 days, queens for 6 days, and males for 6-7 days. At the end of that period their cell is sealed by adult workers, and the larva molts, spins a silk cocoon, and transforms into the pupa stage. Pupae undergo a massive metamorphosis that takes about 7-8 days for queens, 12 days for workers, and 14-15 days for males. Once their final metamorphosis is complete, they chew their way out of the cell and begin their adult life. They will not grow or molt after emerging. Adult workers will live for 2-4 weeks in the summer, or as long as 11 months if they live through the winter. Males only survive for 4-8 weeks, and do not live through the winter. Queens live 2-5 years.

    . The next stage is the larval stage where the larva is fed the royal jelly, pollen/nectar, and honey combination. Next the larva goes into the pupae stage where it caps itself into its cell to metamorphose into the mature stage.

    Queens normally take 16 days to reach maturity, the worker bees take 21 days, and the drone takes 24 days to mature.

    Development - Life Cycle: metamorphosis

    Life Cycle
    provided by EOL authors
    European honey bees are social insects with a hive typically consisting of a single queen, between 6,000 and 60,000 workers, and a few hundred to a few thousand drones. Upon hatching in the spring, the queen bee destroys all unhatched queens, kills any hatched queens, and takes a mating flight where she mates with several males. The queen stores the sperm and uses it throughout her life to fertilize eggs. After returning from her mating flight, the queen begins to lay eggs and continues to do so throughout the summer. Three days after being laid, an egg hatches into a worm-like larva. The larva then molts each day for four days into a pupa. The pupa goes into a resting stage for a few days and emerges as an adult honey bee. New European honey bee hives are created by swarming - the original queen and several thousand workers will leave the nest, typically in May or June but sometimes in September or October, and seek a new location in which to build a wax comb hive. The swarm will cluster on a branch near the original nest while scouts locate a suitable nesting site. This process can take a few hours or days. A honey bee colony can survive for up to several years.

Life Expectancy

    Life Expectancy
    provided by Animal Diversity Web

    Apis mellifera queens usually live 2 to 3 years, but some have been known to last for 5 years. Workers typically only live for a few weeks, sometimes a few months if their hive becomes dormant in winter. Males live for 4-8 weeks at the most.

    Typical lifespan
    Status: wild:
    2 to 3 years.


    provided by Animal Diversity Web

    The great majority of female A. mellifera in a hive are sterile workers. Only queens mate and lay eggs. Normally there is only a single reproductive queen in a hive.

    During periods of suitably mild weather in spring and summer, males leave the hive and gather at "drone assembly areas" near the hive. Virgin queens will fly through these areas, attracting the males with pheromones. The males pursue, and attempt to mate with the queen in flight. Sometimes a "comet" forms, as a cluster of males forms around the female, with a string of other males trying to catch up. Each male who succeeds in mating drops away, and dies within a few hours or days. Males who do not mate will continue to loiter in the assembly areas until they mate or die trying. Queens will mate with up to 10 males in a single flight.

    Queens may mate with males from their own hive, or from other hives in the area. The queen's mating behavior is centered around finding the best place to mate beforehand, by taking directional flights for a period of time, lasting no more than a couple of days. Afterward, she leaves the hive and flies to mate with drones in an assembly area. This normally starts to occur after their first week of birth. The queen does this up to four times. After this congregate of mating has occurred, she never mates again in her lifetime.

    Mating System: polyandrous ; eusocial

    Apis mellifera queens are the primary reproducers of the nest and all of the activities of the colony are centered around their reproductive behaviors and their survival. The queen is the only fertile female in the colony. She lays eggs nearly continuously throughout the year, sometimes pausing in late fall in cold climates. A particularly fertile queen may lay as many as 1,000 eggs/day, and 200,000 eggs in her lifetime. It takes a queen about 16 days to reach adulthood, and another week or more to begin laying eggs. Males take about 24 days to emerge as adults, and begin leaving the nest for assembly areas a few days after that.

    Queen honeybees can control whether or not an egg they lay is fertilized. Unfertilized eggs develop as males and are haploid (have only one set of chromosomes). Fertilized eggs are diploid (two sets of chromosomes) and develop as workers or new queens, depending on how they are fed as larvae. Queens may increase the ratio of male to female eggs they lay if they are diseased or injured, or in response to problems in the colony.

    Healthy, well-fed honeybee colonies reproduce by "swarming." The workers in the colony begin by producing numerous queen larvae. Shortly before the new queens emerge, the resident, egg-laying queen leaves the hive, taking up to half the workers with her. This "swarm" forms a temporary group in a tree nearby, while workers scout for a suitable location for a new hive. Once they find one, the swarm moves into the space, and begins building comb and starting the process of food collection and reproduction again.

    Meanwhile at the old hive, the new queens emerge from their cells. If the population of workers is large enough, and there are few queens emerging, then the first one or two may leave with "afterswarms" of workers. After the swarming is completed, any remaining new queens try to sting and kill each other, continuing to fight until all but one is dead. After her competition is removed, the surviving queen begins to lay eggs.

    Normally the pheromones secreted by a healthy queen prevent workers from reproducing, but if a colony remains queenless for long, some workers will begin laying eggs. These eggs are unfertilized, and so develop as males.

    Breeding interval: Colonies typically swarm once or twice a year, usually at the beginning of the season that provides the most nectar.

    Breeding season: Late spring until the winter months

    Range eggs per season: 60,000 to 80,000.

    Average gestation period: 3 days.

    Range age at sexual or reproductive maturity (female): 15 to 17 days.

    Average age at sexual or reproductive maturity (male): 24 days.

    Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; induced ovulation ; fertilization (Internal ); oviparous ; sperm-storing

    As in most eusocial insects, the offspring of fertile females (queens) are cared for other members of the colony. In honeybees, the caretakers are sterile females, daughters of the queen, called workers.

    Workers build and maintain the comb where young bees are raised, gather food (nectar and pollen) feed and tend larvae, and defend the hive and its young from predators and parasites.

    Young queens inherit their hive from their mothers. Often several new queens emerge after the old queen leaves with a swarm to found a new colony. The new queens fight for control of the hive, and only one survives the conflict.

    Parental Investment: pre-fertilization (Protecting: Female); pre-hatching/birth (Provisioning: Female, Protecting: Female); pre-weaning/fledging (Provisioning: Female, Protecting: Female); pre-independence (Provisioning: Female, Protecting: Female); inherits maternal/paternal territory; maternal position in the dominance hierarchy affects status of young


    provided by EOL authors
    The genome sequence of the honeybee was first reported in 2006 (Weinstock et al. 2006, Wilson 2005). Notable characteristics of this genome include high A+T and CpG contents, the lack of major transposon families, relatively slow evolution, and similarity to vertebrates for circadian rhythm, RNA interference and DNA methylation genes. The honeybee was found to have relatively few genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, but a fairly high number of genes for odorant receptors. Novel genes were found for nectar and pollen utilization (Weinstock et al. 2006).

Molecular Biology

    provided by EOL authors

    Chemical Structure

    Melittin is the main component of apitoxin (Apis mellifera venom), accounting for approximately 50% of its dry weight (Terra et al., 2006). The water-soluble, 26 amino acid-long polypeptide chain, weighing 2,840 Da, is largely composed of hydrophobic residues, with the exception of the cationic and hydrophilic carboxy-terminal sequence (Vogel et al., 1986). It is this amphiphilic nature that gives melittin its characteristic detergent-like properties (Maulet et al., 1980).

    Using a range of techniques, including X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, melittin was found to adopt a variety of conformations, depending on factors including the pH and the type of aqueous medium. For instance, when dissolved in water, the hydrophilic residues 22-26 were shown to form a non-helical segment, whereas the remaining hydrophobic residues of melittin were reported to form a bent helix, composed of two smaller α-helical segments of residues 1-11 and 12-21. The concave side of the bent helix was found to be hydrophobic, while the convex side was shown to be hydrophilic (Vogel, et al., 1986). Additionally, melittin was found to be tetrameric at high pH, a random coil at pH 7.0, and monomeric in plasma (Terra, et al., 2006).

    Mode of Action

    In the bloodstream, melittin is able to rapidly bind to erythrocytes (red blood cells), inducing the release of haemoglobin and other cellular contents into the extracellular medium. Once melittin has penetrated the erythrocyte, it causes micellisation of phosphatidylcholine bilayers, ultimately leading to haemolysis and cell death (Dempsey, et al., 1990).

    Apart from its ability to disrupt lipid bilayers, melittin can also inhibit transmembrane proteins, including Na+/K+-ATPase, leading to a rise in sodium concentration within cells (Yang, et al., 2001). The increase in sodium induces an increase in the concentration of intracellular calcium, which results in the increased contraction of cardiac and smooth muscle.

    Potential Therapeutic Use

    Melittin is currently one of the most extensively used peptides in the research on lipid-peptide and peptide-peptide interactions (Wessman, et al., 2010). The presence of a single tryptophan residue at position 19 allows for a facilitated interpretation of fluorescence data via the tryptophan fluorescence technique, whereby intrinsic fluorescence emissions can be measured via the excitation of tryptophan residues (Raghuraman, et al., 2004).

    More recently, the peptide has been shown to possess a variety of therapeutic uses. For instance, melittin is currently being analysed as a potential treatment and preventative for HIV. In a study currently being conducted at Washington University School of Medicine in St. Louis, a melittin-nanoparticle complex was shown to effectively destroy the AIDS-causing virus by forming pores in its protective viral envelope, required for viral reproduction (Evangelou Strait, 2013).

    Another use of melittin is in the treatment of cancer. A promising study, once again conducted by researchers at Washington University School of Medicine in St. Louis, involves the attaching of melittin to a different nanoparticle. The novel melittin-nanoparticle complex, named the “nanobee”, selectively targets tumour cells, thus avoiding healthy cells. Once attached to a tumour cell, melittin is able to break down the tumour by forming pores in the cell membrane (Loftus, 2009).

Conservation Status

    Conservation Status
    provided by Animal Diversity Web

    While the species as a whole is still very numerous, there is concern in Europe that widespread commercialization of beekeeping is endangering locally-adapted populations and subspecies. This, combined with higher mortality of colonies due to Varroa mite and tracheal mite infestations, and the recent phenomenon of Colony Collapse Disorder in North America, has cause significant concern for the health of the population. Colony Collapse Disorder (CCD) is a condition of commercial beehives, where there are sudden massive waves of mortality among the workers. Beekeepers discover their hives simply empty of workers, with so few surviving that they cannot tend the queen and brood. This condition has occurred mainly in North America, and mainly in large commercial apiaries. No single cause has been identified yet.

    US Federal List: no special status

    CITES: no special status

    State of Michigan List: no special status


    provided by EOL authors
    The European honey bee is particularly well adapted for pollination. Each colony has many individuals available to collect pollen and, therefore provide pollination services. Honey bees have a complex communication system, allowing individuals to "point out" food sources to other members of the colony. The European honey bee also has a well developed sense of smell and is easily able to locate flowers. When a worker bee visits a flower, pollen is dusted all over its body and is then transferred between flowers. In a single day, one bee can make more than 12 trips from the hive and can visit several thousand flowers. In the United States, honey bees pollinate over 90 commercial crops and add billions of dollars per year to agricultural output. In fact, over 3.5 million acres of crop land in the United States is reliant upon honey bees for pollination. Some specific crops pollinated by the honey bee include apple, strawberry, almond, cotton, broccoli, carrot, pepper, and squash.
    provided by Animal Diversity Web

    Honeybee workers will sting humans and domesticated animals in defense of themselves or their hive. A single sting is painful but not dangerous unless the target is allergic to the venom, in which case it can be life threatening. Otherwise, it takes about 20 stings per kilogram of body weight to be life threatening.

    Each subspecies of Apis mellifera has different behavioral patterns in regards to intruders near or around the hive. The African subspecies are particularly aggressive. One of them, Apis mellifera scutellata, was accidentally released in South America, and has spread north to the southern United States. This is the "killer bee." It is notable for having a much higher aggressive response to disturbance -- more workers attack than in other subspecies, and they pursue targets much longer than European bees do. The spread of these bees made beekeeping much more expensive and complicated, and the aggressive bees caused many deaths.

    Negative Impacts: injures humans (bites or stings, venomous )

    provided by Animal Diversity Web

    Honeybees pollinate billions of US dollars worth of commercial agricultural crops around the world every year. They are important pollinators for economically important wild plant populations as well.

    Honeybee hives provide honey and wax, and pollen, propolis, and royal jelly that are sold for medicines and cosmetics.

    Honeybees are important study organisms for research in the connections between nervous system structure and behavior.

    Some research suggests honeybee venom may have medically useful applications in the treatment of auto-immune disease or inflammation.

    Positive Impacts: food ; source of medicine or drug ; research and education; pollinates crops

Education Resources