Overview

Comprehensive Description

Members of Pteropodidae are known colloquially as the flying foxes, or Old World fruit bats. The family is composed of 41 genera and about 170 species. The most species-rich genus in the family is Pteropus with 59 species, many of which are island endemics. Body and wing size ranges from small (37 mm forearm length) to large (220 mm forearm length). The family boasts the largest bats in the world. Pteropus vampyrus individuals have a wingspan of up to 1.7 m. Pteropus giganteus individuals have a comparable wingspan but a greater mass, with males weighing between 1.3 and 1.6 kg. Pteropodids are strictly vegetarian, foraging for fruits, nectar, and pollen using their sight and a sensitive olfactory system. Bats of the genus Rousettus use tongue clicks as a crude form of echolocation while navigating in the dark. Some species are migratory, covering vast distances, while others have more moderate home ranges. Eidolon helvum individuals aggregate in numbers reaching the hundreds of thousands, yet many species roost with only a few conspecifics. Members of Pteropodidae service the ecosystems they inhabit by playing important roles as pollinators and seed dispersers.

  • Fenton, M. 2001. Bats, Revised Edition. New York, NY: Checkmark Books.
  • Koopman, K. 1994. Handbook of Zoology, Band/Volume VIII Mammalia. Berlin, Germany: Walter de Gruyter & Co..
  • Neuweiler, G. 2000. The Biology of Bats. New York, NY: Oxford University Press.
  • Nowak, R. 1999. Walker's Mammals of the World. Baltimore and London: The Johns Hopkins University Press.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

Pteropodidae has a tropical and subtropical distribution in the Old World (eastern hemisphere). Species are found as far north as the eastern Mediterranean, continuing along the southern coast of the Arabian Peninsula and across South Asia. Species are found as far south as South Africa, the islands of the Indian Ocean, and to the northern and western coasts of Australia. The longitudinal range reaches from the Atlantic coast of Africa to the islands of the western Pacific. Pteropodids are absent from northwest Africa, southwest Australia, a majority of the Palearctic region, and all of the Western Hemisphere.

Biogeographic Regions: palearctic (Native ); oriental (Native ); ethiopian (Native ); australian (Native ); oceanic islands (Native )

  • Mickleburgh, S., A. Hutson, P. Racey. 1992. Old World Fruit Bats: An Action Plan for their Conservation. Gland, Switzerland: International Union for the Conservation of Nature.
  • Nowak, R. 1994. Walker's Bats of the World. Baltimore, MD: The Johns Hopkins University Press.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

The head and body length of pteropodids varies from 50 mm to 406 mm. Despite size, many characteristics are shared among genera. A relatively long rostrum (pronounced in nectarivores), large eyes, and simple external ears give members of this family a dog or fox-like appearance (hence “flying fox”). The genera Nyctimene and Paranyctimene are exceptions in that they contain tubular nostrils that project from the upper surface of the snout. On the skull, postorbital processes are present over the orbital region. The palatine extends posterior to nearly cover the presphenoid. No more than two upper and two lower incisors are present in adults, otherwise cheek and canine dentition varies between species. The tongue is highly protrusible in nectar feeding bats and often complex with terminal papillae.

The chest is robust, comprised of the down-thrusting pectoralis and serratus muscles. The articulating regions of the humerus never come into contact with the scapula, which differs from a locking mechanism that occurs in the shoulder joint of other bat groups. The second digit is relatively independent from the third digit and contains a vestigial claw that adorns the leading edge of the wing.

Modifications for hanging include a relocation of the hip socket. The acetabulum is shifted upward and dorsally, and articulates with a large headed femur for a wider range of motion. In contrast to most other mammal orders, the legs cannot be positioned in a straight line under the body. In conjunction with large claws on their feet, pteropodids use a tendon-ratchet system that allows them to hang without prolonged muscular contraction. The legs manipulate a primitive uropatagium during flight. Aside from Notopteris, most species are tailless or with just a spicule of a tail.

Several species of Pteropodidae demonstrate sexual dimorphism. Males of Hypsignathus monstrosus have rather outlandish facial features, while females have the conservative fox-like look. Males of the genus Epomops have distinctive white patches in association with a glandular membrane on their shoulders, whereas females do not. Considering the whole family, males are generally larger than females. The penis of all pteropodids is a pendant and freely movable organ, resembling that of Primates. Juveniles are typically naked or have a velvety coat that is darker than adult pelage.

Other Physical Features: endothermic ; homoiothermic; bilateral symmetry

Sexual Dimorphism: sexes alike; male larger; sexes colored or patterned differently; ornamentation

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Pteropodids typically occur in primary or maturing secondary forests. A few species inhabit savannah habitats where they roost in bushes and low trees. Over half of the 41 genera are made up of species that roost in trees. Gregarious species roost on the open branches of large, canopy-emergent trees. Pteropodids that roost singly or in small groups can be found in dead palm leaves, aerial roots, and even arboreal termite nests. These bats also tend to have cryptic coloration and wrap themselves with their wings in order to resemble dead leaves. In one species, Cynopterus sphinx, individuals construct tents by chewing folds in palm leaves. Caves, cliff walls, mines, and the eaves of buildings also serve as roosting locations for species in 17 genera. Most cave-dwelling species are limited to the lit areas near the opening, while members of the genus Rousettus are able to navigate the darker regions using crude echolocation.

Flowering plants are essential to the diet of pteropodid species; therefore, flying foxes mostly use woodlands or orchards for food. Canopy emergent fruiting trees, such as fig and baobab trees, are frequently used as a food source. The flowers of baobab trees have a strong fragrance and are located on the crown of the tree, which makes them easily accessible to bats (a flower syndrome known as chiropterophily). Many pteropodid species are found in coastal areas and drink salt water in order to supplement nutrients lacking in their diet.

A few species are migratory. Eidolon helvum individuals gather in large numbers and migrate hundreds of kilometers northward with seasonal rains, only to return to southern Africa at the end of the rainy season. Pteropus scapulatus populations make major, and somewhat erratic movements within Australia, following the flowering periods of Eucalyptus trees. Many species of Pteropus roost on islands and make daily migrations to the mainland for foraging. Some species range from sea level to 2500 m, yet little is known about any significant elevational migrations.

Habitat Regions: tropical ; terrestrial

Terrestrial Biomes: savanna or grassland ; forest ; rainforest

Other Habitat Features: suburban ; agricultural ; riparian ; estuarine

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Trophic Strategy

Pteropodids are frugivorous and nectarivorous. Some species also eat flowers of the plants they visit. Foraging habits are not well documented, though many species of the genus Pteropus rely heavily on figs. Many species rely on broad array of resources, though there may be a functional dichotomy between large species that rely heavily on canopy resources and smaller species that can use understory resources. Some larger species can use the claws on their thumbs and second digits to climb into the understory and seek out fruit that is hidden or inaccessible by flight.

Primary Diet: herbivore (Frugivore , Nectarivore )

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

Pteropodids provide important pollination and seed dispersal services to a wide range of plants. On islands in the south Pacific, pteropodids are the principle pollinators and dispersers of plants. Many plants have adaptations specifically for seed dispersal and pollination by bats, such as fruiting or flowering at the ends of branches and at bat accessible locations in the canopy. Eidolon dupreanum has been shown to likely be the sole pollinator of the baobab tree Adansonia suarezensis in Madagascar.

Ecosystem Impact: disperses seeds; pollinates

  • Andriafidison, D., R. Andrianaivoarivelo, O. Ramillijaona, M. Razanahoera, J. MacKinnon, R. Jenkins, P. Racey. 2006. Nectarivory by endemic malagasy fruit bats during the dry season. Biotropica, 38/1: 85-90.
  • Cox, P., T. Elmquist, E. Pierson, W. Rainey. 2005. Flying Foxes as Strong Interactors in South Pacific Island Ecosystems: A Conservation Hypothesis. Conservation Biology, 5/4: 448-454.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Birds of prey and carnivorous mammals, as well as snakes and large lizards may prey on pteropodids. Pteropodids tend to have fewer predators on islands. However, there have been several cases of introductions of non-native, arboreal snakes which have decimated pteropodid populations.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Known prey organisms

Pteropodidae (canopy animals--birds, fruit bats and other mammals) preys on:
fruit
canopy--leaves
flowers
Insecta

Based on studies in:
Malaysia (Rainforest)

This list may not be complete but is based on published studies.
  • J. L. Harrison, The distribution of feeding habits among animals in a tropical rain forest, J. Anim. Ecol. 31:53-63, from p. 61 (1962).
Creative Commons Attribution 3.0 (CC BY 3.0)

© SPIRE project

Source: SPIRE

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Behavior

Pteropodids rely heavily on vision and olfaction when navigating and foraging. Intraspecific communication is often vocal. In some species, such as Pteropus poliocephalus, vocal signaling may be associated with specific motor activities which enhance the meaning of the vocal signal. In species such as Eidolon helvum, sexually dimorphic sebaceous glands which are larger in males may provide olfactory behavioral cues.

Communication Channels: visual ; tactile ; acoustic ; chemical

Perception Channels: visual ; tactile ; acoustic ; ultrasound ; chemical

  • Mainoya, J., K. Howell. 1979. Histology of the neck glandular skin patch in Eidolon helvum, Rousettus aegyptiacus and Rousettus angolensis chiroptera pteropodidae. African Journal of Ecology, 17: 159-164.
  • Van Parijs, S., P. Corkeron. 2002. Ontogeny of vocalisations in infant black flying foxes, Pteropus alecto. Behaviour, 139/9: 1111-1124.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Expectancy

Pteropodids have been known to live at least 30 years, both in captivity and in the wild.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reproduction

Mating behavior in pteropodids is highly variable, and much is unknown. The males of one genus (Hypsignathus) set up lekking territories twice a year and draw in females with unique vocalizations and wing-flapping displays. Male epauletted fruit bats (genus Epomophorus) often display their concealed epaulets (hair tufts near the shoulder) and emit courting calls to attract females. Many species form harems consisting of 1 dominant male and up to 37 females, while bachelor males roost separately.

Mating System: polygynous ; polygynandrous (promiscuous)

While most bats have one reproduction event per year, many pteropodids are polyestrous, with two seasonal cycles corresponding to the annual wet and dry seasons. Usually one young is born per pregnancy, but twins are not uncommon. Upon fertilization, ova implantation in the uteri can be immediate or delayed, probably in response to the environment. Development of the embryo (once implanted) may also be delayed, probably to ensure birth at a time when fruit is available during the rainy seasons. One species, Macroglossus minimus, exhibits asynchronous breeding and sperm storage, suggesting the importance of birth during an optimal (rainy) season.

Pregnant females usually leave social roosts to form nursery groups with other pregnant females. Females in nursery roosts form their own social network and take care of each other through mutual grooming. Gestation periods usually lasts 4 to 6 months, but can be longer if implantation is delayed. Birth patterns of pteropodids have been widely studied and usually occur during the wet periods both in the northern latitudes (February to April) and the southern latitudes (August to November). Species that are polyestrous will give birth during both of these rainy seasons. It is predicted that birth during these seasons yields high survival rates because lactation occurs when fruit availability is at a maximum. Birth is followed by postpartum estrous and subsequent mating. After weaning, young may stay with their mothers up to 4 months. Sexual maturity in juveniles is reached by 2 years old or earlier. Female sexual maturity is reached earlier than in males.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; viviparous ; delayed implantation ; post-partum estrous

Female pteropodids are primarily responsible for rearing the young. Lactation lasts anywhere from 7 weeks to 4 months, and the mother may care for her young slightly longer. In one genus (Dyacopterus), males with functional mammary glands have been reported lactating, which suggests the sharing of juvenile care among both parents.

Parental Investment: altricial ; pre-fertilization (Provisioning, Protecting: Female); pre-hatching/birth (Provisioning: Female, Protecting: Female); pre-weaning/fledging (Provisioning: Female, Protecting: Female); pre-independence (Provisioning: Female, Protecting: Female)

  • Hood, C., J. Smith. 1989. Sperm storage in a tropical nectar-feeding bat, Macroglossus minimus (Pteropodidae). Journal of Mammalogy, 70: 404-406.
  • Kofron, C. 2007. Reproduction of the dusky fruit bat Penthetor lucasi (Pteropodidae) in Brunei, Borneo. Mammalia: 166-171.
  • Kretschmann, K., R. Hayes. 2004. Old World Fruit Bats I (Pteropus). Pp. 319-332 in M Hutchins, A Evans, J Jackson, eds. Grzimek's Animal Life Encyclopedia, Vol. 13: Mammals II, 2 Edition. Detroit: Gale.
  • Nowak, R. 1999. Walker's Mammals of the World. Baltimore and London: The Johns Hopkins University Press.
  • Storz, J., H. Bhat, T. Kunz. 2000. Social structure of a polygynous tent-making bat, Cynopterus sphinx (Megachiroptera). Journal of Zoology, London, 251: 151-165.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage

Barcode of Life Data Systems (BOLD) Stats
Specimen Records:2242
Specimens with Sequences:1324
Specimens with Barcodes:1273
Species:90
Species With Barcodes:69
Public Records:786
Public Species:42
Public BINs:45
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Barcode data

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

Many factors threaten pteropodids throughout their range. Human activities have decimated populations of certain species directly through hunting or indirectly through habitat destruction. In Asia and Australia, deforestation is the most important contributor to pteropodid population decline. Some species are vulnerable to typhoons and hurricanes which may destroy roosting habitat on islands. The IUCN Red List of Threatened Species lists 5 species as recently extinct, 10 species as critically endangered, 19 species as endangered, 15 species as near threatened, and 39 species as vulnerable, suggesting that nearly half of all pteropodid species face significant threats to population viability.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Many crop species are attractive food sources for pteropodids. Because cultivars are often developed from wild species, these commercial crops have the same characteristics that wild plants evolved to attract bats to their fruit. Fruit growers have experimented with visual, audio, and olfactory deterrents as well as electric wire to keep pteropodids from eating their crops. Pteropodids may also be dispersers of invasive plant species, as they consume crops introduced for cultivation and may disperse the seeds into natural habitat. Pteropodids have been indicated as reservoirs for a variety of viruses such as Ebola and other viruses in the family Paramyxoviridae. Hendra virus, Menangle virus, and Nipah virus have all been linked to pteropodids.

Negative Impacts: injures humans (carries human disease); crop pest

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Larger species of pteropodids are hunted for their meat. Both subsistence and commercial hunting of Pteropus species have been reported. Consumer demand for Pteropus species on the island of Guam has been so great that it has resulted in the extinction of at least one species in the Pacific region. Flying foxes are also important in the dispersal and pollination of economically important plants. They attract tourists in some areas and produce accumulations of guano that can be used as fertilizer.

Positive Impacts: food ; ecotourism ; produces fertilizer; pollinates crops

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!