Overview

Brief Summary

New York State Invasive Species Information

Multiflora rose, also known as rambler rose and baby rose, is native to eastern China, Japan and Korea. It was introduced to the U.S. from Japan in 1866, as rootstock for grafted ornamental rose cultivars. The spread of multi flora rose increased in the 1930s, when it was introduced by the U.S. Soil Conservation Service for use in erosion control and as living fences, or natural hedges, to confine livestock. It was also discovered to provide effective habitat and cover protection for pheasant, northern bobwhite, and cottontail rabbit and food for animals such as songbirds and deer. These uses encouraged its distribution, usually via root cuttings, to landowners, through State Conservation departments. Mulitflora rose has recently been planted in highway median strips to provide crash barriers and reduce headlight glare from oncoming traffic. Its extensive, pervasive growth was soon discovered as a problem on pasture lands and fallow fields. Currently, mulitflora rose is found in 41 states and is classified as either a noxious weed, prohibited invasive species or banned, in 13 states, including Connecticut, Massachusetts, New Hampshire, New Jersey, and Pennsylvania. It is also among the top forest invasive plant species for the northeastern area by the US Forest Service.

Description

Multiflora rose, in the rose family (Rosaceae), is a vigorous perennial shrub. Canes (stems) root at the tips and may reach heights of up to 10 feet. The red to green twigs may have numerous recurved thorns and other thornless specimens occur infrequently in the eastern United States. Its pinnately compound leaves grow alternately with 5, 7, 9 or 11 oval, saw toothed leaflets. The leaflets are nearly smooth on the upper surface and paler with short hairs on the underside. The base of each leaf stalk bears a pair of fringed bracts or stipules. The fringed stipules are the best characteristic to use to distinguish multiflora rose from other species. Multifora rose shrubs can grow to a height of 10–15 feet and a width of 9-13 feet.

Clusters of showy fragrant white to white pink, half inch to one inch diameter flowers, bloom in panicles, inflorescences with side stems, in late May or June. The flowers produce copious quantities of sweet pollen. Six to 100 hips develop in the inflorescence in summer and turn red by middle September, containing one to 21 seeds. The hypanthium, the large fleshy cup like structure on the underside of the flower, softens after the early frosts becoming tough, remaining on the plant in winter. Seed color is variable yellow to tan measuring about 0.16 inches contained in sharp, thin pointed structures called spicules. Seed germination is high; seeds can also remain viable in the soil for as long as 20 years. Roots are wide-ranging and capable of resprouting. In addition, stem tips that contact the soil surface are capable of rooting, through a process known as layering, to form new plants. Extensive thickets are formed this way.

Impact

Multiflora rose is extremely prolific and can form dense thickets, excluding native plants species. This non-native invasive rose invades open woodlands, forest edges, early succession pastures and fields. It also invades fence rows, right-of ways, roadsides, and margins of swamps and marshes.

Biology

Each cane on a large plant may contain 40 to 50 panicles. Each panicle can contain as many as 100 hypanthia or hips (average of about 50) and each hip, an average of seven seeds (range of one to 22). Thus each large cane can potentially produce up to 17,500 seeds. Seeds remain viable for a number of years. It has been found that as many as 90% of the seeds are viable, in the absence of drought and stress. Multiflora rose is moderately winter-hardy, and is tolerant to many North American insects and diseases.

Habitat

Multiflora rose thrives in full and partial sun with well-drained soils. It cannot tolerate winter temperatures below -28 F. While it grows most vigorously in full sun, it can also grow in the shade, and will persist for many years under a tree canopy although it may not flower or fruit very heavily.

Management Options Note:

Mechanical and chemical methods are currently the most widely used methods for managing infestation of multiflora rose.

Mechanical Control:

Seedlings can be pulled by hand. Small plants can be dug out or larger ones can be pulled using a chain or cable and a tractor, but care needs to be taken to remove all roots. Frequent, repeated cutting or mowing at the rate of three to six times per growing season, for two to four years, has been shown to be effective in achieving high mortality of mulitflora rose. In valuable, natural communities, cutting of individual plants is preferred to site mowing to minimize habitat disturbance. Some success has resulted from the use of goats in controlling multiflora rose.

Chemical Control:

Herbicides have been used successfully in controlling mulitflora rose but, because of long lived stores of seed in the soil, follow up treatments are likely to be necessary. Applications of systemic herbicides, such as glyphosate or triclopyr, to freshly cut stomp or to re growth, may be the most effective method, especially if conducted late in the growing season. The same chemicals can be employed as a foliar spray. It is important to note that multiflora rose has the typical regenerative power of members of the rose family, and control programs must be monitored and followed up if necessary by repeated herbicide application or used in conjunction with other control methods such as mowing or burning. Plant growth regulators have been used to control the spread of mulitflora rose by preventing fruit set.

Biological:

Rose rosette disease is a sometimes fatal viral disease that attacks multifora rose and other roses. The virus is spread naturally by a tiny mite. Plants affected by rose rosette disease develop witches’ brooms and small reddish leaves and shoots. The disease can kill plants in two years. This disease is not considered a useful biological control at this time because it may infect native roses and plums, as well as commercially important plants in the rose family such as apples, some types of berries, and ornamental roses.

Another biological control method involves the use of European Rose Chalcid (Megastigmus aculeatus), a wasp. During May and June the female deposits her eggs in the seed and the larvae overwinter. Pupa formation occurs in April to June and the adult wasps appear from the rose hip in early summer, thus completing the cycle. More research needs to be completed before considering this method of control.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The New York Invasive Species Clearinghouse, Cornell University Cooperative Extension

Supplier: Tracy Barbaro

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

History in the United States

Multiflora rose was introduced to the East Coast from Japan in 1866 as rootstock for ornamental roses. Beginning in the 1930s, the U.S. Soil Conservation Service promoted it for use in erosion control and as "living fences" to confine livestock. State conservation departments soon discovered value in multiflora rose as wildlife cover for pheasant, bobwhite quail, and cottontail rabbit and as food for songbirds and encouraged its use by distributing rooted cuttings to landowners free of charge. More recently, multiflora rose has been planted in highway median strips to serve as crash barriers and to reduce automobile headlight glare. Its tenacious and unstoppable growth habit was eventually recognized as a problem on pastures and unplowed lands, where it disrupted cattle grazing. For these reasons, multiflora rose is classified as a noxious weed in several states, including Iowa, Ohio, West Virginia, and New Jersey.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

History in the United States

Multiflora rose was introduced to the eastern United States in 1866 as rootstock for ornamental roses. Beginning in the 1930s, the U.S. Soil Conservation Service promoted it for use in erosion control and as “living fences” to confine livestock. State conservation departments recommended multiflora rose as cover for wildlife. More recently, it has been planted in highway median strips to serve as crash barriers and reduce automobile headlight glare. Its tenacious growth habit was eventually recognized as a problem on pastures and unplowed lands, where it disrupted cattle grazing, and, more recently, as a pest of natural ecosystems. It is designated a noxious weed in several states, including Iowa, Ohio, New Jersey, Pennsylvania and West Virginia.

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Comprehensive Description

Comments

This species produces flowers that are smaller in size, but with greater abundance, than the native roses. It is usually quite attractive while in full bloom. Unlike the native roses, Multiflora Rose has stipules with bristly teeth at its petiole bases. In the native roses, these stipules have single teeth at their outer tips that are not bristly. The flowers of the Multiflora Rose are white, while the flowers of the native roses are usually pink. It resembles Rosa setigera (Wild Climbing Rose) to some extent, as they both can assume the form of a climbing vine and in the center of their flowers there is a column of united styles. However, the Wild Climbing Rose has compound leaves with fewer leaflets (usually 3, sometimes 5). Like other native roses, the flowers of the Wild Climbing Rose are larger in size and pink in color.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© John Hilty

Source: Illinois Wildflowers

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Miscellaneous Details

"Notes: Western Ghats, Cultivated, Native of East Asiatic Region"
Creative Commons Attribution 3.0 (CC BY 3.0)

© India Biodiversity Portal

Source: India Biodiversity Portal

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description

This introduced perennial plant has woody stems and can assume the form of a shrub or climbing vine. In the form of a shrub it is about 3-6' tall, while as a climbing vine it gets up to 12' tall if there is other vegetation nearby to cling to. The terete hairless stems are heavily armed with stout curved thorns. They are initially green, but eventually turn brown and woody. The alternate compound leaves are odd pinnate with 5-9 leaflets (a few upper leaves may have 3 leaflets). The leaflets are up to 2½" long and ¾" across. They are medium to dark green, hairless, ovate to obovate, and serrated along their margins. At the base of the petiole of each compound leaf, there is a pair of stipules with abundant slender teeth; these teeth have a bristly appearance. This is a distinctive characteristic of Multiflora Rose. 
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© John Hilty

Source: Illinois Wildflowers

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Distribution

Maharashtra: Kolhapur Tamil Nadu: Dindigul
Creative Commons Attribution 3.0 (CC BY 3.0)

© India Biodiversity Portal

Source: India Biodiversity Portal

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

More info for the term: nonnative species

Native to Japan [26], Multiflora rose occurs throughout eastern North America from Newfoundland and Nova Scotia south to northern Florida, and west to Minnesota, Nebraska, and Texas [34,44,45,89]. It is also distributed along the West Coast from British Columbia to California [45].

The following biogeographic classification systems demonstrate where multiflora rose could potentially be found based on reported occurrence. Precise distribution information is lacking because of gaps in understanding of biological and ecological characteristics of nonnative species and because introduced species may still be expanding their range. These lists are speculative and may not be accurately restrictive or complete.

  • 26. Fawcett, Richard S. 1980. Today's weed: multiflora rose. Weeds Today. 11(1): 22-23. [21437]
  • 34. Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. 1392 p. [1603]
  • 44. Jones, Stanley D.; Wipff, Joseph K.; Montgomery, Paul M. 1997. Vascular plants of Texas. Austin, TX: University of Texas Press. 404 p. [28762]
  • 89. Wunderlin, Richard P. 1998. Guide to the vascular plants of Florida. Gainesville, FL: University Press of Florida. 806 p. [28655]
  • 45. Kartesz, John T.; Meacham, Christopher A. 1999. Synthesis of the North American flora (Windows Version 1.0), [CD-ROM]. Available: North Carolina Botanical Garden. In cooperation with the Nature Conservancy, Natural Resources Conservation Service, and U.S. Fish and Wildlife Service [2001, January 16]. [36715]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regional Distribution in the Western United States

More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):

BLM PHYSIOGRAPHIC REGIONS [8]:

1 Northern Pacific Border

2 Cascade Mountains

3 Southern Pacific Border

4 Sierra Mountains
  • 8. Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals, reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's associations for the eleven western states. Tech. Note 301. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 169 p. [434]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Occurrence in North America

ALARCACTDEFLGAIL
INIAKSKYLAMEMDMA
MIMNMSMONENHNJNY
NCOHOKORPARISCTN
TXVTVAWAWVWI


BCNBNFNSONPQ

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution in the United States

Multiflora rose occurs throughout the U.S., with the exception of the Rocky Mountains, the southeastern Coastal Plain and the deserts of California and Nevada.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Native Range

Japan, Korea, and eastern China 
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution and Habitat in the United States

Multiflora rose occurs throughout the eastern half of the United States and in Washington and Oregon. It tolerates a wide range of soil, moisture and light conditions and is able to invade fields, forests, prairies, some wetlands and many other habitats.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Origin

Japan, Korea and Eastern China

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Anhui, Fujian, S Gansu, Guangdong, Guangxi, Guizhou, S Hebei, Henan, Hunan, Jiangsu, Jiangxi, S Shaanxi, Shandong, Taiwan, Zhejiang [Japan, Korea].
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Range and Habitat in Illinois

The Multiflora Rose is a common plant that probably occurs in every county of Illinois. However, it has been observed in about one-half of the counties in the state, according to official records (see Distribution Map). This species was introduced into the United States by the horticulture industry from Japan or eastern Asia after World War II, when it was advertised as a "living fence" that would promote the privacy of residential properties. It quickly escaped and has managed to spread with amazing rapidity. Habitats include open deciduous woodlands, woodland borders, thickets, weedy meadows along rivers, fence rows, powerline clearances in wooded areas, abandoned pastures, semi-shaded areas along roadsides, and any little-used open area that is reverting back into a woodlands. The Multiflora Rose is a major invader of both natural and disturbed areas.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© John Hilty

Source: Illinois Wildflowers

Trusted

Article rating from 1 person

Average rating: 1.0 of 5

Physical Description

Morphology

Description

Shrubs climbing. Branchlets terete, usually glabrous; prickles paired below leaves, sometimes sparsely scattered, curved, to 6 mm, stout, flat, gradually tapering to broad base. Leaves including petiole 5–10 cm; stipules pectinate, mostly adnate to petiole, margin glandular-pubescent or not; rachis and petiole pubescent or glabrous, glandular-pubescent, shortly prickly; leaflets (3–)5–9, obovate, oblong, or ovate, 1–5 × 0.8–2.8 cm, abaxially pubescent, adaxially glabrous, base rounded or cuneate, margin simply serrate, apex acute or rounded-obtuse. Flowers numerous in corymb, 1.5–4 cm in diam.; pedicel 1.5–2.5 cm, puberulous, glabrous, or glandular-pubescent, margin sometimes pectinate; bracts at base of pedicel, small. Hypanthium subglobose, glabrous. Sepals 5, deciduous, lanceolate, abaxially glabrous, adaxially pubescent, margin entire or with 2 linear lobes at middle. Petals 5, semi-double or double, white, pinkish, or pink (in some cultivated plants), fragrant, obovate, base cuneate, apex emarginate. Styles connate in column, exserted, slightly longer than stamens, glabrous. Hip red-brown or purple-brown, subglobose, 6–8 mm in diam., glabrous, shiny. 2n = 14*, 21.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 2 people

Average rating: 3.75 of 5

Description

More info for the term: shrub

Multiflora rose is a perennial shrub that forms dense, impenetrable "clumps" of vegetation. Isolated plants can produce clumps up to 33 feet (10 m) in diameter [26,63]. Bushes grow to a height of 6 to 10 feet (1.8-3 m) and occasionally 15 feet (4.6 m) [26]. Stems (canes) are few to many, originating from the base, much branched, and erect and arching to more or less trailing or sprawling. Canes grow to 13 feet (4 m) long and are armed with stout recurved prickles [34,70]. Leaves are alternate, pinnately compound, and 3 to 4 inches (8-11 cm) long with 5 to 11 (usually 7 or 9), 1 to 1.6 inch (2.5-4 cm) long leaflets [26,33,70]. Flowers are 0.5 to 0.75 inches (1.3-1.9 cm) across and number 25 to 100 or more in long or pointed panicles. Fruits (hips) are globular to ovoid, 0.25 inches (0.64 cm) or less in diameter [26]. Seeds are angular achenes [40].

The preceding description provides characteristics of multiflora rose that may be relevant to fire ecology and is not meant to be used for identification. Keys for identifying multiflora rose are available in various floras (e.g. [33,70]). Photos and descriptions of multiflora rose are also available online from Missouri Department of Conservation and the Southeast Exotic Pest Plant Council. Check with the native plant society or cooperative extension service in your state for more information.

The biology and ecology of multiflora rose are not well-studied. More research is needed to better understand its life-history and other biological traits, habitat requirements and limitations, and interactions with native North American flora and fauna.

  • 26. Fawcett, Richard S. 1980. Today's weed: multiflora rose. Weeds Today. 11(1): 22-23. [21437]
  • 33. Godfrey, Robert K. 1988. Trees, shrubs, and woody vines of northern Florida and adjacent Georgia and Alabama. Athens, GA: The University of Georgia Press. 734 p. [10239]
  • 34. Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. 1392 p. [1603]
  • 63. Patterson, David T. 1976. The history and distribution of five exotic weeds in North Carolina. Castanea. 41(2): 177-180. [21454]
  • 70. Stephens, H. A. 1973. Woody plants of the North Central Plains. Lawrence, KS: The University Press of Kansas. 530 p. [3804]
  • 40. Hoffman, Randy; Kearns, Kelly, eds. 1997. Multiflora rose (Rosa multiflora) In: Wisconsin manual of control recommendations for ecologically invasive plants [Online]. Madison, WI: Wisconsin Department of Natural Resources, Bureau of Endangered Resources (Producer). Available: http://www.dnr.state.wi.us/org/land/er/invasive/manuallist.htm [2002, July 18]. [41486]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description

Multiflora rose is a thorny, perennial shrub with arching stems (canes), and leaves divided into five to eleven sharply toothed leaflets. The base of each leaf stalk bears a pair of fringed bracts. Beginning in May or June, clusters of showy, fragrant, white to pink flowers appear, each about an inch across. Small bright red fruits, or rose hips, develop during the summer, becoming leathery, and remain on the plant through the winter.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description and Biology

  • Plant: multi-stemmed shrub, sometimes climbing vine, with arching stems and recurved thorns.
  • Leaves: divided into five to eleven sharply toothed leaflets; leaf stalks with fringed stipules (paired wing-like structures).
  • Flowers, fruits and seeds: clusters of showy, fragrant, white to pinkish, 1 in. wide flowers appear during May; small bright red fruits, or rose hips, develop during the summer and remain on the plant through the winter.
  • Spreads: reproduces by seed and by forming new plants from the tips of arching canes that can root where they contact the ground. An average plant produces an estimated one million seeds per year, which remain viable in the soil for up to 20 years.
  • Look-alikes: pasture rose (Rosa carolina); swamp rose (Rosa palustris); Allegheny blackberry (Rubus allegheniensis); flowering raspberry (Rubus odoratus). Only multiflora rose has the combination of upright arching stems and fringed stipules.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Diagnostic Description

Rosa multiflora may be told from R. setigera, which it resembles, by a more trailing or arching habit, mostly 7 or 9 leaflets, 2-4 cm long, abundant, mostly white flowers in a pyramidal inflorescence, a glabrous style, and smaller fruit (Fernald 1950).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Diagnostic

Habit: Straggler
Creative Commons Attribution 3.0 (CC BY 3.0)

© India Biodiversity Portal

Source: India Biodiversity Portal

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Range and Habitat in Illinois

The Multiflora Rose is a common plant that probably occurs in every county of Illinois. However, it has been observed in about one-half of the counties in the state, according to official records (see Distribution Map). This species was introduced into the United States by the horticulture industry from Japan or eastern Asia after World War II, when it was advertised as a "living fence" that would promote the privacy of residential properties. It quickly escaped and has managed to spread with amazing rapidity. Habitats include open deciduous woodlands, woodland borders, thickets, weedy meadows along rivers, fence rows, powerline clearances in wooded areas, abandoned pastures, semi-shaded areas along roadsides, and any little-used open area that is reverting back into a woodlands. The Multiflora Rose is a major invader of both natural and disturbed areas.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© John Hilty

Source: Illinois Wildflowers

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Key Plant Community Associations

Multiflora rose is found across many upland habitats in North America. As a consequence,
it may be associated with a variety of plant taxa, functional guilds and communities.

Multiflora rose is listed as a "characteristic shrub" of the successional
shrubland community-type in New York [66].
  • 66. Reschke, Carol. 1990. Ecological communities of New York State. Latham, NY: New York State Department of Environmental Conservation, New York Natural Heritage Program. 96 p. [21441]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Rangeland Cover Types

More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):

More info for the terms: cover, hardwood, shrub

SRM (RANGELAND) COVER TYPES [69]:

103 Green fescue

109 Ponderosa pine shrubland

201 Blue oak woodland

202 Coast live oak woodland

203 Riparian woodland

204 North coastal shrub

207 Scrub oak mixed chaparral

208 Ceanothus mixed chaparral

209 Montane shrubland

214 Coastal prairie

215 Valley grassland

601 Bluestem prairie

602 Bluestem-prairie sandreed

710 Bluestem prairie

711 Bluestem-sacahuista prairie

717 Little bluestem-Indiangrass-Texas wintergrass

718 Mesquite-grama

719 Mesquite-liveoak-seacoast bluestem

727 Mesquite-buffalo grass

728 Mesquite-granjeno-acacia

729 Mesquite

731 Cross timbers-Oklahoma

732 Cross timbers-Texas (little bluestem-post oak)

733 Juniper-oak

734 Mesquite-oak

735 Sideoats grama-sumac-juniper

801 Savanna

802 Missouri prairie

803 Missouri glades

804 Tall fescue

805 Riparian

808 Sand pine scrub

809 Mixed hardwood and pine

810 Longleaf pine-turkey oak hills

811 South Florida flatwoods

812 North Florida flatwoods

813 Cutthroat seeps

814 Cabbage palm flatwoods

815 Upland hardwood hammocks

817 Oak hammocks
  • 69. Shiflet, Thomas N., ed. 1994. Rangeland cover types of the United States. Denver, CO: Society for Range Management. 152 p. [23362]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Cover Types

More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

More info for the term: cover

SAF COVER TYPES [25]:

1 Jack pine

14 Northern pin oak

15 Red pine

16 Aspen

17 Pin cherry

18 Paper birch

19 Gray birch-red maple

20 White pine-northern red oak-red maple

21 Eastern white pine

22 White pine-hemlock

25 Sugar maple-beech-yellow birch

26 Sugar maple-basswood

27 Sugar maple

28 Black cherry-maple

30 Red spruce-yellow birch

31 Red spruce-sugar maple-beech

32 Red spruce

35 Paper birch-red spruce-balsam fir

40 Post oak-blackjack oak

42 Bur oak

43 Bear oak

44 Chestnut oak

45 Pitch pine

46 Eastern redcedar

50 Black locust

51 White pine-chestnut oak

52 White oak-black oak-northern red oak

53 White oak

55 Northern red oak

57 Yellow-poplar

58 Yellow-poplar-eastern hemlock

59 Yellow-poplar-white oak-northern red oak

60 Beech-sugar maple

63 Cottonwood

64 Sassafras-persimmon

65 Pin oak-sweetgum

66 Ashe juniper-redberry (Pinchot) juniper

69 Sand pine

70 Longleaf pine

71 Longleaf pine-scrub oak

72 Southern scrub oak

73 Southern redcedar

74 Cabbage palmetto

75 Shortleaf pine

76 Shortleaf pine-oak

78 Virginia pine-oak

79 Virginia pine

80 Loblolly pine-shortleaf pine

81 Loblolly pine

82 Loblolly pine-hardwood

87 Sweetgum-yellow-poplar

107 White spruce

108 Red maple

109 Hawthorn

110 Black oak

213 Grand fir

217 Aspen

221 Red alder

222 Black cottonwood-willow

223 Sitka spruce

229 Pacific Douglas-fir

231 Port-Orford-cedar

232 Redwood

233 Oregon white oak

234 Douglas-fir-tanoak-Pacific madrone

235 Cottonwood-willow

236 Bur oak

237 Interior ponderosa pine

238 Western juniper

239 Pinyon-juniper

240 Arizona cypress

241 Western live oak

242 Mesquite

243 Sierra Nevada mixed conifer

244 Pacific ponderosa pine-Douglas-fir

245 Pacific ponderosa pine

246 California black oak

247 Jeffrey pine

248 Knobcone pine

249 Canyon live oak

250 Blue oak-foothills pine

251 White spruce-aspen

255 California coast live oak
  • 25. Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p. [905]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Plant Associations

More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

More info for the term: shrub

KUCHLER [49] PLANT ASSOCIATIONS:

K001 Spruce-cedar-hemlock forest

K002 Cedar-hemlock-Douglas-fir forest

K003 Silver fir-Douglas-fir forest

K005 Mixed conifer forest

K006 Redwood forest

K009 Pine-cypress forest

K010 Ponderosa shrub forest

K011 Western ponderosa forest

K012 Douglas-fir forest

K025 Alder-ash forest

K026 Oregon oakwoods

K028 Mosaic of K002 and K026

K029 California mixed evergreen forest

K030 California oakwoods

K033 Chaparral

K034 Montane chaparral

K047 Fescue-oatgrass

K048 California steppe

K074 Bluestem prairie

K075 Nebraska Sandhills prairie

K076 Blackland prairie

K079 Palmetto Prairie

K081 Oak savanna

K082 Mosaic of K074 and K100

K083 Cedar glades

K084 Cross Timbers

K085 Mesquite-buffalo grass

K086 Juniper-oak savanna

K087 Mesquite-oak savanna

K088 Fayette prairie

K089 Black Belt

K095 Great Lakes pine forest

K097 Southeastern spruce-fir forest

K098 Northern floodplain forest

K099 Maple-basswood forest

K100 Oak-hickory forest

K101 Elm-ash forest

K102 Beech-maple forest

K103 Mixed mesophytic forest

K104 Appalachian oak forest

K110 Northeastern oak-pine forest

K111 Oak-hickory-pine

K112 Southern mixed forest

K115 Sand pine scrub
  • 49. Kuchler, A. W. 1964. United States [Potential natural vegetation of the conterminous United States]. Special Publication No. 36. New York: American Geographical Society. 1:3,168,000; colored. [3455]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Ecosystem

More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

ECOSYSTEMS [31]:

FRES10 White-red-jack pine

FRES12 Longleaf-slash pine

FRES13 Loblolly-shortleaf pine

FRES14 Oak-pine

FRES15 Oak-hickory

FRES16 Oak-gum-cypress

FRES17 Elm-ash-cottonwood

FRES18 Maple-beech-birch

FRES19 Aspen-birch

FRES20 Douglas-fir

FRES21 Ponderosa pine

FRES22 Western white pine

FRES24 Hemlock-Sitka spruce

FRES27 Redwood

FRES28 Western hardwoods

FRES32 Texas savanna

FRES34 Chaparral-mountain shrub

FRES39 Prairie
  • 31. Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; [and others]. 1977. Vegetation and environmental features of forest and range ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of Agriculture, Forest Service. 68 p. [998]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat characteristics

Multiflora rose frequently colonizes roadsides, old fields, pastures, prairies, savannas, open woodlands, and forest edges, and may also invade dense forests where disturbance provides canopy gaps [19,40,78]. It is most productive in sunny areas with well-drained soils. 

Multiflora rose is tolerant of a wide range of soil and environmental conditions, but is not found in standing water or in extremely dry areas. Its northern distribution is thought to be limited by intolerance to extreme cold temperatures, but specific information is lacking [40].

  • 19. Edgin, Bob; Ebinger, John E. 2000. Vegetation of a successional prairie at Prairie Ridge State Natural Area, Jasper County, Illinois. Castanea. 65(2): 139-146. [40098]
  • 78. Szafoni, Robert E. 1991. Vegetation management guideline: multiflora rose (Rosa multiflora Thunb.). Natural Areas Journal. 11(4): 215-216. [16333]
  • 40. Hoffman, Randy; Kearns, Kelly, eds. 1997. Multiflora rose (Rosa multiflora) In: Wisconsin manual of control recommendations for ecologically invasive plants [Online]. Madison, WI: Wisconsin Department of Natural Resources, Bureau of Endangered Resources (Producer). Available: http://www.dnr.state.wi.us/org/land/er/invasive/manuallist.htm [2002, July 18]. [41486]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat in the United States

Multiflora rose has a wide tolerance for various soil, moisture, and light conditions. It occurs in dense woods, prairies, along stream banks and roadsides and in open fields and pastures.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Thickets, scrub, slopes, river sides; 300--2000 m.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

Faunal Associations

The abundant and showy pollen of the flowers attracts various long-tongued bees, including honey bees and bumblebees. These insects are the primary pollinators of the flowers. The pollen of the flowers also attracts short-tongued Halictid bees, Syrphid flies, bee flies, and beetles. The bees collect pollen for the grubs in their nests or hives, while the remaining insects feed on pollen. The flowers of most roses do not provide nectar. Because roses are important in horticulture, the insect species that feed on their foliage,  flowers, and shoots are fairly well-known and documented. These insect feeders include the larvae of shoot-boring beetles, flea beetles, scarab beetles, aphids, the larvae of sawflies, the larvae of gall wasps, the larvae of moths, and thrips (see the Insect Table for a listing of these species). Rose hips are eaten by such upland gamebirds and songbirds as the Greater Prairie Chicken, Ring-Necked Pheasant, Ruffed Grouse, Yellow-Breasted Chat, Northern Mockingbird, and Fox Sparrow. The twigs and foliage are often browsed by the White-Tailed Deer and other hoofed mammalian browsers, notwithstanding the thorns. Rose hips are sometimes eaten by the White-Footed Mouse, while the lower shoots and foliage of young plants are occasionally eaten by the Cottontail Rabbit. The birds and mammals that eat rose hips help to distribute the seeds far and wide. The dense foliage and armed shoots of the Multiflora Rose provide excellent cover and nesting habitat for the Brown Thrasher, Northern Mockingbird, Yellow-Breasted Chat, and other songbirds. Photographic Location
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© John Hilty

Source: Illinois Wildflowers

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Flower-Visiting Insects of Multiflora Rose in Illinois

Rosa multiflora (Multiflora Rose) introduced
(beetles feed on pollen; information is limited; observations are from MacRae)

Beetles
Buprestidae: Acmaeodera ornata fp (McR), Anthaxia flavimana fp (McR)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Fire Management Considerations

More info for the terms: prescribed fire, presence

In fire-adapted communities, periodic prescribed burns will presumably retard multiflora rose invasion and establishment [40,78], although descriptions of the use of prescribed fire for control of multiflora rose are lacking. In a review of management practices for multiflora rose, Evans [24] describes the use of prescribed fire to control Macartney rose (Rosa bracteata), another nonnative pasture species, indicating that multiflora rose may respond similarly. Macartney rose is top-killed by fire but quickly initiates regrowth, presumably by sprouting from rhizomes and/or root crowns.

While a single prescribed fire is unlikely to eradicate multiflora rose, periodic burning may control its spread and eventually reduce its presence. Any management activity that removes aboveground tissue, prevents seed production, and depletes energy reserves is likely to impact multiflora rose invasiveness, especially when conducted persistently. Periodic fire may also promote desirable native plants. Prescribed burning in Texas for controlling Macartney rose improved native grass yields, especially following winter burns [24].

  • 24. Evans, James E. 1983. A literature review of management practices for multiflora rose (Rosa multiflora). Natural Areas Journal. 3(1): 6-15. [41482]
  • 78. Szafoni, Robert E. 1991. Vegetation management guideline: multiflora rose (Rosa multiflora Thunb.). Natural Areas Journal. 11(4): 215-216. [16333]
  • 40. Hoffman, Randy; Kearns, Kelly, eds. 1997. Multiflora rose (Rosa multiflora) In: Wisconsin manual of control recommendations for ecologically invasive plants [Online]. Madison, WI: Wisconsin Department of Natural Resources, Bureau of Endangered Resources (Producer). Available: http://www.dnr.state.wi.us/org/land/er/invasive/manuallist.htm [2002, July 18]. [41486]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Plant Response to Fire

More info for the terms: frequency, prescribed fire, restoration

Multiflora rose frequency was significantly (p < 0.01) reduced following two consecutive early-spring burns at a prairie restoration site in east-central Illinois. The reduction in frequency occurred between postfire years 1 and 2. There was no description of specific fire effects [41].

The Research Project Summary Effects of experimental burning on understory plants in a temperate deciduous forest in Ohio provides information on prescribed fire and postfire response of plant community species, including multiflora rose, that was not available when this species review was written.

  • 41. Hruska, Mary C.; Ebinger, John E. 1995. Monitoring a savanna restoration in east-central Illinois. Transactions of the Illinois State Academy of Science. 88(3&4): 109-117. [41436]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Immediate Effect of Fire

More info for the terms: fire severity, rhizome, root crown, severity

There is no information available as of this writing (2002) describing the immediate effects of fire on multiflora rose. Native Rosa spp. are typically top-killed by fire, and with increasing fire severity, may be subject to root crown and rhizome damage sufficient to inhibit sprouting (see FEIS fire effects summaries for prickly rose, baldhip rose, Nootka rose, and Wood's rose).

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Post-fire Regeneration

More info for the terms: adventitious, ground residual colonizer, initial off-site colonizer, rhizome, secondary colonizer, shrub

POSTFIRE REGENERATION STRATEGY [71]:
Because there is no information about multiflora rose and fire, and only sparse information about its general biological traits (as of this writing (2002)), the following postfire regeneration strategies are speculative. More research is needed to clarify how multiflora rose responds to disturbance in general, and fire in particular.

Tall shrub, adventitious bud/root crown
Small shrub, adventitious bud/root crown
Rhizomatous shrub, rhizome in soil
Ground residual colonizer (on-site, initial community)
Initial off-site colonizer (off-site, initial community)
Secondary colonizer (on-site or off-site seed sources)
  • 71. Stickney, Peter F. 1989. Seral origin of species originating in northern Rocky Mountain forests. Unpublished draft on file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT. 10 p. [20090]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Ecology

More info for the terms: moderate-severity fire, restoration

Information about multiflora rose and fire is lacking. Research is needed that examines the interactions of fire and multiflora rose, and the effects these interactions may have on native communities and ecosystems and their respective FIRE REGIMES. For instance, multiflora rose may be present in remnant or restored native Midwestern prairie communities [19]. Historically, fire has been an important ecological influence in prairie ecosystems [48]. Understanding the response of multiflora rose (and other nonnative species) to periodic fire could be critical for management and restoration efforts in these and other areas.

Many native Rosa spp. survive low- to moderate-severity fire by sprouting from rhizomes or root crowns, and may germinate from on-site or off-site seed sources (see FEIS fire ecology summaries for prickly rose (R. acicularis), baldhip rose (R. gymnocarpa), Nootka rose (R. nutkana), and Wood's rose (R. woodsii) on this website).

Fire adaptations: No information

FIRE REGIMES: The following table lists fire return intervals for communities or ecosystems throughout North America where multiflora rose may occur. This list is meant as a guideline to illustrate historic FIRE REGIMES and is not to be interpreted as a strict description of FIRE REGIMES for multiflora rose.

Community or Ecosystem Dominant Species Fire Return Interval Range (years)
silver fir-Douglas-fir Abies amabilis-Pseudotsuga menziesii var. menziesii > 200
grand fir Abies grandis 35-200 [3]
maple-beech-birch Acer-Fagus-Betula > 1000
sugar maple Acer saccharum > 1000
sugar maple-basswood Acer saccharum-Tilia americana > 1000 [86]
California chaparral Adenostoma and/or Arctostaphylos spp. 64]
bluestem prairie Andropogon gerardii var. gerardii-Schizachyrium scoparium 48,64]
Nebraska sandhills prairie Andropogon gerardii var. paucipilus-Schizachyrium scoparium
bluestem-Sacahuista prairie Andropogon littoralis-Spartina spartinae
California montane chaparral Ceanothus and/or Arctostaphylos spp. 50-100 [64]
sugarberry-America elm-green ash Celtis laevigata-Ulmus americana-Fraxinus pennsylvanica
Atlantic white-cedar Chamaecyparis thyoides 35 to > 200
beech-sugar maple Fagus spp.-Acer saccharum > 1000 [86]
California steppe Festuca-Danthonia spp.
juniper-oak savanna Juniperus ashei-Quercus virginiana
Ashe juniper Juniperus ashei
western juniper Juniperus occidentalis 20-70
cedar glades Juniperus virginiana 3-7 [64]
yellow-poplar Liriodendron tulipifera
southeastern spruce-fir Picea-Abies spp. 35 to > 200 [86]
red spruce* P. rubens 35-200 [18]
pine-cypress forest Pinus-Cupressus spp. 3]
pinyon-juniper Pinus-Juniperus spp. 64]
jack pine Pinus banksiana 18]
shortleaf pine Pinus echinata 2-15
shortleaf pine-oak Pinus echinata-Quercus spp.
slash pine Pinus elliottii 3-8
slash pine-hardwood Pinus elliottii-variable
sand pine Pinus elliottii var. elliottii 25-45 [86]
Jeffrey pine Pinus jeffreyi 5-30
western white pine* Pinus monticola 50-200 [3]
longleaf-slash pine Pinus palustris-P. elliottii 1-4 [59,86]
longleaf pine-scrub oak Pinus palustris-Quercus spp. 6-10 [86]
Pacific ponderosa pine* Pinus ponderosa var. ponderosa 1-47 [3]
interior ponderosa pine* Pinus ponderosa var. scopulorum 2-30 [3,6,50]
red pine (Great Lakes region) Pinus resinosa 10-200 (10**) [18,30]
red-white-jack pine* Pinus resinosa-P. strobus-P. banksiana 10-300 [18,38]
pitch pine Pinus rigida 6-25 [13,39]
eastern white pine Pinus strobus 35-200
eastern white pine-eastern hemlock Pinus strobus-Tsuga canadensis 35-200
eastern white pine-northern red oak-red maple Pinus strobus-Quercus rubra-Acer rubrum 35-200
loblolly pine Pinus taeda 3-8
loblolly-shortleaf pine Pinus taeda-P. echinata 10 to
Virginia pine Pinus virginiana 10 to
Virginia pine-oak Pinus virginiana-Quercus spp. 10 to 86]
eastern cottonwood Populus deltoides 64]
aspen-birch Populus tremuloides-Betula papyrifera 35-200 [18,86]
quaking aspen (west of the Great Plains) Populus tremuloides 7-120 [3,35,56]
mesquite Prosopis glandulosa 55,64]
mesquite-buffalo grass Prosopis glandulosa-Buchloe dactyloides 64]
black cherry-sugar maple Prunus serotina-Acer saccharum > 1000 [86]
Rocky Mountain Douglas-fir* Pseudotsuga menziesii var. glauca 25-100 [3,4,5]
coastal Douglas-fir* Pseudotsuga menziesii var. menziesii 40-240 [3,58,67]
California mixed evergreen Pseudotsuga menziesii var. m.-Lithocarpus densiflorus-Arbutus menziesii
California oakwoods Quercus spp. 3]
oak-hickory Quercus-Carya spp. 86]
oak-juniper woodland (Southwest) Quercus-Juniperus spp. 64]
northeastern oak-pine Quercus-Pinus spp. 10 to 86]
oak-gum-cypress Quercus-Nyssa-spp.-Taxodium distichum 35 to > 200 [59]
southeastern oak-pine Quercus-Pinus spp. 86]
coast live oak Quercus agrifolia 3]
white oak-black oak-northern red oak Quercus alba-Q. velutina-Q. rubra 86]
canyon live oak Quercus chrysolepis
blue oak-foothills pine Quercus douglasii-Pinus sabiniana 3]
northern pin oak Quercus ellipsoidalis 86]
Oregon white oak Quercus garryana 3]
bear oak Quercus ilicifolia 86]
California black oak Quercus kelloggii 5-30 [64
bur oak Quercus macrocarpa 86]
oak savanna Quercus macrocarpa/Andropogon gerardii-Schizachyrium scoparium 2-14 [64,86]
chestnut oak Q. prinus 3-8
northern red oak Quercus rubra 10 to
post oak-blackjack oak Quercus stellata-Q. marilandica
black oak Quercus velutina
live oak Quercus virginiana 10 to86]
interior live oak Quercus wislizenii 3]
cabbage palmetto-slash pine Sabal palmetto-Pinus elliottii 59,86]
blackland prairie Schizachyrium scoparium-Nassella leucotricha
Fayette prairie Schizachyrium scoparium-Buchloe dactyloides
little bluestem-grama prairie Schizachyrium scoparium-Bouteloua spp. 64]
redwood Sequoia sempervirens 5-200 [3,28,76]
western redcedar-western hemlock Thuja plicata-Tsuga heterophylla > 200 [3]
eastern hemlock-yellow birch Tsuga canadensis-Betula alleghaniensis > 200 [86]
western hemlock-Sitka spruce Tsuga heterophylla-Picea sitchensis > 200 [3]
elm-ash-cottonwood Ulmus-Fraxinus-Populus spp. 18,86]
*fire return interval varies widely; trends in variation are noted in the species summary
**mean
  • 3. Arno, Stephen F. 2000. Fire in western forest ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 97-120. [36984]
  • 4. Arno, Stephen F.; Gruell, George E. 1983. Fire history at the forest-grassland ecotone in southwestern Montana. Journal of Range Management. 36(3): 332-336. [342]
  • 6. Baisan, Christopher H.; Swetnam, Thomas W. 1990. Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, U.S.A. Canadian Journal of Forest Research. 20: 1559-1569. [14986]
  • 59. Myers, Ronald L. 2000. Fire in tropical and subtropical ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 161-173. [36985]
  • 5. Arno, Stephen F.; Scott, Joe H.; Hartwell, Michael G. 1995. Age-class structure of old growth ponderosa pine/Douglas-fir stands and its relationship to fire history. Res. Pap. INT-RP-481. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 25 p. [25928]
  • 56. Meinecke, E. P. 1929. Quaking aspen: A study in applied forest pathology. Tech. Bull. No. 155. Washington, DC: U.S. Department of Agriculture. 34 p. [26669]
  • 58. Morrison, Peter H.; Swanson, Frederick J. 1990. Fire history and pattern in a Cascade Range landscape. Gen. Tech. Rep. PNW-GTR-254. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 77 p. [13074]
  • 13. Buchholz, Kenneth; Good, Ralph E. 1982. Density, age structure, biomass and net annual aboveground productivity of dwarfed Pinus rigida Moll. from the New Jersey Pine Barren Plains. Bulletin of the Torrey Botanical Club. 109(1): 24-34. [8639]
  • 18. Duchesne, Luc C.; Hawkes, Brad C. 2000. Fire in northern ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 35-51. [36982]
  • 19. Edgin, Bob; Ebinger, John E. 2000. Vegetation of a successional prairie at Prairie Ridge State Natural Area, Jasper County, Illinois. Castanea. 65(2): 139-146. [40098]
  • 28. Finney, Mark A.; Martin, Robert E. 1989. Fire history in a Sequoia sempervirens forest at Salt Point State Park, California. Canadian Journal of Forest Research. 19: 1451-1457. [9845]
  • 30. Frissell, Sidney S., Jr. 1968. A fire chronology for Itasca State Park, Minnesota. Minnesota Forestry Research Notes No. 196. St. Paul, MN: University of Minnesota. 2 p. [34527]
  • 35. Gruell, G. E.; Loope, L. L. 1974. Relationships among aspen, fire, and ungulate browsing in Jackson Hole, Wyoming. Lakewood, CO: U.S. Department of the Interior, National Park Service, Rocky Mountain Region. 33 p. In cooperation with: U.S. Department of Agriculture, Forest Service, Intermountain Region. [3862]
  • 38. Heinselman, Miron L. 1970. The natural role of fire in northern conifer forest. In: The role of fire in the Intermountain West: Proceedings of a symposium; 1970 October 27-29; Missoula, MT. Missoula, MT: Intermountain Fire Research Council. In cooperation with: University of Montana, School of Forestry: 30-41. [15735]
  • 50. Laven, R. D.; Omi, P. N.; Wyant, J. G.; Pinkerton, A. S. 1980. Interpretation of fire scar data from a ponderosa pine ecosystem in the central Rocky Mountains, Colorado. In: Stokes, Marvin A.; Dieterich, John H., technical coordinators. Proceedings of the fire history workshop; 1980 October 20-24; Tucson, AZ. Gen. Tech. Rep. RM-81. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 46-49. [7183]
  • 67. Ripple, William J. 1994. Historic spatial patterns of old forests in western Oregon. Journal of Forestry. 92(11): 45-49. [33881]
  • 76. Stuart, John D. 1987. Fire history of an old-growth forest of Sequoia sempervirens (Taxodiaceae) forest in Humboldt Redwoods State Park, California. Madrono. 34(2): 128-141. [7277]
  • 39. Hendrickson, William H. 1972. Perspective on fire and ecosystems in the United States. In: Fire in the environment: Symposium proceedings; 1972 May 1-5; Denver, CO. FS-276. [Washington, DC]: U.S. Department of Agriculture, Forest Service: 29-33. In cooperation with: Fire Services of Canada, Mexico, and the United States; Members of the Fire Management Study Group; North American Forestry Commission; FAO. [17276]
  • 48. Kucera, Clair L. 1981. Grasslands and fire. In: Mooney, H. A.; Bonnicksen, T. M.; Christensen, N. L.; [and others], technical coordinators. FIRE REGIMES and ecosystem properties: Proceedings of the conference; 1978 December 11-15; Honolulu, HI. Gen. Tech. Rep. WO-26. Washington, DC: U.S. Department of Agriculture, Forest Service: 90-111. [4389]
  • 64. Paysen, Timothy E.; Ansley, R. James; Brown, James K.; [and others]. 2000. Fire in western shrubland, woodland, and grassland ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-volume 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 121-159. [36978]
  • 86. Wade, Dale D.; Brock, Brent L.; Brose, Patrick H.; [and others]. 2000. Fire in eastern ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 53-96. [36983]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Successional Status

More info on this topic.

More info for the terms: frequency, natural, nonnative species, shrub, shrubs, succession

Multiflora rose is most commonly mentioned as a component of early-successional communities, such as in abandoned agricultural and pasture lands in the eastern U.S. For example, Foster and Gross [29] demonstrated how multiflora rose can gradually colonize abandoned agricultural fields in southwestern Michigan. Multiflora rose is an important component in early-successional communities of abandoned agricultural fields in New Jersey, particularly 14-22 years after abandonment [60].

Although descriptions of establishment ecology are absent from the literature, it seems apparent from sites where multiflora rose is present, that it is not limited to a specific successional stage. For example, the following table provides data on frequency of multiflora rose occurrence within sampled plots representing several different successional stages or habitats in a southeastern Pennsylvania natural area [68].

Habitat Description Frequency (% of plots containing multiflora rose)
old field abandoned agricultural land, dominated by herbaceous and low shrub species 38%
thicket old fields that have been densely colonized by small trees and shrubs 56%
woodland even-age, 60-70 year-old early-seral forest 50%
riparian forest   57%
mature forest mixed mesophytic and mixed oak associations 17%

In part because its seeds are bird dispersed, multiflora rose can colonize gaps in late-successional forests, even though these forests are thought to be relatively resistant to invasion by nonnative species [16]. However, without extensive or recurrent disturbance, multiflora rose is probably not a serious long-term invasion threat in mature forests. It will likely be shaded out by surrounding trees and shade-tolerant shrubs [42,68].

In addition to more research on establishment of multiflora rose, studies examining longevity of established colonies and their effects on succession of native communities would be valuable.

  • 16. DeMars, Brent G.; Runkle, James R. 1992. Groundlayer vegetation ordination and site-factor analysis of the Wright State University Woods (Greene County, Ohio). Ohio Journal of Science. 92(4): 98-106. [19823]
  • 29. Foster, Bryan L.; Gross, Katherine L. 1999. Temporal and spatial patterns of woody plant establishment in Michigan old fields. The American Midland Naturalist. 142(2): 229-243. [36648]
  • 60. Myster, Randall W.; Pickett, S. T. A. 1990. Initial conditions, history and successional pathways in ten contrasting old fields. American Midland Naturalist. 124(2): 231-238. [41483]
  • 68. Robertson, David J.; Robertson, Mary C.; Tague, Thomas. 1994. Colonization dynamics of four exotic plants in a northern piedmont natural area. Bulletin of the Torrey Botanical Club. 121(2): 107-118. [24418]
  • 42. Jackson, Lawrence. 1987. Japanese or multiflora rose (Rosa multiflora). In: Decker, Daniel J.; Enck, Jody W., eds. Exotic plants with identified detrimental impacts on wildlife habitats in New York State. Natural Resources Research and Extension Series 29. Ithaca, NY: [Publisher unknown]. 6-13. [20394]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regeneration Processes

More info for the terms: capsule, layering

Breeding system: No information

Pollination: No information

Seed production: Individual plants may produce up to 500,000 seeds per year [40].

Seed dispersal: Most plants develop from seeds that fall relatively close to the parent plant [78]. Some seeds are dispersed by birds and mammals [24,26,88]. Hips remain on the plant and dry to a dense, leathery capsule [24,26,78].

Seed banking: Seeds may remain viable in the soil for 10 to 20 years, but detailed information on seed longevity is lacking [78].

Germination: Germination success may be enhanced by scarification from passing through bird digestive tracts [24].

Seedling establishment/growth: No information

Asexual regeneration: Multiflora rose reproduces asexually by root suckering and layering [24,46,63,78].

  • 24. Evans, James E. 1983. A literature review of management practices for multiflora rose (Rosa multiflora). Natural Areas Journal. 3(1): 6-15. [41482]
  • 26. Fawcett, Richard S. 1980. Today's weed: multiflora rose. Weeds Today. 11(1): 22-23. [21437]
  • 63. Patterson, David T. 1976. The history and distribution of five exotic weeds in North Carolina. Castanea. 41(2): 177-180. [21454]
  • 78. Szafoni, Robert E. 1991. Vegetation management guideline: multiflora rose (Rosa multiflora Thunb.). Natural Areas Journal. 11(4): 215-216. [16333]
  • 88. White, Douglas W.; Stiles, Edmund W. 1992. Bird dispersal of fruits of species introduced into eastern North America. Canadian Journal of Botany. 70: 1689-1696. [19713]
  • 40. Hoffman, Randy; Kearns, Kelly, eds. 1997. Multiflora rose (Rosa multiflora) In: Wisconsin manual of control recommendations for ecologically invasive plants [Online]. Madison, WI: Wisconsin Department of Natural Resources, Bureau of Endangered Resources (Producer). Available: http://www.dnr.state.wi.us/org/land/er/invasive/manuallist.htm [2002, July 18]. [41486]
  • 46. Kay, Stratford H.; Lewis, William M.; Langeland, Kenneth A. 1995. Integrated management of multiflora rose in North Carolina. AG-536. Raleigh, NC: North Carolina State University, Cooperative Extension Service. 17 p. [Pamphlet]. [41437]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Growth Form (according to Raunkiær Life-form classification)

More info on this topic.

More info for the terms: geophyte, phanerophyte

RAUNKIAER [65] LIFE FORM:
Phanerophyte
Geophyte
  • 65. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Form

More info for the term: shrub

Shrub

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Cyclicity

Phenology

More info on this topic.

Flowering occurs from late April through June, depending on location [19,24,46,70]. Fruits develop by late summer [24,70] and often persist until spring [26,78].
  • 19. Edgin, Bob; Ebinger, John E. 2000. Vegetation of a successional prairie at Prairie Ridge State Natural Area, Jasper County, Illinois. Castanea. 65(2): 139-146. [40098]
  • 24. Evans, James E. 1983. A literature review of management practices for multiflora rose (Rosa multiflora). Natural Areas Journal. 3(1): 6-15. [41482]
  • 26. Fawcett, Richard S. 1980. Today's weed: multiflora rose. Weeds Today. 11(1): 22-23. [21437]
  • 70. Stephens, H. A. 1973. Woody plants of the North Central Plains. Lawrence, KS: The University Press of Kansas. 530 p. [3804]
  • 78. Szafoni, Robert E. 1991. Vegetation management guideline: multiflora rose (Rosa multiflora Thunb.). Natural Areas Journal. 11(4): 215-216. [16333]
  • 46. Kay, Stratford H.; Lewis, William M.; Langeland, Kenneth A. 1995. Integrated management of multiflora rose in North Carolina. AG-536. Raleigh, NC: North Carolina State University, Cooperative Extension Service. 17 p. [Pamphlet]. [41437]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reproduction

Biology and Spread

Multiflora rose reproduces by seed and by forming new plants that root from the tips of arching canes that contact the ground. Fruits are readily sought after by birds which are the primary dispersers of its seed. It has been estimated that an average multiflora rose plant may produce a million seeds per year, which may remain viable in the soil for up to twenty years. Germination of multiflora rose seeds is enhanced by passing through the digestive tract of birds.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Barcode data: Rosa multiflora

The following is a representative barcode sequence, the centroid of all available sequences for this species.


Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Rosa multiflora

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 4
Specimens with Barcodes: 28
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

Canada

Rounded National Status Rank: NNA - Not Applicable

United States

Rounded National Status Rank: NNA - Not Applicable

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: GNR - Not Yet Ranked

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Multiflora rose is designated as a "noxious weed" in Wisconsin, Missouri, Pennsylvania, Virginia, and West Virginia, a "secondary noxious weed" in Iowa, and as a "county-level noxious weed" in Kansas. It is a "regulated plant" in Ohio, a "regulated non-native plant species" in South Dakota. Maryland and Wisconsin list it as a "nuisance weed" [80,84]. Multiflora rose is listed by the state of Vermont as a Category II plant: "exotic plant species considered to have the potential to displace native plants either on a localized or widespread scale" [85]. For more information see Invaders Database or Plants Database.
  • 85. Vermont Agency of Natural Resources, Department of Environmental Conservation; Department of Fish and Wildlife, Nongame and Natural Heritage Program. 1998. Invasive exotic plants of Vermont: A list of the state's most troublesome weeds. Vermont Invasive Exotic Plant Fact Sheet Series. Waterbury, VT. 2 p. In cooperation with: The Nature Conservancy of Vermont. [38461]
  • 80. U.S. Department of Agriculture, National Resource Conservation Service. 2002. PLANTS database (2002), [Online]. Available: http://plants.usda.gov/. [34262]
  • 84. University of Montana, Division of Biological Sciences. 2001. INVADERS Database System, [Online]. Available: http://invader.dbs.umt.edu/ [2001, June 27]. [37489]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Preserve Selection and Design Considerations: Active control of multiflora rose is necessary mainly on agricultural land when it threatens to dominate pastures. It may also require management on preserve lands if found in old recovering pastures, as it can crowd out desirable grasses and other species.

Management Requirements: Mechanical Control: Repeated mowing will control the spread of multiflora rose, particularly where the grass cover is dense (Scott 1965, Fawcett 1980). Fawcett (1980) stated that mowing several times a year would prevent multiflora rose seedlings from becoming established. At the Woodborne Santurary in Pennsylvania, annual mowing in July helped control the spread of multiflora rose, but did not eradicate it (Stone 1982). Mowing can be difficult due to terrain, when the hedges become established in wooded and brushy pastures. It is also difficult, if not impossible, to mow when the individual clumps reach their mature size, which may exceed 10 ft. in height by 20 ft. in diameter (Doudrick 1987).

Hand cutting of established clumps is difficult and time consuming. Fawcett (1980) recommended use of a bulldozer to knock down large rose clumps but cautioned that further control would be necessary due to resprouting and because seeds will be spread and germinate readily on the disturbed soil. At Woodborne, a large hedge cutter was used to top cut ten foot high rose clumps. Following this, annual mowing has prevented the re-establishment of large clumps and kept the field open (Stone 1982, Davison 1987).

Burning: Burning has not, apparently, been tried for multiflora rose. However, it has been tested in southeastern Texas as a management practice for Mccartney rose (Rosa bracteata), another exotic pasture species in the southern U.S. Gordon and Scifres (1977) tested head fires at 2 to 3 month intervals starting in February, 1975. Fire intensity and fuel components varied seasonally; however, regardless of the date of the burning, topkill of Mccartney rose was greater than 90%. Regrowth was initiated within two weeks after burns, again, regardless of the date of the burning. The average cane elongation was about 4 cm per month and canopy cover replacement averaged 10 to 15% per month following burning. Burning in winter effectively reduced the rose canopy for short-term gains in brush control, and allowed native grasses to take advantage of the entire spring growing period. There were higher herbage yields following winter burns than other seasons. Scifres (1982) believes that multiflora rose response to burning would be similar.

Prescribed burning in combination with herbicides has also been evaluated for Mccartney rose in southeast Texas. Scifres (1975) found that mechanical methods such as raking and stacking were effective for initial removal of mature, dense and ungrazed stands of the rose, allowing access for subsequent treatment. The most effective herbicide treatment was 2,4,5-T plus picloram at 2 lb. per 100 gallons of water and a surfactant (0.5% V/V) applied to thoroughly cover the plant. The best time of treatment was in the fall, when Mccartney rose is actively growing, and resulted in 90% topkill rates. A prescribed burn 18 months later resulted in a high degree of control. This system (mechanical-chemical-burning) is most efficient when an adequate period of time for canopy replacement separates each phase, allowing for complete action of the herbicide. Prescribed burning removes the debris that remained after spraying and should reduce live Mccartney rose top growth by 75%. Periodic burning or respraying is probably necessary to prevent re-invasion of the rose (Scifres 1975).

Biological Control: The European Rose chalicid, Megastigmus aculeatus Swederus (Hymenoptera:Torymida), and rose rossette disease are potential biological control agents for multiflora rose.

M. aculeatus is a phytophagous wasp. The life cycle and distribution in North America has been summarized by Milliron (1949) and Balduf (1959). The adults are minute, weak flyers of limited lifespan. In May and June the long terebras of the female ovipositor pierces the still soft achene and deposits one egg in the soft, pulpy seed. The larvae subsequently develop during June and July, and consume the entire contents of the seed. After full growth in mid to late summer, the larvae undergo a long diapause and overwinter inside the now seedless achene. Pupation occurs in late April to June, and the adult emerges from the rose hip in early summer to renew the cycle. Populations are heavily female in number, suggesting that the majority of reproduction is parthenogenetic (Milliron 1949, Balduf 1959).

It is important to note that M. aculeatus adults are limited fliers, and do not appear to disseminate even locally through their own powers of flight (Balduf 1959). Their spread is dependent upon the use of rose seed, which explains the presence of these insects in nurseries on the East coast, where imported rose seed was used to start root stocks. Subsequent plantings, however, were done vegetatively, far from the nurseries where the plants were grown. It is possible that some of the large-scale plantings of multiflora rose throughout the Midwest are isolated from their chalicid limiting agent (Scott 19865). If true, this suggests that local reintroductions of M. aculeatus could be an effective control method for multiflora rose.

The rose rosette disease is another potential biocontrol agent for R. multiflora. Characteristic symptoms of the disease include abnormal floral development, a "witches broom" effect, and reddening of leaves and shoots (Doudrick et al. 1986). It was originally reported on wild native roses in the northwestern United States and Canada (Thomas and Scott 1953), and first showed up on multiflora rose at a Nebraska nursery in 1964 (Doudrick 1987). By the 1980's, rose rosette was widespread on multiflora rose in Kansas and Missouri (Crowe 1963), and the rose industry became concerned about the spread of the disease to ornamental roses. It is apparently spreading eastward and was first reported east of the Mississippi in southern Indiana and northern Kentucky in 1987 (Hindal et al. 1987). The disease is lethal to all roses, and Doudrick (1987) and Hindal (1987) reported the occurrence of entire fields in Missouri dominated by multiflora rose where 80-90% of the plants were dead or dying. However, the causal agent of the disease is unknown, and it is considered unsafe for use in a control management program for multiflora rose because of the potential threat to ornamental roses. Doudrick (1987) believed that the disease may have reached equilibrium status in Missouri, and that multiflora rose may begin to "bounce back" (i.e., most of the non-resistant genomes of R. multiflora have been attacked, leaving the more resistant ones). The natural spread of the disease may eliminate the need for active control of multiflora rose in some areas.

Chemical control: Plant growth regulators have been used to control multiflora rose in southwestern Virginia where it has been used as a safety barrier along highways. Of the four regulators tested in Spring 1977, chlorflurenol, maleic hydrazine, and MBR- 18337 effectively prevented fruit set and subsequent spread. The fourth regulator, gyloxime, did not give adequate control although it caused some fruit abscission after fruit set (Hipkins et al. 1980).

Various herbicides have been tested and found effective for control of multiflora rose. It is important to note that multiflora rose has the typical regenerative power of members of the rose family (Scott 1965), and control programs must be monitored and followed up if necessary by repeated herbicide application or used in conjunction with other control methods such as mowing or burning.

Glyphosate is effective against multiflora rose in a 1-2% V/V solution (Ahrens 1977, Lynn et al. 1979, Barbour and Meade 1980, Albaugh et al. 1977, Sherrick and Holt 1977, Fawcett et al. 1977). Although Reed and Fitzgerald (1979) reported glyphosate to be relatively ineffective, giving 25-75% stem kill over one season after a spring application, they did not follow-up their results to check for residual control the following year. Lynn et al. (1979) reported that a spring glyphosate treatment on R. multiflora showed increasing control over the growing season to complete control by the following spring. Treatments in the fall showed no results until the following spring, when effective control was realized (Lynn et al. 1979). Ahrens (1977) reported almost complete control of multiflora rose by the end of the second growing season after a late June application of either 1.5 or 3.0 lb/100 gal glyphosate, and noted that grasses growing underneath the roses were unaffected indicating that the spray on the rose overstory did not penetrate to the ground. Albaugh et al. (1977) found that the rate of application of glyphosate could be reduced to a 0.5% V/V solution for effective control with the addition of a surfactant.

2,4,5-T, 2,4-D, and picloram also give excellent control of multiflora rose (Sherrick and Holt 1977, Fawcett et al. 1977, Reed and Fitzgerald 1979). Sherrick and Holt (1977) reported excellent control with 2,4,5-T in a .5-1% V/V solution, and 2,4,5-T plus picloram, 2,4-D plus picloram, or picloram alone were also effective (all as foliar sprays). Ahrens (1977) found 2,4,5-T to be most effective when applied in late april as a dormant basal spray with 2,4-D in fuel oil at 7.5 + 7.5 lb/100 gal oil or alone as a foliar spray at 6 lb/100 gal water. Picloram was found to be relatively ineffective as a soil application. Reed and Fitzgerald (1979) also found erratic results using picloram in pellet form (soil application), with stem kills ranging from 25-100% over one growing season (they did not look for the effects of residual control the following spring, however). Barbour and Meade (1980) reported picloram pellets to be effective, studied over a three- year period, at 2,4, or 5 lb/A.

Other foliar sprays found to be effective against multiflora rose include dicamba (Sherrick and Holt 1977, Fawcett et al. 1979), triclopyr (Sherrick and Holt 1977, Reed and Fitzgerald 1970) and fosamine (Kmetz 1978, Ahrens 1979). Fosamine controls only woody species and is non-volatile, and may be suitable in situations where there is concern to protect herbaceous species (Fawcett 1982). Pelleted and granular treatments found adequate include tebuthiuron (Lynn et al. 1978, Link et al. 1981) while dicamba was not found adequate (Sherrick and Holt 1977, Fawcett et al. 1977, Ahrens 1977, Barbour and Meade 1980).

Management Programs: Multiflora rose has been declared a noxious weed in many states, including Kansas, Iowa, Missouri, Ohio, Pennsylvania, and West Virgina. It is mainly a threat to agricultural land, but has been reported to be a concern on at least two TNC preserves: the Spinn Prairie in Indiana and the Eldora Nature Preserve in New Jersey.

On the Spinn Prairie it occurs in small patches and monitoring may be necessary to determine if active control is necessary (Heitlinger 1987, McGrath 1987). At the Eldora Nature Preserve it is reportedly taking over old fields and there is concern about loss of habitat for some native moth species that feed on grasses in these areas (Davison 1987). No monitoring or management of multiflora rose has taken place at Eldora, but active control measures are considered necessary (Davison 1987).

Contact: Stewardship Director, The Nature Conservancy, Pennsylvania Field Office, 1218 Chestnut St., Suite 807, Philadelphia, PA 19107. (215) 925-1065.

Denny McGrath, Assistant Director, The Nature Conservancy, Indiana Field Office, 4200 N. Michigan Road, Indianapolis, IN 46208. (317) 923-7547.

A number of states where multiflora rose is a problem on agricultural land have cost share eradication programs whereby landowners can be reimbursed for a portion of the costs to control the plant on their property. These programs may also be available for preserve areas.

Contact: Iowa. Secretary of Agriculture, Iowa Dept. of Ag. and Land Stewardship, Wallace State Office Bldg, Des Moines, IA 50319.

Ohio. Larry Vance (614) 265-6610. Larry Summers (614) 265-6684. Ohio DNR. Div. of Soil & water Conservation, Fountain Square Bldg. E-2, Columbus, OH 43224.

Monitoring Programs: Heitlinger (1987) suggested monitoring of multiflora rose through the use of line intercept transects at the Spinn Prairie in Indiana to track its density and contraction/expansion. Contact: Denny McGrath, Ass't. Director, Indiana Field Office, The Nature Conservancy, 4200 N. Michigan Road, Indianapolis, IN 46208 (317) 923-7547.

Management Research Programs: Research is currently being conducted at West Virginia University on rose rosette as a control for multiflora rose. Contact:

Dr. Dale Hindal, Division of Plant & Soil Sciences, Dept. of Plant Pathology and Agricultural Microbiology, 401 Brooks Hall, West Virginia University, Morgantown, WV 26506. (304) 293-3911.

Dr. James Amrine, Dept. of Entomolgy, West Virginia University, Morgantown, WV 26506. (304) 293-6023.

Management Research Needs: Further research is needed in the area of biological control for multiflora rose. Both the phytophagous wasp Megastimus aculeatus and the Rose Rosette disease are potential biological control agents (see Management Procedures), but also represent a potential threat to ornamental roses.

In the case of M. aculeatus, the degree of host specificity is not fully understood. Milliron (1949) recognized two varieties of the wasp: a "light form" (M. aculeatus aculeatus) and a "dark form" (M. aculeatus nigroflavus). Milliron believed the dark form to be host specific on multiflora rose. However, Balduf (1959) recovered M. aculeatus nigroflavus from Rosa eglanteria and R. virginiana, both native roses. No further research has been conducted on M. aculeatus host specificity. A more promising control agent is the rose rosette disease. However, research to determine the causal agent of the disease has met with little success. Transmission of the disease is accomplished by an eriophyid mite, Phyllocoptes fructiphilus (Amrine et al. 1987). Symptoms of rose rosette, such as the witches broom and reddening of leaves, suggest a mycoplasma- like organism (MLO) as the causal agent, but the mite mouthpart (a sucking tube) is too small to suck up an MLO and also does not penetrate the phloem where an MLO would be found (Doudrick 1987). Other characteristics suggest a viral causal agent, but Doudrick et al. (1987) were unable to find anything resembling viral particles associated with diseased plants. Until more is known about the cause of rose rosette, it probably will not be employed in management programs for control of multiflora rose due to the threat to ornamental roses.

Other questions that may aid management of multiflora rose if carefully researched include the following. What are the germination requirements of multiflora rose and under what conditions are seeds least likely to germinate? How persistent is the rose in recovering grasslands that are no longer grazed? What are the effects of fire on seed viability and vegetative reproduction? How effective is fire in conjunction with herbicides or other control methods?

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Impacts and Control

More info for the terms: fire management, natural, root crown

Impacts: Multiflora rose is clearly a serious pest plant in many areas of North America. It invades pasture areas, degrades forage quality, reduces grazing area and agricultural productivity and can cause severe eye and skin irritation in cattle [46,51]. Multiflora rose can spread rapidly, severely restricting access to pasture and recreational areas with "impenetrable thickets" [42,46,51,78]. Its characteristic dense growth of foliage and stems inhibits growth of competing native plants [42,78]. In a survey of federal wilderness managers, multiflora rose was mentioned as a "widely reported problem species" in Alabama, Arkansas, and Kentucky [53].

Detailed quantitative studies are needed to assess the impacts of multiflora rose on native ecosystems. Research that documents parameters such as rate of spread or species and numbers of native plants displaced would help in understanding how to manage areas where multiflora rose might be a problem.

Control: Controlling multiflora rose requires determined, persistent effort. Well-established populations are unlikely to be eradicated with a single treatment, regardless of method. Because seeds remain viable in soil for many years, and because new seeds may be continually imported by birds and other animals, effective management requires post-treatment monitoring and spot treatment as needed for an indeterminate time to prevent reinvasion [46].

For more information on multiflora rose control methods see Ohio State University Extension, Missouri Department of Conservation, Illinois Department of Natural Resources or West Virginia University Extension websites.

Prevention: Cultural practices that enhance vigor of desired plant species can create an environment less favorable for establishment of multiflora rose [37]. Mowing pastures several times per year will prevent seedling establishment. Avoiding overgrazing may also help prevent multiflora rose establishment (see grazing/browsing section below) [26].

Integrated management: No information

Physical/mechanical: Multiflora rose can be controlled by periodic mowing or cutting of individual plants. For pre-existing infestations, 3 to 6 mowings or cuttings per year, repeated for 2 to 4 years, is recommended. Painting or spraying cut stems with herbicides expedites control by killing root systems and preventing resprouting [78]. Another approach is to follow an initial mowing with foliar applied herbicide once plants have resprouted [46] (see chemical control section below). In high quality natural areas, cutting individual stems may be preferable to mowing, since repeated mowing might damage sensitive native plants. For large infestations, mowing may be preferable due to efficiency. Mowing equipment may be susceptible to frequent flat tires from multiflora rose thorns [78]. Periodic annual mowing can also prevent multiflora rose seedlings from becoming established [37]. Removal of entire plants may be feasible in high quality natural areas when populations are sparse enough. Removal of the entire root system is required to ensure no regrowth from suckering [40].

Fire: See Fire Management Considerations.

Biological: Multiflora rose is highly susceptible to rose rosette disease (RRD), which is transmitted by the eriophyid mite Phyllocoptes fructiphilus [1,2]. The virus-like agent that causes RRD remains of uncertain etiology as of this writing (2002). Symptoms include reddened, damaged foliage, shortened petioles (producing the telltale "rosette" appearance), severely reduced flowering and fruiting, and eventually, severely retarded apical growth. In general, smaller plants are killed by the disease within 2-3 years of initial symptoms, while larger, multi-crowned plants may survive for as long as 4-5 years. Plants growing in full sun appear to succumb more rapidly than shaded plants [21].

Multiflora rose is often severely impacted by RRD where their ranges overlap. The disease agent and the mite vector are native to North America [11]. RRD was first found on ornamental roses and Wood's rose, a common wild rose also native to western North America. RRD is currently expanding its range in the eastern United States, where multiflora rose is more common [2]. Based on field experiments, Amrine and Stasny [2] project that RRD "has the potential to eliminate over 90 % of the multiflora roses in areas of dense stands."

RRD can also be transmitted to healthy multiflora rose plants by grafting buds from symptomatic plants. This technique may be useful in augmenting natural dispersal of RRD to improve its effectiveness as a biological control agent against multiflora rose. Introducing a few infected grafts into relatively dense stands can potentially lead to widespread infection within a multiflora rose population. Graft-infected plants subsequently become colonized by mites, which in turn become vectors transmitting RRD to other plants within the augmented stand, as well as spreading the disease to other nearby populations [22,23].

The host range of RRD appears to be limited to multiflora rose and ornamental hybrid rose varieties [2]. RRD does not seem to adversely affect native North American roses, and tests of many important wild and cultivated fruit-producing species showed no apparent risk [2,23]. While RRD can infect ornamental roses, infected source plants (multiflora rose) located > 330 feet (100 m) away are unlikely to spread infectious agents to susceptible hybrid varieties [23].

Epstein and Hill [22] provide a more detailed review of the status of RRD as a biological control agent for multiflora rose.

Another potential biocontrol agent is the rose seed chalcid (Megastigmus aculeatus), a Japanese wasp that has become established in the eastern United States. The adult wasps oviposit into developing multiflora rose ovules, where larvae later consume seeds [2]. Surveys in North Carolina revealed an average of 62% of viable seed infested with larvae [61]. Colonization of new multiflora rose populations by the rose seed chalcid is apparently slow. Wasps are dispersed with the seed as eggs. Since many multiflora rose populations originated from cuttings, with no accompanying seed chalcid eggs, many recently established populations have not yet been infested. However, as the rose seed chalcid gradually spreads, it should begin to greatly impact multiflora rose populations in the eastern United States, especially when combined with the parallel effects of rose rosette disease [2]. The rose seed chalcid is probably not a factor in areas that experience severe cold, since the larvae overwinter in multiflora rose hips and are adversely affected [54].

Grazing/Browsing: Defoliation experiments indicate periodic browsing of foliage by livestock may effectively control multiflora rose [12]. Domestic sheep and goats will feed on leaves, new buds, and new shoots [46]. Foraging goats in pastures with severe multiflora rose infestations resulted in the virtual elimination of multiflora rose within 4 seasons. New shoots were observed during 2 subsequent seasons of no goat foraging, and these shoots were thought to be of both sprout and seed origin [52]. Cattle are much less effective in controlling multiflora rose [51]. While periodically foraging livestock in infested areas may be an effective control method, overgrazed pastures are presumably more susceptible to colonization from off-site seed sources [26].

Chemical: Where appropriate, herbicides may be an effective means of controlling multiflora rose, especially when used in combination with other methods. Below is a list of herbicides that have been tested and judged effective for controlling multiflora rose in North America, as well as a brief discussion of important considerations regarding their use. This is not intended as an exhaustive review of chemical control methods. For more information regarding appropriate use of herbicides against invasive plant species in natural areas, see The Nature Conservancy's Weed control methods handbook. For more information specific to herbicide use against multiflora rose, see Ohio State University Extension, Missouri Department of Conservation, or Pennsylvania State University Extension websites.

Chemical Considerations
glyphosate [7,75,78] Glyphosate is recommended for "cut-stem" method [78]. It is a non-selective herbicide that kills most other plants that it contacts. It has low toxicity to animals and it rapidly binds to soil particles making it relatively immobile [79].
triclopyr [7,78,82] Triclopyr is recommended for "cut-stem" method [78]. It is also recommended for dormant-season basal bark treatment. It may volatilize when exposed to high temperatures (80 to 85 degrees Fahrenheit (27- 29° C)) [46]. It is selective against dicots. The ester formulation of triclopyr can be persistent in aquatic environments and should not be applied in wetland habitats [79].
picloram [7,75,82]  Picloram may be mobile in soil solution and can leach into nearby surface water [57,79]. It exhibits long residence time in the environment [79].
fosamine Fosamine only kills woody spp. [78]. It may be mobile in soil solution [79].
dicamba [78] Dicamba is selective against broadleaf vegetation. It is best applied during flowering and rapid growth (May-June) [78]. It is also recommended for dormant-season basal bark treatment [46]. Dicamba may volatilize when exposed to high temperatures (80 to 85 degrees Fahrenheit (27- 29° C)) [46]. It is highly mobile in soil and may contaminate ground water [83].
dicamba + 2,4-D [82] See considerations for dicamba, above.
metsulfuron [17,81] Persistence in soil varies widely, but degradation is most rapid under acidic, moist, and warm conditions [83].

Applying herbicides to cut stems can hasten mechanical control by translocating chemicals to root systems and preventing resprouting. In addition, applying chemicals directly to the target plant in this manner reduces damage to surrounding native plants [78,87], and presumably reduces off-target effects. Cut-stem treatment is effective late in the growing season (July-Sept.) [46].

Foliar spraying is effective throughout the growing season as long as leaves are fully formed. Some herbicides may volatilize when temperatures exceed 80 to 85 degrees Fahrenheit (27- 29° C) and are best applied in early spring [46]. Some variation in herbicide effectiveness during different stages of the growing season has been observed, but is probably not related to differences in carbohydrate reserves [27].

Dormant season application is also effective, and further reduces nontarget mortality [78]. Basal bark treatment, applied to the lower 18 to 24 inches (46-61 cm) of the stem and onto the root crown, is a recommended chemical control method for dormant season application. Plants should be dormant and several weeks from bud break (usually January- March), and treatments should only be conducted when soil is not frozen, snow-covered, or water-saturated to avoid runoff [46]. Follow-up monitoring and retreatment during the subsequent growing season may be required to ensure effectiveness [37].

Cultural: No information
  • 26. Fawcett, Richard S. 1980. Today's weed: multiflora rose. Weeds Today. 11(1): 22-23. [21437]
  • 78. Szafoni, Robert E. 1991. Vegetation management guideline: multiflora rose (Rosa multiflora Thunb.). Natural Areas Journal. 11(4): 215-216. [16333]
  • 1. Amrine, James W., Jr.; Hindal, Dale F.; Williams, R.; Appel, Jon; Stasny, T.; Kassar, A. 1990. Rose rosette as a biocontrol of multiflora rose. Proceedings, Southern Weed Science Society. 43: 316-319. [41480]
  • 2. Amrine, James W., Jr.; Stasny, Terry A. 1993. Biocontrol of multiflora rose. In: McKnight, Bill N., ed. Biological pollution: the control and impact of invasive exotic species: Proceedings of a symposium; 1991 October 25-26; Indianapolis, IN. Indianapolis, IN: Indiana Academy of Science: 9-21. [41475]
  • 7. Barbour, B. M.; Meade, J. A. 1980. Control of multiflora rose in pastures. Proceedings, Northwest Weed Science Society. 34: 02-106. [21501]
  • 11. Brown, T. 1994. Distribution of rose rosette disease. In: Epstein, Abraham H.; Hill, John H., eds. Proceedings of the international symposium: rose rosette and other eriophyid mite-transmitted plant disease agents of uncertain etiology; 1994 May 19-21; Ames, IA. Ames, IA: Iowa State University, Agricultural Extension Station: 43-56. [41871]
  • 12. Bryan, W. B.; Mills, T. A. 1988. Effect of frequency and method of defoliation and plant size on the survival of multiflora rose. Biological Agriculture and Horticulture. 5(3): 209-214. [21503]
  • 17. Derr, Jeffrey F. 1989. Multiflora rose (Rosa multiflora) control with metsulfuron. Weed Technology. 3(2): 381-384. [41448]
  • 21. Epstein, A. H.; Hill, J. H. 1995. The biology of rose rosette disease: a mite-associated disease of uncertain aetiology. Journal of Pathology. 143: 353-360. [41790]
  • 22. Epstein, A. H.; Hill, J. H. 1999. Status of rose rosette disease as a biological control for multiflora rose. Plant Disease. 83(2): 92-101. [41439]
  • 23. Epstein, A. H.; Hill, J. H.; Nutter, F. W., Jr. 1997. Augmentation of rose rosette disease for biocontrol of multiflora rose (Rosa multiflora). Weed Science. 45: 172-178. [41438]
  • 27. Fick, Walter H.; Stites, H. Leon; Ohlenbusch, Paul D.; Kilgore, Gary L. 1983. Nonstructural carbohydrate reserves and control of multiflora rose. Proceedings, 38th North Central Weed Control Conference. 38: 97-98. Abstract. [41450]
  • 51. Luginbuhl, J-M.; Green, J. T., Jr.; Poore, M. H.; Conrad, A. P. 2000. Use of goats to manage vegetation in cattle pastures in the Appalachian region of North Carolina. Sheep and Goat Research Journal. 16(3): 124-135. [41444]
  • 52. Luginbuhl, J-M.; Harvey, T. E.; Green, J. T., Jr.; Poore, M. H.; Mueller, J. P. 1999. Use of goats as biological agents for the renovation of pastures in the Appalachian region of the United States. Agroforestry Systems. 44(2-3): 241-252. [41447]
  • 53. Marler, Marilyn. 2000. A survey of exotic plants in federal wilderness areas. In: Cole, David N.; McCool, Stephen F.; Borrie, William T.; O'Loughlin, Jennifer, comps. Wilderness science in a time of change conference--Volume 5: wilderness ecosystems, threats, and management; 1999 May 23-27; Missoula, MT. Proceedings RMRS-P-15-VOL-5. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 318-327. [40580]
  • 54. Mays, Warren T.; Kok, Loke-Tuck. 1988. Seed wasp on multiflora rose, Rosa multiflora, in Virginia. Weed Technology. 2(3): 265-268. [41445]
  • 57. Michael, J. L.; Neary, D. G.; Wells, M. J. M. 1989. Picloram movement in soil solution and streamflow from a coastal plain forest. Journal of Environmental Quality. 18: 89-95. [41018]
  • 61. Nalepa, Christine A. 1989. Distribution of the rose seed chalcid Megastigmus aculeatus var. nigroflavus Hoffmeyer (Hymenoptera: Torymidae) in North America. Journal of Entomological Science. 24(4): 413-416. [41373]
  • 75. Stroube, Edward W.; Underwood, John F. 1981. Multiflora rose control in Ohio. Proceedings, 36th North Central Weed Control Conference. 36: 74-76. [41478]
  • 79. Tu, Mandy; Hurd, Callie; Randall, John M., eds. 2001. Weed control methods handbook: tools and techniques for use in natural areas. Davis, CA: The Nature Conservancy. 194 p. [37787]
  • 81. Underwood, J. F.; Sperow, C. B., Jr. 1985. Control methods for multiflora rose (Rosa multiflora Thunb.) with metsulfuron methol. Proceedings, North Central Weed Science Society. 40: 59-63. [41442]
  • 82. Underwood, John F.; Williams, Robert L.; Hacker, J. Douglas; Kapinus, Robert C.; Sobotka, Frank E. 1983. Dormant applications for multiflora rose control. Proceedings, 38th North Central Weed Control Conference. 38: 92-94. [41451]
  • 87. Wahlers, Richard L.; Burton, James D.; Maness, Eleanor P.; Skroch, Walter A. 1997. A stem cut and blade delivery method of herbicide application for weed control. Weed Science. 45: 829-832. [37529]
  • 37. Hartzler, Robert G.; Owen, Michael D. K. 1992. Multiflora rose and its control: PM-863, [Online]. Ames, IA: Iowa State University, University Extension (Producer). Available: http://www.extension.iastate.edu/Publications/PM863.pdf [2002, August 6]. [41489]
  • 40. Hoffman, Randy; Kearns, Kelly, eds. 1997. Multiflora rose (Rosa multiflora) In: Wisconsin manual of control recommendations for ecologically invasive plants [Online]. Madison, WI: Wisconsin Department of Natural Resources, Bureau of Endangered Resources (Producer). Available: http://www.dnr.state.wi.us/org/land/er/invasive/manuallist.htm [2002, July 18]. [41486]
  • 42. Jackson, Lawrence. 1987. Japanese or multiflora rose (Rosa multiflora). In: Decker, Daniel J.; Enck, Jody W., eds. Exotic plants with identified detrimental impacts on wildlife habitats in New York State. Natural Resources Research and Extension Series 29. Ithaca, NY: [Publisher unknown]. 6-13. [20394]
  • 46. Kay, Stratford H.; Lewis, William M.; Langeland, Kenneth A. 1995. Integrated management of multiflora rose in North Carolina. AG-536. Raleigh, NC: North Carolina State University, Cooperative Extension Service. 17 p. [Pamphlet]. [41437]
  • 83. University of California Davis, Environmental Toxicology Department. 1998. Extoxnet: The Extension Toxicology Network, [Online]. Available: http://ace.orst.edu/info/extoxnet/ [2001, June 27]. [37488]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Prevention and Control

Do not plant multiflora rose. Effective control of multiflora is possible using chemical, manual, or mechanical means or, preferably, a combination. Frequent, repeated cutting or mowing at the rate of three to six times per growing season, for two to four years, has been shown to be very effective. In high-quality natural communities, cutting of individual plants may be preferable to minimize habitat disturbance. Because of the long-lived stores of seed in the soil, follow-up treatments are necessary. Application of a systemic glyphosate-based herbicide to freshly cut stems, to regrowth, or to foliage is very effective, especially if done late in the growing season. Two naturally-occurring controls affect multiflora rose to some extent. A native virus (rose-rosette disease) spread by a tiny native mite impedes stem growth and a non-native seed-infesting wasp, the European rose chalcid, causes damage to the seeds.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

These species are introduced in Switzerland.
  • Aeschimann, D. & C. Heitz. 2005. Synonymie-Index der Schweizer Flora und der angrenzenden Gebiete (SISF). 2te Auflage. Documenta Floristicae Helvetiae N° 2. Genève.   http://www.crsf.ch/ External link.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Info Flora (CRSF/ZDSF) & Autoren 2005

Supplier: Name It's Source (profile not public)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Cultivation

The preference is partial sun, mesic conditions, and fertile loamy soil. Multiflora Rose is very aggressive and difficult to get rid of once it becomes established. At an open sunny site, it will develop into a shrub that produces numerous flowers, while at a shadier site with adjacent vegetation it becomes a climbing woody vine. The leaves are vulnerable to various kinds of foliar disease, particularly where there is an abundance of moisture and inadequate circulation of air.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© John Hilty

Source: Illinois Wildflowers

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Other uses and values

More info for the term: rootstock

The origins of multiflora rose in North America stem from its use as a rootstock species for ornamental roses and as a fencerow plant [24,26].
  • 24. Evans, James E. 1983. A literature review of management practices for multiflora rose (Rosa multiflora). Natural Areas Journal. 3(1): 6-15. [41482]
  • 26. Fawcett, Richard S. 1980. Today's weed: multiflora rose. Weeds Today. 11(1): 22-23. [21437]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Importance to Livestock and Wildlife

More info for the term: cover

Hips are consumed by many species of birds including grouse, ring-necked pheasants and wild turkeys [42,88], and are particularly sought after by cedar waxwings and American robins [24]. Leaves and hips are consumed by chipmunks, white-tailed deer, opossums, coyotes, black bears, beavers, snowshoe hares, skunks, and mice [20,42,62,74]. Leaves, twigs, bark and fruit are eaten by cottontail rabbits, particularly during fall and winter [42,47]. The hips of Rosa spp. are especially important as winter wildlife food, when other high-nutrition foods are unavailable [42].

Palatability/nutritional value: Nutritional Information for fruits (hips) of multiflora rose [15]:

Dry Matter
(%)
Crude Protein
(% dry matter)
Crude Fat
(% dry matter)
Crude Fiber
(% dry matter)
Gross Energy
(kcal/g)
Metabolizable Energy
(kcal/g)
72.6 9.2 4.2 24.2 4.41 3.31±1.00

Cover value: Multiflora rose is used for cover during all times of year by cottontail rabbits, white-tailed deer, pheasants, and mice [36,42]. It is a preferred nesting site species for gray catbirds [43]. Southwestern willow flycatchers, a federally-listed endangered species, were observed nesting in multiflora rose in New Mexico [72].

  • 24. Evans, James E. 1983. A literature review of management practices for multiflora rose (Rosa multiflora). Natural Areas Journal. 3(1): 6-15. [41482]
  • 88. White, Douglas W.; Stiles, Edmund W. 1992. Bird dispersal of fruits of species introduced into eastern North America. Canadian Journal of Botany. 70: 1689-1696. [19713]
  • 15. Decker, Scott R.; Pekins, Peter J.; Mautz, William W. 1991. Nutritional evaluation of winter foods of wild turkeys. Canadian Journal of Zoology. 69(8): 2128-2132. [21410]
  • 20. Elowe, Kenneth D.; Dodge, Wendell E. 1989. Factors affecting black bear reproductive success and cub survival. Journal of Wildlife Management. 53(4): 962-968. [10339]
  • 36. Gysel, Leslie W.; Lemmien, Walter. 1955. The growth and wildlife use of planted shrubs and trees at the W. K. Kellogg Multiple Use Forest. Michigan Quarterly Bulletin. 38(1): 139-145. [41471]
  • 43. Johnson, Ellen J.; Best, Louis B. 1980. Breeding biology of the gray catbird in Iowa. Iowa State Journal of Research. 55(2): 171-183. [23841]
  • 47. Korschgen, Leroy J. 1980. Food and nutrition of cottontail rabbits in Missouri. Terrestrial Series #6. Jefferson City, MO: Missouri Department of Conservation. 16 p. [25171]
  • 62. Nixon, Charles M.; McClain, Milford W.; Russell, Kenneth R. 1970. Deer food habits and range characteristics in Ohio. Journal of Wildlife Management. 34(4): 870-886. [16398]
  • 72. Stoleson, Scott H.; Finch, Deborah M. 1999. Unusual nest sites for southwestern willow flycatchers. Wilson Bulletin. 111(4): 574-575. [41441]
  • 74. Strole, Todd A.; Anderson, Roger C. 1992. White-tailed deer browsing: species preferences and implications for central Illinois forests. Natural Areas Journal. 12(3): 139-144. [19494]
  • 42. Jackson, Lawrence. 1987. Japanese or multiflora rose (Rosa multiflora). In: Decker, Daniel J.; Enck, Jody W., eds. Exotic plants with identified detrimental impacts on wildlife habitats in New York State. Natural Resources Research and Extension Series 29. Ithaca, NY: [Publisher unknown]. 6-13. [20394]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Risks

Ecological Threat in the United States

Multiflora rose is extremely prolific and can form impenetrable thickets that exclude native plant species. This exotic rose readily invades open woodlands, forest edges, successional fields, savannas and prairies that have been subjected to land disturbance.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecological Threat in the United States

Multiflora rose grows aggressively and produces large numbers of fruits (hips) that are eaten and dispersed by a variety of birds. Dense thickets of multiflora rose exclude most native shrubs and herbs from establishing and may be detrimental to nesting of native birds.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Rosa multiflora

Rosa multiflora, commonly known by its synonym Rosa polyantha[2] and as multiflora rose,[3] baby rose,[3] Japanese rose,[3] many-flowered rose,[3] seven-sisters rose,[3] Eijitsu rose, is a species of rose native to eastern Asia, in China, Japan and Korea. It should not be confused with Rosa rugosa, which is also known as "Japanese rose", or with polyantha roses which are garden cultivars derived from hybrids of R. multiflora.

It is a scrambling shrub climbing over other plants to a height of 3–5 m, with stout stems with recurved thorns (sometimes absent). The leaves are 5–10 cm long, compound, with 5-9 leaflets and feathered stipules. The flowers are produced in large corymbs, each flower small, 1.5–4 cm diameter, white or pink, borne in early summer. The hips are reddish to purple, 6–8 mm diameter.

Two varieties are accepted by the Flora of China:

  • Rosa multiflora var. multiflora. Flowers white, 1.5–2 cm diameter.
  • Rosa multiflora var. cathayensis Rehder & E.H.Wilson. Flowers pink, to 4 cm diameter.

Cultivation and uses[edit]

Rosa multiflora is grown as an ornamental plant, and also used as a rootstock for grafted ornamental rose cultivars.

In eastern North America, Rosa multiflora is now generally considered an invasive species, though it was originally introduced from Asia as a soil conservation measure, as a natural hedge to border grazing land, and to attract wildlife. It is readily distinguished from American native roses by its large inflorescences, which bear multiple flowers and hips, often more than a dozen, while the American species bear only one or a few on a branch.

Some places classify Rosa multiflora as a "noxious weed".[4] In grazing areas, this rose is generally considered to be a serious pest, though it is considered excellent fodder for goats.

References[edit]

  1. ^ "The Plant List: A Working List of All Plant Species". Retrieved April 27, 2014. 
  2. ^ Roger Phillips; Martyn Rix (2004). The Ultimate Guide to Roses. Pan Macmillan Ltd. p. 262. ISBN 1 4050 4920 0. 
  3. ^ a b c d e "USDA GRIN taxonomy". 
  4. ^ "Multiflora rose: Rosa multiflora Thunb. Rose family (Rosaceae)". Plant Conservation Alliance, Alien Plant Working Group. 
  • Flora of China: Rosa multiflora
  • Carole Bergmann, Montgomery County Department of Parks, Silver Spring, MD. and Jil M. Swearingen, U.S. National Park Service, Washington, DC. "Multiflora rose". U.S. National Park Service. Retrieved March 27, 2006. 
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Notes

Comments

Two varieties are recognized here. Plants of this species from Taiwan are usually called var. formosana Cardot (Notul. Syst. (Paris) 3: 263. 1916), which is characterized by small leaflets, 1–3 cm × 0.8–1.5 cm, but this taxon seems to fall within the overall range of variation for var. multiflora. Two other varieties are cultivated in China, but do not occur spontaneously: var. alboplena T. T. Yü & T. C. Ku (Bull. Bot. Res., Harbin 1(4): 12. 1981), which has white, double flowers, and var. carnea Thory (in Redouté, Roses 2: 67. 1821), which has pink, double flowers.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy

The currently accepted name for multiflora rose is Rosa multiflora Thunb.
ex Murr. (Rosaceae) [32,33,34,45,73].
  • 33. Godfrey, Robert K. 1988. Trees, shrubs, and woody vines of northern Florida and adjacent Georgia and Alabama. Athens, GA: The University of Georgia Press. 734 p. [10239]
  • 34. Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. 1392 p. [1603]
  • 32. Gleason, Henry A.; Cronquist, Arthur. 1991. Manual of vascular plants of northeastern United States and adjacent Canada. 2nd ed. New York: New York Botanical Garden. 910 p. [20329]
  • 73. Strausbaugh, P. D.; Core, Earl L. 1977. Flora of West Virginia. 2nd ed. Morgantown, WV: Seneca Books, Inc. 1079 p. [23213]
  • 45. Kartesz, John T.; Meacham, Christopher A. 1999. Synthesis of the North American flora (Windows Version 1.0), [CD-ROM]. Available: North Carolina Botanical Garden. In cooperation with the Nature Conservancy, Natural Resources Conservation Service, and U.S. Fish and Wildlife Service [2001, January 16]. [36715]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Common Names

multiflora rose

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!