Articles on this page are available in 1 other language: Arabic (9) (learn more)

Overview

Distribution

Central America, Mexico, Cuba, and across the southern United States, throughout the regions where cotton is cultivated. It was introduced into the U.S. from Mexico in the late 1800's (Milne and Milne 1980).

Biogeographic Regions: nearctic (Introduced , Native ); neotropical (Native )

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Adult boll weevils are small (4-7 mm) beetles, and are covered by small, hairlike scales. The have a long beak or snout that extends about half the length of the body. Their color varies with age and sex from, but is basically brown, ranging from yellowish, reddish, grayish, to very dark brown. They have a distinctive double-toothed spur on the inside of each front leg. The larval stage is a white grub. The grub transforms into a brownish pupa that somewhat resembles an adult. (Milne and Milne 1980, Drees and Jackman 1998)

Range length: 4 to 7 mm.

Sexual Dimorphism: sexes colored or patterned differently

Other Physical Features: ectothermic ; bilateral symmetry

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

The boll weevil lives in and around areas where cotton is cultivated. In the spring, it mates and develops inside the cotton plant. It spends the winter in trash and leaf liter in the surrounding area (Drees and Jackman 1998).

Habitat Regions: temperate ; terrestrial

Terrestrial Biomes: savanna or grassland

Other Habitat Features: agricultural

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Trophic Strategy

The boll weevil lives and feeds only in cotton and closely related plants. They eat the seed pods (bolls) and the buds of the cotton flower (Milne and Milne 1980).

Plant Foods: seeds, grains, and nuts

Primary Diet: herbivore (Folivore )

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Life Cycle

Once eggs are laid the larvae hatch in about 5 days and spend the next 1 to 2 weeks feeding before developing into pupae. After pupating for about a week, adults emerge from the boll in which they developed by chewing their way out. Boll weevils can mature from egg to adult in less than 20 days, and as many as seven generations can mature in one year (Drees and Jackman 1998).

Development - Life Cycle: metamorphosis

  • Drees, B., J. Jackman. 1998. A Field Guide to Common Texas Insects. Houston: Gulf Publishing Company.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reproduction

In the spring, adult boll weevils fly to cotton fields and feed for three to seven days. The weevils then mate, and the females bore into the flowers and bolls of the cotton plant and lay their eggs.

Breeding interval: As many as seven generations of boll weevils can occur in a year.

Breeding season: Breeding occurs during the warm months of the year.

Range age at sexual or reproductive maturity (female): 20 (low) days.

Range age at sexual or reproductive maturity (male): 20 (low) days.

Key Reproductive Features: seasonal breeding ; sexual ; fertilization (Internal ); oviparous

Once the eggs are laid in a boll there is no further parental care.

Parental Investment: no parental involvement

  • Drees, B., J. Jackman. 1998. A Field Guide to Common Texas Insects. Houston: Gulf Publishing Company.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Barcode data: Anthonomus grandis

The following is a representative barcode sequence, the centroid of all available sequences for this species.


There are 22 barcode sequences available from BOLD and GenBank.

Below is a sequence of the barcode region Cytochrome oxidase subunit 1 (COI or COX1) from a member of the species.

See the BOLD taxonomy browser for more complete information about this specimen and other sequences.

ATT------------------------------------------------------------------------------------------------------------------------------------------------------------TTTTGGAGGTTACCCCCAATTTTAACCCTTTTAATTATAAGAAGAATTGTAATAAAAGGAACTGGAACAGGATGAACAGTTTACCCCCCACTCTCTTCTAATTTAGCTCATGAAGGAGCTTCTGTTGATTTA---GCTATTTTTAGCCTTCATATAGCCGGAATTTCTTCAATTCTCGGAGCTATAAATTTTATTTCAACAGTCCTAAATATAAAGCCCTCAAGAAGAAGCTTAGAACAAATACCTTTATTTGTATGAGCTGTAAAAATTACAGCT
-- end --

Download FASTA File

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Anthonomus grandis

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 85
Specimens with Barcodes: 85
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

US Federal List: no special status

CITES: no special status

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

The boll weevil can destroy entire cotton crops. When the bolls are infested with weevils, they turn yellow and fall off the plant, ruining the cotton fibers. If cotton is heavily infested, the plants may still grow, but produce few bolls, which are the parts of the plant which produce the cotton fibers which we use. (Drees and Jackman 1998)

The boll weevil is an infamous pest, that has been "the bane of cotton farmers throughout the United States" since it was accidentally introduced from Mexico in the 1800's (Milne and Milne 1980).

Until recently control of the Boll Weevil on U.S. cotton crops frequently required heavy use of chemical pesticides. This situation is changing, but in some areas, commercial cotton farming still use substantial quantities of dangerous pesticides.

The United States Department of Agriculture's Animal and Plant Health Inspection Service is sponsoring a Boll Weevil eradication program that has eliminated the species from several states (USDA APHIS 2001)

Negative Impacts: crop pest

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Boll weevil

For other uses, see Boll weevil (disambiguation).

The boll weevil (Anthonomus grandis) is a beetle measuring an average length of six millimeters, which feeds on cotton buds and flowers. Thought to be native to Central America, it migrated into the United States from Mexico in the late 19th century and had infested all U.S. cotton-growing areas by the 1920s, devastating the industry and the people working in the American south. During the late 20th century it became a serious pest in South America as well. Since 1978, the Boll Weevil Eradication Program in the U.S. allowed full-scale cultivation to resume in many regions.

Life cycle[edit]

A female Catolaccus grandis wasp is attracted by a boll weevil larva.

Adult weevils overwinter in well-drained areas in or near cotton fields after diapause. They emerge and enter cotton fields from early spring through midsummer, with peak emergence in late spring, and feed on immature cotton bolls. The female lays about 200 eggs over a 10–12 day period. The oviposition leaves wounds on the exterior of the flower bud. The eggs hatch in three to five days within the cotton squares (larger buds before flowering), feed for eight to ten days, and finally pupate. The pupal stage lasts another five to seven days. The life cycle from egg to adult spans about three weeks during the summer. Under optimal conditions there may be eight to 10 generations per season.

Boll weevils will begin to die at temperatures at or below −5 °C (23 °F). Research at the University of Missouri indicates they cannot survive more than an hour at −15 °C (5 °F). The insulation offered by leaf litter, crop residues, and snow may enable the beetle to survive when air temperatures drop to these levels. The boll weevil lays its eggs inside buds and ripening bolls (fruits) of the cotton plants. The adult insect has a long snout, is grayish color, and is usually less than 6mm long.

Other limitations on boll weevil populations include extreme heat and drought. Its natural predators include fire ants, insects, spiders, birds, and a parasitic wasp, Catolaccus grandis. The insects sometimes emerge from diapause before cotton buds are available.

Infestation[edit]

The insect crossed the Rio Grande near Brownsville, Texas to enter the United States from Mexico in 1892[1] and reached southeastern Alabama in 1909. By the mid-1920s it had entered all cotton growing regions in the U.S., travelling 40 to 160 miles per year. It remains the most destructive cotton pest in North America. Mississippi State University has estimated that since the boll weevil entered the United States it has cost U.S. cotton producers about $13 billion, and in recent times about $300 million per year.[1]

The cotton boll weevil: a, adult beetle; b, pupa; c, larva.

The boll weevil contributed to the economic woes of Southern farmers during the 1920s, a situation exacerbated by the Great Depression in the 1930s.

The Library of Congress American Memory Project contains a number of oral history materials on the boll weevil's impact.[2] The boll weevil infestation has been credited with bringing about economic diversification in the southern US, including the expansion of peanut cropping. The citizens of Enterprise, Alabama erected the Boll Weevil Monument in 1919, perceiving that their economy had been overly dependent on cotton, and that mixed farming and manufacturing were better alternatives.

The boll weevil appeared in Venezuela in 1949 and in Colombia in 1950.[3] The Amazon Rainforest was thought to present a barrier to its further spread, but it was detected in Brazil in 1983, and it is estimated that about 90% of the cotton farms in Brazil are now infested. During the 1990s the weevil spread to Paraguay and Argentina. The International Cotton Advisory Committee (ICAC) has proposed a control program similar to that used in the U.S.[3]

Control[edit]

Following World War II the development of new pesticides such as DDT enabled U.S. farmers again to grow cotton as an economic crop. DDT was initially extremely effective, but U.S. weevil populations developed resistance by the mid-1950s.[4] Methyl parathion, malathion, and pyrethroids were subsequently used, but environmental and resistance concerns arose as they had with DDT and control strategies changed.[4]

While many control methods have been investigated since the boll weevil entered the United States, insecticides have always remained the main control methods. In the 1980s, entomologists at Texas A&M University pointed to the spread of another invasive pest, the red imported fire ant, as a factor in the weevils' population decline in some areas.[5]

Other avenues of control that have been explored include weevil-resistant strains of cotton,[6] the parasitic wasp Catolaccus grandis,[7] the fungus Beauveria bassiana,[8] and the Chilo iridescent virus. Genetically engineered Bt cotton is not protected from the boll weevil.[9]

Although it was possible to control the boll weevil, to do so was costly in terms of insecticide costs. The goal of many cotton entomologists was to eventually eradicate the pest from U. S. cotton. In 1978 a large-scale test was begun in eastern North Carolina and in Southampton County, Virginia to determine the feasibility of eradication. Based on the success of this test, area-wide programs were begun in the 1980s to eradicate the insect from whole regions. These are based on cooperative effort by all growers together with the assistance of the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture(USDA).[citation needed]

The program has been successful in eradicating boll weevils from all cotton growing states with the exception of Texas, and most of this state is free of boll weevils. Problems along the southern border with Mexico have delayed eradication in the extreme southern portions of this state. Follow-up programs are in place in all cotton growing states to prevent the re-introduction of the pest. These monitoring programs rely on pheromone baited traps for detection.[citation needed] The boll weevil eradication program, although slow and costly, has paid off for cotton growers in reduced pesticide costs. This program and the screwworm program of the 1950s are among the biggest and most successful insect control programs in history.[citation needed]

UAM Mascot[edit]

The Boll Weevil is the mascot for the University of Arkansas at Monticello and is listed on several "silliest" or "weirdest" mascots of all time.[10][11]

See also[edit]

References[edit]

  1. ^ a b Mississippi State University. Economic impacts of the boll weevil "History of the Boll Weevil in the United States". 
  2. ^ The American Memory Project – Boll weevils
  3. ^ a b ICAC. "Integrated Pest Management Of The Cotton Boll Weevil In Argentina, Brazil, And Paraguay". 
  4. ^ a b Timothy D. Schowalter (31 May 2011). Insect Ecology: An Ecosystem Approach. Academic Press. p. 482. ISBN 978-0-12-381351-0. Retrieved 8 November 2011. 
  5. ^ D. A. Fillman and W. L. Sterling. "Fire ant predation on the boll weevil". BioControl: Volume 28, Number 4 / December, 1983. 
  6. ^ Hedin, P. A. and McCarty, J. C. "Weevil-resistant strains of cotton". Journal of agricultural and food chemistry:1995, vol. 43, no10, pp. 2735–2739 (19 ref.). 
  7. ^ Juan A. Morales-Ramos. "Catolaccus grandis (Burks) (Hymenoptera: Pteromalidae)". Biological Control: a guide to Natural Enemies in North America. 
  8. ^ Biological controls of the boll weevil
  9. ^ Bt susceptibility of insect species
  10. ^ http://www.oddee.com/item_96800.aspx
  11. ^ http://www.campusexplorer.com/Top-10-Weirdest-College-Mascots/

Further reading[edit]

  • Dickerson, Willard A., et al., Ed. Boll Weevil Eradication in the United States Through 1999. The Cotton Foundation, Memphis, Tn 2001. 627 pp.
  • Lange, Fabian, Alan L. Olmstead, and Paul W. Rhode, "The Impact of the Boll Weevil, 1892–1932", Journal of Economic History, 69 (Sept. 2009), 685–718.

External[edit]

Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!