Overview

Comprehensive Description

Diversity

Bovids are the largest of 10 extant families within Artiodactyla, consisting of more than 140 extant and 300 extinct species. Designation of subfamilies within Bovidae has been controversial and many experts disagree about whether Bovidae is monophyletic or not. While as many as 10 and as few as 5 subfamilies have been suggested, the intersection of molecular, morphological, and fossil evidence suggests 8 distinct subfamilies: Aepycerotinae (impalas), Alcelaphinae (bonteboks, hartebeest, wildebeest, and relatives), Antilopinae (antelopes, dik-diks, gazelles, and relatives), Bovinae (bison, buffalos, cattle, and relatives), Caprinae (chamois, goats, serows, sheep, and relatives), Cephalophinae (duikers), Hippotraginae (addax, oryxes, roan antelopes, sable antelopes, and relatives), and Reduncinae (reedbucks, waterbucks, and relatives). Wild bovids can be found throughout Africa, much of Europe, Asia, and North America and characteristically inhabit grasslands. Their dentition, unguligrade limb morphology, and gastrointestinal specialization likely evolved as a result of their grazing lifestyle. All bovids have four-chambered, ruminating stomachs and at least one pair of horns, which are generally present on both sexes.

Species in the subfamily Bovinae are native to Africa, North America, Eurasia, India, and southern Asia. Bovinae is generally considered to include 24 species from 8 different genera, including nilgai, four-horned antelope, wild cattle, bison, Asian buffalo, African buffalo, and kudu. Sexual dimorphism is highly prevalent in this subfamily, with the males of some species weighing nearly twice as much as their female counterparts. Bovines have played an important role in the cultural evolution of humans, as numerous species within this subfamily have been domesticated for subsistence purposes.

The subfamily Antilopinae includes antelopes, dik-diks, gazelles, and relatives. Small to medium-sized, cover-dependent antelope are found throughout a majority of Africa but occur in particularly high densities in east Africa. Dwarf antelope, steenboks, and dik-diks occur in a variety of different habitats but are also restricted to the continent of Africa. Finally, true gazelles include the genera Eudorcas, Gazella, Nanger, and Procapra, among others. In general, bovids within the subfamily Antilocapinae occur throughout much of Asia and Africa.

Bovids within the subfamily Reduncinae are primarily distributed throughout parts of Eurasia and Africa. Reduncinae is comprised of only three genera, including Redunca (reedbucks), Pelea (rhebok), and Kobus (waterbucks). Species in Reduncinae are medium to large-sized grazers that often have strong ties to water. They also have long hair, and all species exhibit sexual dimorphism, as horns are only present in males.

Bovids in the subfamily Hippotraginae consist primarily of large grazing antelopes with large horns. Hippotraginae species are restricted to Africa and middle-east Asia and are primarily grazers. Most species in this subfamily live in arid habitats and have an erect mane along the nape of the neck. Recent accounts include 8 species from 3 different genera.

Ancelaphinae, consisting of 10 species from 4 genera, includes bonteboks, hartebeest, wildebeest, and relatives. All of the species in this subfamily are nomadic grazers that are native to Africa. Most species are size-dimorphic, with males being 10 to 20% larger than females, and both males and females possess double-curved horns, also known as lyrate.

The subfamily Caprinae consists of goats, sheep, muskox, and relatives. This subfamily of bovids consists of 12 genera, however, the organization of Caprinae is complex and several classifications have been suggested. The International Union for Conservation of Nature (IUCN) currently has a Taxonomy Working Group within their Caprinae Specialist Group to help alleviate some of the outstanding issues within Caprina taxonomy. Caprinids are especially adapted to montane and alpine environments, which explains why this is the only subfamily that is more diverse in Eurasia than Africa. In general, both genders have horns, however, horn morphology in many species is sexually dimorphic.

The subfamily Aepycerotinae consists a single species, the imapala. Aepycerotinae is endemic to Africa and is thought to have diverged from other bovids during the early Miocene, around 20 million years ago. Impala are sexually dimorphic, as only males possess horns..

Cephalophinae consists of 18 species of duiker from 3 genera. Duikers are highly specialized and are resident to the tropical forests of Africa. All species are easily recognizable as they have the same basic body plan but differ significantly in size from one species to the next. Duikers are size-dimoprhic, however, unlike most bovids, females are slightly larger than males. Also unlike most other bovids, duikers are primarily frugivorous.

  • Alder, P., R. Estes, D. Schlitter, B. McBride. 1995. National Audubon Society Field Guide to African Wildlife. New York: Chanticleer Press.
  • Estes, R. 1991. The behavior guide to African mammals: including hoofed mammals, carnivores, primates. Berkeley, CA: University of California Press.
  • Feldhamer, G., L. Drickamer, S. Vessey, J. Merritt, C. Krajewski. 2007. Mammalogy: Adaptation, Diversity, Ecology. Baltimore,MD: The Johns Hopkins University Press.
  • Gentry, A. 2011. Bovidae. Pp. 363-465 in T Harrison, ed. Paleontology and Geology of Laetoli: Human Evolution in Context. Volume 2: Fossil Hominins and the Associated Fauna. New York, NY: Springer.
  • Huffman, B. 2011. "Ultimate Ungulate" (On-line). Accessed April 04, 2011 at http://www.ultimateungulate.com/index.html.
  • Kingdon, J. 1982. East African Mammals: Part C. Chicago: The University of Chicago Press.
  • Kingdon, J. 1982. East African Mammals: Part D. Chicago: The University of Chicago Press.
  • Mallon, D. 2010. "Caprinae (Sheep, goats, and relatives)" (On-line). Grzimek's Animal Life. Accessed April 05, 2011 at http://animals.galegroup.com/web/grzimeks/animals/Caprinae?searchTerms=Caprinae.
  • Nowak, R. 1999. Walker’s Mammals of the World. Baltimore, MD: The Johns Hopkins University Press.
  • Shackleton, D., A. Harested. 2010. "Bovidae (Antelopes, cattle, bison, buffaloes, goats, and sheep)" (On-line). Grzimek's Animal Life. Accessed April 04, 2011 at http://animals.galegroup.com.
  • Shackleton, D., A. Harested. 2010. "Bovinae (Kudus, Buffaloes, and Bison)" (On-line). Grzimek's Animal Life. Accessed April 04, 2011 at http://animals.galegroup.com.
  • Vaughn, T., J. Ryan, N. Czaplewski. 2000. Mammalogy. Philadelphia, PA: Saunders College Publishing.
  • Walther, F. 1990. Bovids. Pp. 288-324, 338-339, 354-355, 432-433, 444-445, 460-461, 482-483 in S Parker, ed. Grzimek's Encyclopedia of Mammals, Vol. 5, 1 Edition. New York: McGraw-Hill Publishing Company.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Distribution

Geographic Range

Although the greatest diversity of Bovidae occurs in Africa, bovids are also found throughout parts of Europe, Asia and North America. A number of bovid species, particularly those domesticated for subsistence, have been globally introduced, including Australia and South America.

Biogeographic Regions: nearctic (Native ); palearctic (Native ); oriental (Native ); ethiopian (Native ); neotropical (Native ); australian (Introduced )

Other Geographic Terms: holarctic ; cosmopolitan

  • Danell, K., R. Bergstrom, P. Duncan, J. Pastor. 2006. Large Herbivore Ecology, Ecosystem Dynamics and Conservation. Cambridge: Cambridge University Press.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Africa, Europe, Asia, North America.

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Physical Description

Morphology

Physical Description

Bovids display the characteristic long limbs and unique foot and unguligrade stance of artiodactyls. They are paraxonic, as the line of symmetry of the foot runs between the third and fourth digits. In most bovids, the lateral digits are either reduced or absent and the animal's weight is born on the remaining central digits. The third and forth metapodials are completely fused in bovids, resulting the cannon bone. The joint between the cannon bone and proximal phalanges includes four sesamoid bones that act as joint stops. The ulna and fibula is reduced and fused with the radius and tibia respectively. This arrangement provides for a wide angle of flexion and extension, but restricts lateral movement.

As a members of the suborder Ruminantia, bovids possess the trademark multi-chambered fore-gut adapted for cellulolytic fermentation and digestion. Thus, they are obligate herbivores, which is also reflected by their hypsodont and selenodont tooth morphology. Their upper incisors are absent and their upper canines are either reduced or absent. Instead of upper incisors, bovids have an area of tough, thickened tissue known as the dental pad, which provides a surface for gripping plant materials. The lower incisors project forward and are joined by modified canines that emulate the incisors. Their modified incisors are followed by a long toothless gap known as a diastema. Bovids have a generalized dental formula of I 0/3, C 0/1, P 2-3/3, M 3/3.

The distinguishing characteristic of the Bovidae family is their unbranching horns. The horns originate from a bony core known as the the cornual process (os cornu) of the frontal bone and are covered in a thick keratinized sheath. Horns are not shed like the antlers of cervids and most grow continuously. Except for Indian four-horned antelopes, horns occur in pairs and in a fascinating array of unique forms from curved daggers in mountain goat to the thick, rippled coils of greater kudu.

Bovids exhibit a wide range of sizes and pelage coloration and patterns. For example, gaurs have a maximum shoulder height of 3.3 m (10.82 ft) and a maximum weight of more than 1000 kg (2200 lbs), and pygmy antelope have a maximum shoulder height of 300 mm (1 ft) and a maximum weight of 3 kg (6.6 lbs). Forest and bush species tend to have shorter limbs and more developed hindquarters and cryptic pelage that helps them blend into their surroundings. Open habitat species have long, forelimbs that increase stride length and occasionally bold color patterns or stripes. These adaptations help bovids evade potential predators through the various mechanisms of hiding (cryptic coloration), escaping (increased stride length), or confusion (striped pelage).

Most bovids are sexually dimorphic. Males always have horns, which are used in ritualized fighting during the mating season. The horns of males tend to be more complex in design and more robust than those of females, which tend to be straighter, thinner, and simpler in design.  Horns are present in females in approximately 75% of genera over 40 kg in mass and are usually absent in those less than 25 kg. This could be the result of differing life history strategies or the physiological cost of growing horns. Larger species are more likely to defend themselves against potential predators, and smaller species tend to retreat when threatened. In addition to sexual dimorphism in morphological characteristics, males also have better developed scent-glands than females, which are reduced or absent in species from the subfamily Bovinae.

Other Physical Features: endothermic ; homoiothermic; bilateral symmetry

Sexual Dimorphism: sexes alike; female larger; male larger; sexes shaped differently; ornamentation

  • Fowler, M., R. Miller. 2003. Zoo and Wild Animal Medicine. St. Louis: Saunders.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Ecology

Habitat

Bovids first evolved as grassland species, and most extant species are open grassland inhabitants. Bovid species richness is highest in the savannah of east Africa and the family has radiated to fill an enormous variety of ecological niches resulting in a wide range modifications to dental and limb morphology. For example, Bohor reedbuck and lechwe inhabit riparian and swampy landscape; springbok and oryx are found in deserts; bongo and anoa occupy dense forests; mountain goats and takin reside at high elevations; and musk ox are restricted to arctic tundra.

Numerous bovid species have been domesticated by humans. Goats and sheep were domesticated for subsistence purposes around 10 thousand years ago (KYA) in the near east, followed by the domestication of cattle around 7.5 KYA. While wild relatives of goats and sheep can still be found in their native habitat, the wild ancestors of domesticated cattle, aurochs, have been extinct in the wild for nearly 300 years. Currently, domesticated aurochs are kept on farms and as pets throughout parts of Eurasia.

Habitat Regions: temperate ; tropical ; polar ; terrestrial

Terrestrial Biomes: tundra ; taiga ; desert or dune ; savanna or grassland ; chaparral ; forest ; rainforest ; scrub forest ; mountains

Wetlands: marsh ; swamp

Other Habitat Features: urban ; suburban ; agricultural ; riparian

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Trophic Strategy

Food Habits

Although bovids are obligate herbivores, they occasionally supplement their diet with animal products, and feeding strategies are correlated with body size. In general, small bovids are solitary specialized feeders that forage in dense, closed habitat, whereas large bovids tend to be gregarious and feed in open grassland habitats. As generalist herbivores, large bovids consume high-fiber vegetation, which contains more cellulose and lignin than the diet of forest dwelling species. However, because all bovids are obligate herbivores they support microbial communities within their rumen (bacteria, protozoa, and fungi), which help break down cellulose and lignin and converts high fiber forage into an abundant energy source.

In addition to the true stomach, or abomasum, all bovids have 3 additional chambers, or false stomachs, in which bacterial fermentation takes place. Bovids digest low-quality (i.e., low protein, high-fiber) food via four different pathways. First, gastric fermentation extracts lipids, proteins, and carbohydrates, which are then absorbed and distributed throughout the body via the intestines. Second, large undigested food particles form into a bolus, or ball of cud, which is regurgitated and re-chewed to help break down the cell wall of ingested plant material. Third, cellulose digestion via bacterial fermentation results in high nitrogen microbes that are occasionally flushed into the intestine, which are subsequently digested by their host. These high-nitrogen microbes serve as an important protein source for bovids. Finally, bovids can store large amounts of forage in their stomachs for later digestion. All bovids chew their cud, have four-chambered stomachs (1 true and 3 false stomachs) and support microorganisms that breakdown cellulose.

Each bovid subfamily has a unique feeding strategy. For example, members of Antilopinae are arid land gleaners and feed primarily on unevenly dispersed food resources. Bovinae species rely on both scattered and abundant forage and are fresh grass bulk grazers. Members of Caprinae are more generalized and flexible feeders and can often be found foraging in low-productivity habitats. Hippotraginae species are arid adapted grazers that generally rely on an unstable food supplies. Bovids from Reduncinae are valley grazers and depend on an abundant unstable food supply. Unlike most other bovids, members of Cephalophinae are primarily frugivorous and are known to follow canopy dwelling primates to collect dropped fruit.

Foraging Behavior: stores or caches food

Primary Diet: herbivore (Folivore )

  • Prins, H. 1996. Ecology and Behaviour of the African Buffalo. Great Britain: Chapman and Hall.
  • Van Soest, P. 1994. Nutritional Ecology of the Ruminant, Second Edition. Ithaca, NY: Cornell University Press.
  • Buchholtz, C., H. Sambraus. 1990. Bovids: Cattle. Pp. 406-407 in S Parker, ed. Grzimek's Encyclopedia of Mammals, Vol. 5, 1 Edition. New York: McGraw-Hill Publishing Company.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Associations

Animal / dung/debris feeder
larva of Geotrupes mutator feeds on dung/debris buried dung of Bovidae
Other: major host/prey

Animal / associate
imago of Typhaeus typhoeus is associated with dung of Bovidae

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Ecosystem Roles

As obligate herbivores, bovids can dramatically affect the abundance and diversity of plant communities. Predation, or the threat of predation, has been shown to decrease overgrazing by bovids. Bovids are host to a diverse array of endo- and ectoparasites. Many species of parasitic flatworms (Cestoda and Trematoda) and roundworms spend at least part of their lifecycle in the tissues of bovid hosts. Bovids are also vulnerable to various forms of parasitic arthropods including ticks, lice, mites (Psoroptes and Sarcoptes), keds, fleas, mosquitoes, and flies. Bovids also host various forms of parasitic protozoa, including trypanosomatids, coccidians, piroplasmids, and numerous species of Giardia. In addition, various forms of bacterial and viral pathogens play an important role in bovid health and population dynamics. For example, Brucella abortus, the bacteria that causes brucellosis, affects many bovid species and rhinderpest, also known as cattle plague, is a highly contagious viral disease caused by paramyxovirus that is especially prevalent in bovids. Unfortunately, evidence suggests that recent climate change is altering host-parasite dynamics across the globe, increasing transmission rates between populations of conspecifics and hybridization rates between host specific parasite forms.

Many bovids have mutualistic relationships with other animals. Cattle egrets and cowbirds regularly live amongst many bovid species, taking advantage of insects and parasites that feed on bovids, or feeding on insects and small animals that are forced out of hiding by movement and grazing. In addition to pest removal, mutualist species can alert them to the presence of predators. Bovids also create loosely formed interspecific groups with other large herbivores such as zebras, giraffes, and ostriches, which increases the chances for predator detection.

Although bovids can serve as host to numerous species of pathogenic bacteria and protozoa, in conjunction with anaerobic fungi, these organisms are one of the major reasons that bovids are as abundant and diverse as they are today. Bacteria help break down cellulose and comprise between 60 and 90% of the microbial community present in the gastrointestinal (GI) tract of bovids. Ciliated protozoa, which makes up 10 to 40% of the microbe community within the rumen, help bacteria break down cellulose, while also feeding on starches, proteins and bacteria. The presence of anaerobic fungi in the rumen has only been known since the early 1970's. These fungi make up between 5 to 10% of the rumen's microbial abundance and are thought to help break down the cell wall of ingested plant material. Bacteria and protozoa that pass from the upper to the lower regions of the GI tract represent a significant portion of the dietary nitrogen required by their host.

Ecosystem Impact: disperses seeds; soil aeration

Mutualist Species:

Commensal/Parasitic Species:

  • Escalante, A., F. Ayala. 1995. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA. Proceedings from the National Academy of Science, 92: 5793-5797.
  • Kutz, S., E. Hoberg, L. Polley, E. Jenkins. 2005. Global warming is changing the dynamics of Arctic host–parasite systems. Proceedings from the Royal Society B, 272/1581: 2571-2576.
  • Dagg, A., J. Foster. 1976. The Giraffe: Its Biology, Behavior, and Ecology. New York, NY: Van Nostrand Reinhold and Company.
  • Whitaker, J., W. Hamilton. 1998. Mammals of the Eastern United States. Ithaca, NY: Cornell University Press.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Predation

Bovids are an important food source for a variety of natural predators, and in Eastern and Southern Africa bovids are the primary food source for many pradator species including lions and cheetahs. On the African continent nearly all bovids are vulnerable to predation by lions and African wild dogs, but young, old and sick individuals are particularly susceptible. Leopards, spotted hyenas, cheetahs, Nile crocodiles, and side-striped jackals are also major predators of smaller bovid species. In North America, bovids are vulnerable to predation by grey wolves, brown bears, and cougar. Packs of wolves and adult bears are typically the only predators capable of taking down the largest bovids in North America, like American bison. On the continent of Asia, grey wolves and tigers, are predators of bovids. Leopards, dholes and mugger crocodiles are also capable of taking bovids as prey. There are some cases of Komodo dragons consuming goats and even water buffalo. Many predators like wild dogs and large cats are notorious for taking domesticated livestock, including domestic goats, domestic sheep, and cattle.

Bovids are formidable opponents and are capable of putting up an incredible fights against their predators. Strength in numbers, dangerous horns, powerful kicks, speed, and in some cases, sheer size are more than enough to deter most predation attempts. Muskox form tight knit circles of adults around their young, making an impenetrable wall against potential predators. Cape buffalo have been known to charge and kill lions. Many species of bovid are extremely fastest and use their speed to out maneuver predatory pursuers. Forest dwelling bovids, such as Bongo antelope have cryptic coats to help camouflage themselves in densely vegetated habitats.

Known Predators:

Anti-predator Adaptations: cryptic

  • Carbyn, L., T. Trotter. 1988. Descriptions of Wolf Attacks on Bison Calves in Wood Buffalo National Park. Arctic, 41: 297-302.
  • Grange, S., P. Duncan. 2006. Bottom-up and Top-down Processes in African Ungulate Communities: resources and Predation Acting on the Relative Abundance of Zebras and Grazing Bovids. Ecography, 29: 899-907.
  • Rasmussen, G. 1999. Livestock Predation by the Painted Hunting Dog, Lycaon pictus, in a Cattle Ranching Region of Zimbabwe: a Case Study. Biological Conservation, 88: 133-139.
  • Scheel, D. 1993. Profitability, Encounter Rates and Prey Choice of African Lions. Behavioral Ecology, 4: 90-97.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Life History and Behavior

Behavior

Communication and Perception

Members of the family Bovidae communicate in a number of different ways. Some species are vocal, while others communicate via different body postures and displays. Although vocal communication is limited, during mating season mature males may bellow or roar to intimidate each other and to make their presence known to females. Muskox frequently roar during male-male contests and hold a unique posture that maximizes the intensity of their roar. The ventrorostral ventricle, a vocal ligament that transforms into a large fat pad during maturation, increases the amplitude of the bellow by adding additional resonance space and by directing the sound through a unique pulsing structure. The posture of the male effects how his roar is delivered. Other bovids utilize their nasal passages to roar. Male saiga contract and extend their peculiar noses while forcing air through their nostrils to produce a roaring sound, which is used to deter rival males and attract females. Vocal communication between calves and their mothers help them recognize and locate each other when separated.

In addition to communication that is used to increase reproductive success and offspring survival, bovids also vocalize in an attempt to ward of potential predators. Grunting and roaring, much like those used by competing males, are used to drive off predators and warn herd members. Domesticated bovids are known to vocalize in anticipation of food and native Korean cows vocalize before being fed.

Unlike primates and many carnivorous mammals, bovids are fairly limited in their ability to convey information via facial expressions, thus they rely heavily on postural displays to communicate their intentions. When attempting to communicate dominance or aggression towards competitors or lower ranking individuals, most bovids make themselves look as large as possible. Slow rigid movement and occasionally posing in an erect posture with a level muzzle, is used to exhibit dominance over others. Common aggressive displays include mimic fighting, staring, or shaking their heads wildly to communicate they feel threatened and are ready to fight. Submissive communication includes a lowering of the head or raising the chin so horns rest along the top of the neck. When threatened, bovids often remain still. In some antelope, like impala, lesser kudu, and common eland, individuals may jump in place to signal a potential threat to conspecifics.

Communication Channels: visual ; tactile ; acoustic ; chemical

Other Communication Modes: scent marks

Perception Channels: visual ; acoustic

  • Frey, R., A. Gebler, G. Fritsch. 2006. Arctic Roars: Laryngeal Anatomy and Vocalization of the Muskok (Ovibus moschatus Zimmermann, 1780 Bovidae). Journal of Zoology, 268: 433-438.
  • Yeon, S., J. Jeon, K. Houpt, H. Chang, H. Lee. 2006. Acoustic Features of Vocalizations of Korean Native Cows (Bos taurus coreanca) in Two Different Conditions. Applied Animal Behavior Science, 101: 1-9.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Life Expectancy

Lifespan/Longevity

Bovid lifespans are highly variable. Some domesticated species have an average lifespan of 10 years with males living up to 28 years and females living up to 22 years. For example, domesticated goats can live up to 17 years but have an average lifespan of 12 years. Most wild bovids live between 10 and 15 years, with larger species tending to live longer. For instance, American bison can live for up to 25 years and gaur up to 30 years. In polygynous species, males often have a shorter lifespan than females. This is likely due to male-male competition and the solitary nature of sexually-dimorphic males resulting in increased vulnerability to predation.

  • Toigo, C., J. Gaillard. 2003. Causes of sex-biased adult survival in ungulates: sexual-size dimorphism, mating tactic or environment harshness?. Oikos, 101/2: 376-384.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Reproduction

Most bovids are polygynous, and in some of these species males exhibit delayed maturation. For example, male blue gnus do not reach sexual maturity until 4 years of age, while females become reproductively active between 1.5 to 2.5 years of age. Sexual dimorphism is more prevalent in medium to large bovid species, particularly in members of the subfamily Reduncinae. In general, males of sexually dimorphic artiodactyls become sexually active later in life than females, which is probably due to male-male competition for mates. In some species, males may fight for and defend territory, which gives them breeding rights to females residing within each territory. It is not uncommon for territorial males to try and prevent resident females from leaving (e.g., impalas). Alternatively, males of other species fight for and defend small groups of females known as harems. Adult males that successfully defend their harem often breed with each member of the group, therefore increasing there reproductive fitness. Some bovid species also form leks, a small collection of males that compete for territory or mating rights. Successful males win occupation rights to high quality habitats and thus are able to mate with a greater number of high quality females. Once an individual gains territorial rights, individuals guard their territory and the females within. For example, waterbuck males defend areas of less than 0.5 km2, puka maintain areas of less than 0.1 km2, and lechwe and Uganda kob guard areas of about 15 to 30 m^2. Some species live in large groups consisting of both males and females in which males compete for mating opportunities (e.g., water buffalo). This behavior is somewhat common among members of the subfamily Hippotraginae.

In addition to polygynous mating systems, some species of bovid are monogamous, and male-male competition for mates is less common in these species. As a result, there is decreased selection for large males leading to little or no sexual dimorphism in monogamous bovids. For example, female dik-diks, are solitary and maintain large territories. Thus, male dik-diks are physically unable to defend more than one mate at a time resulting in monogamy. Unless there is a surplus of unmated males, male-male competition is unlikely leading to monomorphism between genders. In fact, females are slightly larger in some monogamous bovids (e.g., duikers and dwarf antelopes), which is probably the result of competition for high quality territories in which to raise their young.

With the exception of hartebeests and topi, all bovids can detect estrus in females. Males sample the urine of potential mates, and high levels of sex hormones in the urine signal that a female is approaching estrus. Males then proceed with courtship behavior in an attempt to secure a mate. Typically, courtship begins with foreleg kicking, chest pressing and finally mounting. Females usually stand to be mounted only at peak estrus.

Mating System: monogamous ; polygynous ; polygynandrous (promiscuous) ; cooperative breeder

Bovids generally breed during fall or the rainy season. Estrus is generally short, usually lasting for less than a couple of days but is longer in non-territorial species. Bovids give birth to a single calf after a relatively long gestation compared to other mammalian families. For example, duiker gestation ranges from 120 to 150 days, while gestation in African buffalo ranges from 300 to 330 days. Calves are usually born synchronously each year during spring, when forage resources are abundant. Adult females reenter estrus within one to two months of parturition. Known as a tending bond, males of non-territorial species often form temporary, exclusive bonds with individual females. Gestation in bovids ranges from 6 months in smaller species to 8 or 9 months in larger species, and some smaller bovids can reproduce biannually. Usually a singe well-developed, precocial calf is born, but twins are not uncommon. Average birth weights vary depending on species. For example, dik-dik calves weigh between 0.5 and 0.8 kg with the males occupying the higher end of the spectrum. New-born eland antelope weigh between 23 and 31 kg. In many gregarious species, young are able to stand and run within one hour of birth.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); viviparous

Like all eutherian mammals, bovids are placental mammals and feed their young with milk. As a result, females are obligated to provide parental care. In polygynous bovids, females provide all parental care without aid from males. In monogamous bovids such as dwarf antelopes, males often defend their young. Weaning may occur as early as 2 months after birth (royal antelope) or as late as one year old as in musk ox.

As calves, bovids can be classified either as hiders or followers. In hider species, mothers hide their young, during which time the mother is typically foraging nearby and on guard for potential predators. Hider mothers return to their calf several times a day for nursing. After nursing, the calf finds a new hiding place nearby. If the species is also gregarious, calves run ahead of their mother during herd movements and hide until their mother has passed. Calves then run ahead and hide again. Mothers with calves of similar age may form mother herds of 2-10 females which continues until the calf is one week to two months old, depending on the species. In follower species young join the herd either immediately or within two days of birth. Newborn wildebeest calves cling to their mother's side and the pair joins a nursery group within the larger herd. Female impalas leave the herd to give birth and rejoin in 1 to 2 days with their young. Upon returning, calves form small nursery groups, which are then guarded by herd females. Some species exhibit group or herd defense of young calves. Males and females alike encircle herd calves, thus protecting them from approaching predators. In many gregarious species, females remain in the herd while males often disperse after independence.

Parental Investment: precocial ; male parental care ; female parental care ; pre-hatching/birth (Provisioning: Female, Protecting: Female); pre-weaning/fledging (Provisioning: Female, Protecting: Male, Female); pre-independence (Protecting: Male, Female); post-independence association with parents; extended period of juvenile learning

  • Feldhamer, G., L. Drickamer, S. Vessey, J. Merritt, C. Krajewski. 2007. Mammalogy: Adaptation, Diversity, Ecology. Baltimore,MD: The Johns Hopkins University Press.
  • Fowler, M., R. Miller. 2003. Zoo and Wild Animal Medicine. St. Louis: Saunders.
  • Kingdon, J. 1982. East African Mammals: Part C. Chicago: The University of Chicago Press.
  • Kingdon, J. 1982. East African Mammals: Part D. Chicago: The University of Chicago Press.
  • Krebs, J., N. Davies. 1997. Behavioural Ecology: An Evolutionary Approach. Australia: Blackwell Publishing.
  • Vaughn, T., J. Ryan, N. Czaplewski. 2000. Mammalogy. Philadelphia, PA: Saunders College Publishing.
  • Walther, F. 1990. Bovids. Pp. 288-324, 338-339, 354-355, 432-433, 444-445, 460-461, 482-483 in S Parker, ed. Grzimek's Encyclopedia of Mammals, Vol. 5, 1 Edition. New York: McGraw-Hill Publishing Company.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Evolution and Systematics

Functional Adaptations

Functional adaptation

Elastic ligament provides support, shock absorption: large grazing mammals
 

The nuchal ligament of large grazing mammals provides support for the head and seems to act as a shock absorber, due to the presence of the protein elastin.

       
  "Our own rubber, elastin, occurs mainly as a component of two composites, skin and arterial wall. The nearest thing to pure elastin is the nuchal ligament of large grazing mammals. It runs from a ridge on the rear of the skull back along the top of the neck to the thoracic vertebrae; it seems to act as a shock absorber as well as a support for the head." (Vogel 2003:304)
  Learn more about this functional adaptation.
  • Steven Vogel. 2003. Comparative Biomechanics: Life's Physical World. Princeton: Princeton University Press. 580 p.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage

Barcode of Life Data Systems (BOLD) Stats
                                        
Specimen Records:1,364Public Records:956
Specimens with Sequences:1,259Public Species:123
Specimens with Barcodes:1,151Public BINs:122
Species:125         
Species With Barcodes:120         
          
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Barcode data

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Locations of barcode samples

Collection Sites: world map showing specimen collection locations for Bovidae

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Conservation

Conservation Status

Currently, many bovid species enjoy sufficient numbers to ensure their survival for years to come. The ICUN red list of threatened species considers 67 of the 143 species listed as “least concern.” This is in part due to the protection of large tracts of land that help offset the detrimental effects of habitat loss. For instance, wildebeest and gazelles in the African Serengeti were fewer than 500,000 during the 1960’s, but had grown to more than a million by the 1990’s. Parks like Serengeti National Park provide ecotourism opportunities and serve as a significant source of income to local economies. As a result, ecotourism enhances the monetary value of wildlife in these countries. In some areas, however, bovids continue to be over exploited for meat and habitat loss due to overgrazing by domestic species, farming, and logging is a significant threat to the persistence of many species. Bovids with limited range and unique habitat requirements are even more at risk. As of 2009, four species of bovid have gone extinct in the wild: aurochs, Queen of Sheebas gazelle, Saudi gazelle, and bluebuck. Scimitar-horned oryx is extinct in the wild and now lives only in zoos. Eight others species are "critically endangered". Saola antelope and bighorn sheep are listed as "endangered". Another 21 species are listed as vulnerable and 16 species are considered "near threatened". CITES, the Convention on International Trade in Endangered Species of Wild Fauna and Flora, lists 71 species under appendix 1 and 1 species under appendix 2.

Bovids are an important food sources for a number of different carnivores. As bovid populations decline, so too will those animals that depend on them. For example, the decline of cheetahs is often attributed habitat loss. However, cheetahs primarily prey upon small to medium sized bovids, specifically gazelle. According to the IUCN Red List of Threatened Species, 2 species of gazelle are extinct, while 10 more are listed as vulnerable, endangered or critically endangered. In north Africa, as preferred prey species have declined, more and more cheetahs are turning to livestock for prey. Consequently, these cheetahs are then killed as pests. As a result, one of the major directives for cheetah conservation is restoration of wild prey species, most of which are small to medium-sized bovids.

  • Ray, J., K. Redford, R. Steneck, J. Berger. 2005. Large Carnivores and the Conservation of Biodiversity. Washington D. C.: Island Press.
  • CITES, 2010. "Convention on International Trade of Endangered Species of Wildlife Fauna and Flora" (On-line). CITES species database. Accessed April 12, 2011 at http://www.cites.org/eng/resources/species.html.
  • IUCN, 2010. "IUCN Red List of Threatened Species" (On-line). Mammals. Accessed April 12, 2011 at http://www.iucnredlist.org/initiatives/mammals.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Economic Importance for Humans: Negative

Bovids, despite their important economic contributions to humans, can also have important detrimental effects. Zoonotic diseases transmitted by bovids to humans and domestic animals can have significant negative consequences, both physically and financially. For example, in less developed counties bovine tuberculosis can pose a significant economic threat for cattle farmers, and brucellosis, a bacterial disease that affects sheep, goats, cattle, elk, and deer, can be transmitted to humans by consuming undercooked contaminated meat and contaminated milk and dairy products. Bovine spongiform encephalopathy (BSE), more commonly known as Mad Cow Disease, is an infectious disease caused by an unknown agent, currently believed to be a modified protein. Cattle become infected when they are fed meat-and-bone meal that contains infected cattle by-products. Humans can contract BSE by consuming animal products from infected animals.

Bovids have been introduced world wide and in some locations have had severe detrimental impacts on the local environment. For example, goats were introduced by whalers to the Galapagos Island during the 18th century and have since caused extensive damage to the native ecosystem. In addition, introduced bovids compete with native animals for both food and habitat and can cause soil erosion due to overgrazing. Bovids, native and domestic, present a potential threat to various forms of agriculture by damaging and consuming crops.

Negative Impacts: injures humans (carries human disease); crop pest; causes or carries domestic animal disease

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Economic Importance for Humans: Positive

The domestication of artiodactyls for subsistence purposes lead to one of the most important cultural changes in human history, the transition from a purely hunter-gatherer society to a predominantly agricultural society. In the near east, around 10 thousand years ago (KYA), goat and sheep were domesticated purely for subsistence purposes, followed by the domestication of cows (7.5 KYA). Economically, cattle are the most important domesticated animal world wide. In 2001, the global population of domestic artiodactyls was greater than 4.1 billion, more than 31% of which consisted of cattle. In the United States, one of the worlds top 4 beef producers, beef production is the country's fourth largest industry, and in 2006, per capita beef consumption in the United States was nearly 66 pounds.

In addition to meat production, bovids are used for their milk, fur, skin, bone and feces. Goats and cattle are the primary producers of commercial milk and dairy products, sheep wool is used in the mass production of clothing, and manure is commonly used as fertilizer. For thousands of years humans have used bovids for hard labor tasks such as hauling materials, plowing fields, and transportation. Domestic bovids have also been used to control invasive plant species and enhance plant biodiversity through their selective feeding behavior.

Sport hunting of bovids generates millions of dollars annually. However, trophy hunting can alter the evolutionary dynamics of wild populations by imposing unnatural selective pressures for decreased ornamentation. Finally, bovids play an important role in the global ecotourism movement as various species are readily observable throughout much of their native habitat. Wildlife related tourism is especially popular in Eastern and Southern Africa and Central North America at various National Parks.

Positive Impacts: food ; body parts are source of valuable material; ecotourism ; research and education; produces fertilizer

  • Bates, D. 2005. Human Adaptive Strategies: Ecology, Culture, and Politics (Third Edition). Boston, MA: Pearson, Allyn, and Bacon.
  • Colby, C. 1966. Wild Deer. New York, NY: Duell, Sloan, and Pearce.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Wikipedia

Bovid

Bovid!<-- This template has to be "warmed up" before it can be used, for some reason -->

Eumetazoa

A bovid is any of almost 140 species of cloven-hoofed mammals belonging to the family Bovidae. The family is widespread, being native to Asia, Africa, Europe and North America, and diverse: members include bison, African buffalo, water buffalo, antelopes, gazelles, sheep, goats, muskoxen, and domestic cattle.

Contents

Characteristics

The largest bovid, the gaur, weighs well over a ton and stands 2.2 metres high at the shoulder; the smallest, the royal antelope, weighs about 3 kg and stands no taller than a large domestic cat. Some are thick-set and muscular; others are lightly built, with small frames and long legs. Many species congregate into large groups with complex social structures, but others are mostly solitary. Within their extensive range, they occupy a wide variety of habitat types, from desert to tundra and from thick tropical forest to high mountains.

Most members of the family are herbivorous, except most duikers, which are omnivorous. Like other ruminants, bovids have a four-chambered stomach which allows them to digest plant material, such as grass, that cannot be used by many other animals. Such plant material includes much cellulose, and no higher animal can digest this directly. However, ruminants (and some others like kangaroos, rabbits and termites) are able to use microorganisms living in their gut to break down cellulose by fermentation.

Because of the size and weight of their complex digestive systems, many bovids have a solid, stocky build. However, the more gracile species tend to have more selective diets, and be browsers rather than grazers. Their upper canine teeth and incisors are missing, and are replaced with a hard, horny pad, that the lower teeth grind against to cut grass or other foliage. The outer pair of teeth in the front of the lower jaw are either considered to be canines, or to be incisors, with the canines missing. The cheek teeth are low-crowned and selenodont, and are separated from the forward teeth by a wide gap, or diastema.[2] The dental formula for bovids is similar to that of other ruminants:

Dentition
0.0.2-3.3
3.1.3.3
or
Dentition
0.0.2-3.3
4.0.3.3

All bovids have four toes on each foot – they walk on the central two (the hooves), while the outer two (the dew-claws) are much smaller and rarely if ever touch the ground. Apart from some domesticated forms, the males in all species have horns, and in many the females do, too. The size and shape of the horns vary greatly, but the basic structure is always a pair of simple bony protrusions without branches, often having a spiral, twisted or fluted form, each covered in a permanent sheath of keratin. The unique horn structure is the only unambiguous morphological feature of bovids that distinguish them from other pecorans.[3][4] Male horn development has been linked to sexual selection,[5][6] while the presence of horns in females is likely due to natural selection.[5][7] The horns of females are usually smaller than those of males, and are sometimes of a different shape. It is theorized that the horns of female bovids evolved for defense against predators or to express territoriality, as non-territorial females who are able to use crypsis for predator defense often do not have horns.[7]

Evolution

The bovid family is known through fossils from the early Miocene, around 20 million years ago. The earliest bovids, such as Eotragus, were small animals, somewhat similar to modern gazelles, and probably lived in woodland environments. The bovids rapidly diversified, and by the late Miocene, the number of bovid species had greatly expanded. This late Miocene radiation was partly due to the fact that many bovids became adapted to more open, grassland habitat.[8] There are 78 genera known from the Miocene (compared to 50 today).

Early in their evolutionary history, the bovids split into two main clades: Boodontia and Aegodontia. This early split between Boodontia (of Eurasian origin) and Aegodontia (of African origin) has been attributed to the continental divide between these landmasses. When these continents were later rejoined, this barrier was removed, and both groups expanded into each other's territory.[9]

The largest number of modern bovids is found in Africa, while substantial but less diverse populations are in Asia and North America. Some scientists[who?] has suggested that many bovid species that evolved in Asia could not survive predation by humans arriving from Africa in the late Pleistocene[citation needed]. By contrast, African species had many thousands or a few million years to adapt to the gradual development of human hunting skills. Yet many of the commonly domesticated bovid species (goats, sheep, water buffalo and yak) originated in Asia. This may be because Asian bovids had less fear of humans and were more docile.

The small number of modern American bovids are relatively recent arrivals over the Bering land bridge, but they long predate human arrival.

Taxonomy

The bovid family is commonly subdivided into eight subfamilies. Recently, two additional subfamilies have been recognised. The eight traditional subfamilies can be divided into two clades, the Boodontia (with the Bovinae as sole members) and the Aegodontia (composed of all other subfamilies). Some authors do not agree with the high number of subfamilies, although they do recognise these two clades. However, these are treated as subfamilies instead: Bovinae (without change) and Antilopinae (with all of the Aegodontid subfamilies as tribes within it).

Among the eight to ten subfamilies presented here, only some groups have a well-established phylogeny. The Bovinae, for example, are monophyletic and basal; while the Caprinae, Hippotraginae, and Alcelaphinae cluster together[further explanation needed] consistently. The phylogenetic relationships of the other subfamilies are still unclear or unresolved.[10]

Classification

  • ORDER ARTIODACTYLA: even-toed ungulates
    • Suborder Suina: pigs and allies
    • Suborder Tylopoda: camels and llamas
    • Suborder Ruminantia: ruminants
      • Infraorder Tragulina
        • Family Tragulidae: chevrotains, 9 species in 3 genera
      • Infraorder Pecora
        • Family Moschidae: musk deer, 4 species in one genus
        • Family Antilocapridae: pronghorns, one species in one genus
        • Family Giraffidae: giraffes and okapi, 2 species in 2 genera
        • Family Cervidae: deer, 43 species in 16 genera
        • Family Bovidae
          • Subfamily Bovinae: cattle, buffalos and spiral-horned antelopes, 27 species in 10 genera
          • Subfamily Cephalophinae: duikers, 19 species in 2 genera
          • Subfamily Hippotraginae: grazing antelopes, 7 species in 3 genera
          • Subfamily Antilopinae: gazelles, dwarf antelopes and the saiga, 34 species in 13 genera
          • Subfamily Caprinae: goat-antelopes: sheep, goats, muskox, takin etc., 33 species in 10 genera
          • Subfamily Reduncinae: reedbucks, lechwe, 9 species in 2 genera
          • Subfamily Aepycerotinae: impala, 1 species in 1 genus
          • Subfamily Peleinae: rhebok, 1 species in 1 genus
          • Subfamily Alcelaphinae: wildebeest, topi/tsessebe, 10 species in 4 genera
          • Subfamily Pantholopinae: Chiru

References

  1. ^ Grubb, Peter (16 November 2005). "FAMILY Bovidae". In Wilson, Don E., and Reeder, DeeAnn M., eds. Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Baltimore: Johns Hopkins University Press, 2 vols. (2142 pp.). ISBN 978-0-8018-8221-0. OCLC 62265494. http://www.bucknell.edu/msw3/browse.asp?id=14200485. 
  2. ^ Janis, C. & Jarman, P. (1984). Macdonald, D.. ed. The Encyclopedia of Mammals. New York: Facts on File. pp. 498–499. ISBN 0-87196-871-1. 
  3. ^ Bibi, F.; Bukhsianidze,M.,Gentry,A.,Geraads,D.,Kostopoulos,D.,Vrba,E. (2009). "The fossil record and evolution of Bovidae: State of the field". Paleontologia Electronica 12 (3): 10A. http://palaeo-electronica.org/2009_3/169/index.html. 
  4. ^ Gatesy, J.; Yelon,D.,DeSalle,R.,Vrba,E. (1992). "Phylogeny of the Bovidae (Artiodactyla, Mammalia), Based on Mitochondrial Ribosomal DNA Sequences". Mol. Biol. Evol. 9 (3): 433–446. PMID 1584013. 
  5. ^ a b Bro-Jørgensen, J. (2007). "The intensity of sexual selection predicts weapon size in male bovids". Evolution 61 (6): 1316–1326. doi:10.1111/j.1558-5646.2007.00111.x. PMID 17542842. 
  6. ^ Ezenwa, V.; Jolles,A. (2008). "Horns honestly advertise parasite infection in male and female African buffalo". Animal Behaviour 75: 2013–2021. doi:10.1016/j.anbehav.2007.12.013. 
  7. ^ a b Stankowich, T.; Caro, T. (2009). "Evolution of weaponry in female bovids". Proc R Soc B 276 (1677): 4329–34. doi:10.1098/rspb.2009.1256. PMID 19759035. PMC 2817105. http://rspb.royalsocietypublishing.org/content/early/2009/09/17/rspb.2009.1256. 
  8. ^ Savage, RJG, & Long, MR (1986). Mammal Evolution: an illustrated guide. New York: Facts on File. pp. 232–235. ISBN 0-8160-1194-X. 
  9. ^ Hassanin, Douzery (1999). "The Tribal Radiation of the Family Bovidae...". Molecular Phylogenetics and Evolution 26 (2): 227–243. http://www.isem.cnrs.fr/IMG/pdf/Hassanin_1999-MPE.pdf. 
  10. ^ "Bovidae", The Ultimate Ungulate Page
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Average rating: 2.5 of 5

Junqueira cow

Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Average rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!