Articles on this page are available in 1 other language: Spanish (4) (learn more)

Overview

Brief Summary

Introduction

The potato is one of the most important cultivated members of the family Solanaceae, along with the tomato, the eggplant, tobacco and petunia. Potatoes are the staple food for many people, and they originated in the Andes mountains of South America.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

Sandra Knapp

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Succinct

The potato is a herbaceous plant that is native to the Andes of South America. The leaves are pinnately divided, very lightly hairy and are usually dark green. The flowers are various shades of white, pink or purple, have 5 petals and the stamens in a bright yellow cone in the middle of the flower. The fruit is shaped like a tomato, but is smaller, green and very bitter. The tubers we eat are the swollen underground stems of the plant; they too come in a wide variety of colors, shapes and sizes.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

Sandra Knapp

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comprehensive Description

Wild Potatoes

Wild potatoes are thought to have originated somewhere around Mexico. They are now found growing from as far south as southern Chile, all up the western edge of South America, throughout Central America, and into southwestern North America. Around 200 wild species of potato have been identified.These different species survive in a wide variety of habitats: 4500 m above sea level on the freezing slopes of the Andean Mountains; in hot, dry, semi-deserts near the Peruvian coast; and in warm and humid subtropical rainforests found to the west of the Andes. One North American species even lives on the mossy branches of oak trees.

Wild potatoes also differ from each other in appearance and taste. They grow in a variety of shapes and colours and the tubers of some species taste extremely bitter. This bitter taste is due to the presence of poisonous alkaloids, chemical compounds that are found in many members of the potato or nightshade family (Solanaceae). The diversity of wild potato plants is a valuable resource for modern potato breeders, who may be able to breed useful traits found in wild potato species, such as the ability to resist disease, into the potato plants we grow as crops.

Domestication of the Potato

Domestication describes the changes that occur to species as a result of their deliberate cultivation by humans. The first humans to use potatoes would have collected them from the wild. The domestication of the potato began when humans stopped foraging for potatoes and started to grow them instead. The potatoes we eat today are descendants of the first potatoes to be grown for human use. Evidence suggests that it was in the Andes, on the borders of lake Titicaca, that humans first started to cultivate potatoes. The great importance of the potato plant to humans in this region is due in part to its ability to grow in the severe weather found at high altitudes. Potato remains have been found preserved underground in Peru that suggest potato cultivation started over 7000 years before present, nearly 2,000 years before the birth of Ancient Egypt. Potato cultivation has formed the basis of many civilisations in this region since then and is still important today.

The Andean peoples have an ancient method of preserving potatoes for up to several years: First they lay the potatoes out on the ground overnight to freeze them. Then, in the morning, they trample the potatoes with their feet and leave them exposed to the intense warmth of the sun. This process (repeated three times) is a primitive method of freeze-drying that drives the moisture out of the potatoes, enabling them to be kept longer before rotting. Potatoes that have been treated in this way are known as chuño. Modern freeze-drying methods are used today to preserve food for camping trips or even for space travel.

Spread of the Potato

From its origin in the highlands of Southern Peru the domesticated potato has been transported all around the world. The first diffusion of the domesticated potato was within the Americas. It started (possibly thousands of years ago) when early farmers from the highlands of southern Peru took their crop plants both farther north into Central America and south to southern Chile. The next major spread of the potato came as a result of the Spanish invasion of South America in the 1500s. An early account of the potato (published in 1551) by the Spanish explorer Cieza de Leon describes it as "… a kind of earth nut, which after it has been boiled, is as tender as a cooked chestnut, but it has no more skin than a truffle, and it grows under the earth in the same way."

Evidence from early herbarium (plant library) specimens indicates that the first potatoes introduced to Europe came from the northern highlands of South America, around Peru and Colombia. These areas were part of the Incan Empire, which was conquered by the Spanish in 1532. It therefore seems likely that it was the Spanish who first exported the potato from South America. However, it appears that rather than being introduced directly to mainland Europe, potatoes were first cultivated in the Canary Islands. From there they were then shipped to European countries including Belgium and France. The first known record of a potato on mainland Europe is found in the accounts of a Spanish hospital in 1573.

The cultivated potato was introduced to Bermuda by the British in 1613, from whence it was introduced into North America in 1621. The British were then responsible for spreading the potato to India and China in the late 1600s. Also in the late 1600s, potatoes appeared in Africa and Japan. They were introduced to New Zealand in 1769, being swiftly adopted by the Maoris who were already cultivating (unrelated) sweet potatoes.

Use of the Potato

The potato has been a vital food crop for Andean civilisations for hundreds (possibly thousands) of years. The arrival of the Spanish in the 1500s heralded the introduction of the potato to Europe. However, although the potato had been introduced to most of Europe by 1600, it didn't become part of the European diet until much later. At first, it was mainly grown by botanists as a curiosity or by physicians who used it in medicines. Ireland was the first place in Europe where the adoption of the potato was widespread. The potato was introduced to Ireland sometime before 1600 and it flourished in the Irish climate. It is possible that the famous explorer Sir Walter Raleigh personally supplied the first potatoes to Ireland. Potatoes were of great benefit to the poor, who had to support themselves on very small plots of land, as yields were high. The ease of growing, harvesting, and preparing potatoes also contributed to their rapid success. By 1650, potatoes had become the main crop in Ireland. Unfortunately this dependence on the potato, and the population explosion that followed its introduction, would lead to widespread famine when the crop failed due to disease.

In the colder areas of Europe, the delay in adoption of the potato could be attributed to climate. The potato plant, which had come to Europe from Peru, was adapted to the short days of summer near the equator and didn't produce potatoes in Northern Europe until the shorter days of autumn. In colder regions this was too late for successful potato growth. As a result, potatoes didn't become successful in the northern and colder areas of Europe until plants had been bred that would produce tubers earlier in the year. Even in the warmer climates farther to the south and west the adoption of the potato was slow. This was probably due to the resistance of rural communities to change. To plant a new crop was to risk food shortages in the event of failure. There were also rumours that the potato caused flatulence and diseases such as leprosy and scrofula (tuberculosis of the neck).

The adoption of the potato as a food crop throughout Europe really occurred during the 1700s. Europe was racked by conflict during this period and many politicians encouraged their citizens to grow potatoes as a way of preventing famine. Not only did potatoes often produce better yields than other crops but, because it was growing underground, the crop was less vulnerable to damage by hostile troops. Today, the potato is used in hundreds of ways all over the world, but perhaps the most famous is the humble chip (or, to Americans, French Fry). The invention of the potato chip is claimed by both the Belgians and the French.

How the Potato has Changed

Ever since humans first began to grow potatoes, we have been picking the 'best' potato plants (with the biggest or tastiest potatoes, for example) to grow for our use. Just by doing this we began to change potato plants to suit our needs. The potato has changed a lot since it was first domesticated, but these changes have not always been in the same direction. Over time, different features have been considered important to potato growers. The earliest potato cultivation seems to have occurred in the upland valleys and plains of Bolivia. At these altitudes, the ability of the potatoes to survive frosts would have been of major importance to farmers. As a result, after the initial domestication of the potato one of the first varieties to develop had a high frost resistance. Subsequently, as potato cultivation began to spread into other areas, different qualities became important. In lowland areas there was less need to select hardy potato plants and farmers could concentrate on yield and eating quality. As the potato spread southward from Peru, it began to change in other ways. The days in northern South America are always around 12 hours in length as these areas are close to the equator. Summer days in southern Chile are much longer and potato plants from farther north will not start to produce potatoes until autumn, when day length drops to around 12 hours. Over time, potato plants in Chile were bred so that they would produce potatoes much earlier in the year. Potatoes brought to Europe from northern South America went through the same change because Europe also has summer day lengths longer than 12 hours. By breeding and selection from just two varieties of potato, which were introduced to Europe in the 1500s, a wide variety of different potato plants were developed in the following centuries. Potatoes were bred for improved yield, quality, texture, and resistance to disease.

In the 1840s, the Irish potato crop was devastatingly infected with potato blight. A potato affected by blight has the outside shrunken and the inside corky and rotten. The resulting crop failures from potato blight caused widespread famine, mass emigration to the USA, and around 1 million deaths. The scale of this disaster drove plant breeders in the late 1800s to search for resistance to the disease in wild relatives of the potato. A wild species that was resistant to blight was eventually found in the early 1900s and after many attempts its natural resistance was bred into cultivated potato plants.

The use of the diversity of wild potato plants and ancient potato cultivars to breed desirable characteristics into modern potato crops has become commonplace, but the variety of wild potato plants is still underexploited. This is because of the long time needed to breed a trait from a purely wild plant into a plant suitable for agriculture. The fight against diseases is still an extremely important job for potato breeders, but potatoes are also being bred to cope with new demands. They have become more resistant to bruising so that they can be dug by machines and have a more regular size and shape. These demands are changing as new challenges emerge. Attributes attractive to plant breeders in the future may include the ability to resist drought or to grow in salty environments.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© EU-SOL Website (supported by the European Commission through the 6th framework programme, Contract number FOOD-CT-2006-016214)

Source: EOL Rapid Response Team

Trusted

Article rating from 1 person

Average rating: 4.0 of 5

Miscellaneous Details

"Notes: Western Ghats, Evergreen Forests, Cultivated, Native of Tropical America"
Creative Commons Attribution 3.0 (CC BY 3.0)

© India Biodiversity Portal

Source: India Biodiversity Portal

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Derivation of specific name

tuberosum: having tubers
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© Mark Hyde, Bart Wursten and Petra Ballings

Source: Flora of Zimbabwe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

National Distribution

Canada

Origin: Exotic

Regularity: Regularly occurring

Currently: Unknown/Undetermined

Confidence: Confident

United States

Origin: Exotic

Regularity: Regularly occurring

Currently: Unknown/Undetermined

Confidence: Confident

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

"Maharashtra: Pune, Satara Karnataka: Almost throughout Tamil Nadu: Dindigul, Nilgiri"
Creative Commons Attribution 3.0 (CC BY 3.0)

© India Biodiversity Portal

Source: India Biodiversity Portal

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution: Native to the mountainous areas of Mexico, Chile and Peru (S. America). Cultivated throughout the world.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

S. America, widely cultivated for its edible tubers (potatoes) elsewhere.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Description

An erect, unarmed perennial herb, 60-90 cm tall. Stem tubers underground, of various shapes and sizes. Shoots pubescent. Leaves imparipinnate, segment pairs. 4-5. Flowers in terminal few-flowered, paniculate cymes, pink to white or light purple. Corolla limb ± 2.5 cm broad.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 1 person

Average rating: 2.0 of 5

Elevation Range

2100-2600 m
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 1 person

Average rating: 2.0 of 5

Description

Herbs erect or sprawling, 30-80 cm tall, glabrous or sparsely pubescent with simple and glandular hairs. Stolons bearing underground tubers; tubers white, red, or purplish, globose, oblate, or elliptic, 3-10 cm in diam., fleshy. Leaves interruptedly odd-pinnate, with 6-8 pairs of leaflets and smaller, unequal interstitial leaflets; petiole 2.5-5 cm; leaflet blade ovate or oblong, mostly sparingly pilose. Inflorescences appearing terminal, leaf opposed, or axillary, many-flowered, sparingly branched panicles. Pedicel articulate near middle, 1-2 cm. Calyx sparsely pubescent; lobes lanceolate. Corolla white, pink, or blue-purple, sometimes all on 1 plant, rotate, 2.5-3 cm in diam.; lobes deltate, ca. 5 mm. Filaments ca. 1 mm; anthers 5-6 mm. Ovary glabrous. Style ca. 8 mm. Berry green or yellowish green, often striped, globose, smooth, ca. 1.5 cm in diam. Fl. and fr. summer and autumn.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 1 person

Average rating: 2.0 of 5

Diagnostic Description

Diagnostic

Habit: Herb
Creative Commons Attribution 3.0 (CC BY 3.0)

© India Biodiversity Portal

Source: India Biodiversity Portal

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Type Information

Isotype for Solanum hygrothermicum Ochoa
Catalog Number: US 2971892
Collection: Smithsonian Institution, National Museum of Natural History, Department of Botany
Verification Degree: Original publication and alleged type specimen examined
Preparation: Pressed specimen
Collector(s): C. M. Ochoa
Locality: In vicinity of Cumbusa, cira fluminis Cumbusa., San Martín, Peru, South America
Elevation (m): 600 to 600
  • Isotype: Ochoa, C. M. 1984. Econ. Bot. 38: 128.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Smithsonian Institution, National Museum of Natural History, Department of Botany

Source: National Museum of Natural History Collections

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Isotype for Solanum hygrothermicum Ochoa
Catalog Number: US 2971891
Collection: Smithsonian Institution, National Museum of Natural History, Department of Botany
Verification Degree: Original publication and alleged type specimen examined
Preparation: Pressed specimen
Collector(s): C. M. Ochoa
Locality: In vicinity of Cumbusa, cira fluminis Cumbusa., San Martín, Peru, South America
Elevation (m): 600 to 600
  • Isotype: Ochoa, C. M. 1984. Econ. Bot. 38: 128.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Smithsonian Institution, National Museum of Natural History, Department of Botany

Source: National Museum of Natural History Collections

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat & Distribution

Widely cultivated throughout China, also in other temperate regions of the world [Native to South America]
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Potatoes are cultivated worldwide, in many different habitats.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

British Potato Council

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

In Great Britain and/or Ireland:
Foodplant / spot causer
Alternaria dematiaceous anamorph of Alternaria solani causes spots on live stem of Solanum tuberosum

Foodplant / sap sucker
Aphis fabae sucks sap of Solanum tuberosum

Foodplant / sap sucker
Aphis idaei sucks sap of Solanum tuberosum

Foodplant / pathogen
Armillaria mellea s.l. infects and damages Solanum tuberosum

Plant / associate
Atractiella solani is associated with storage area of Solanum tuberosum

Foodplant / sap sucker
Aulacorthum solani sucks sap of live, slightly distorted and discoloured leaf (young) of Solanum tuberosum

Foodplant / open feeder
nocturnal caterpillar of Autographa gamma grazes on live leaf of Solanum tuberosum

Foodplant / internal feeder
Blaniulus guttulatus feeds within tuber of Solanum tuberosum

Foodplant / sap sucker
nymph of Campylomma verbasci sucks sap of Solanum tuberosum

Foodplant / saprobe
abundant, minute sclerotium of Colletotrichum coelomycetous anamorph of Colletotrichum coccodes is saprobic on dead stem (base) of Solanum tuberosum
Other: major host/prey

Foodplant / saprobe
fruitbody of Coprinopsis radicans is saprobic on rotting tuber of Solanum tuberosum

Foodplant / saprobe
densely scattered, immersed, scarcely erumpent pycnidium of Phomopsis coelomycetous anamorph of Diaporthe tulasnei is saprobic on dead stem of Solanum tuberosum

Foodplant / pathogen
colony of Dickeya 'solani' infects and damages rapid wilting, blackened, soft rotting stem of Solanum tuberosum

Foodplant / pathogen
colony of Dickeya dianthicola infects and damages slowly wilting, blackened, eventually drying out stem of Solanum tuberosum

Foodplant / pathogen
Ditylenchus destructor infects and damages live, cracked, wrinkled tuber of Solanum tuberosum
Other: major host/prey

Foodplant / pathogen
Ditylenchus dipsaci infects and damages rotting tuber of Solanum tuberosum

Foodplant / pathogen
colony of Erwinia carotovora infects and damages tuber of Solanum tuberosum

Foodplant / pathogen
Erwinia carotovora ssp. atroseptica infects and damages completely rotten tuber of Solanum tuberosum
Remarks: captive: in captivity, culture, or experimentally induced

Foodplant / pathogen
colony of Fusarium anamorph of Fusarium coeruleum infects and damages live, damaged tuber of Solanum tuberosum

Foodplant / pathogen
Fusarium anamorph of Gibberella avenacea infects and damages live, damaged tuber of Solanum tuberosum

Foodplant / pathogen
Fusarium anamorph of Gibberella cyanogena infects and damages live, damaged tuber of Solanum tuberosum

Foodplant / gall
Globodera pallida causes gall of cysted root of Solanum tuberosum

Foodplant / gall
Globodera rostochiensis causes gall of cysted root of Solanum tuberosum
Other: major host/prey

Foodplant / parasite
Golovinomyces orontii parasitises live Solanum tuberosum

Animal / pathogen
Rhizoctonia anamorph of Helicobasidium purpureum infects root of Solanum tuberosum
Other: major host/prey

Foodplant / spot causer
colony of Helminthosporium dematiaceous anamorph of Helminthosporium solani causes spots on tuber of Solanum tuberosum

Foodplant / saprobe
stalked apothecium of Hymenoscyphus scutula is saprobic on dead stem of Solanum tuberosum
Remarks: season: 9-11

Foodplant / feeds on
adult of Leptinotarsa decemlineata feeds on live leaf of Solanum tuberosum

Foodplant / sap sucker
Macrosiphum euphorbiae sucks sap of live shoot (young) of Solanum tuberosum

Foodplant / gall
Meloidogyne incognita causes gall of root of Solanum tuberosum

Foodplant / pathogen
Meloidogyne minor infects and damages Solanum tuberosum

Foodplant / pathogen
abundant, sessile sporodochium of Myrothecium dematiaceous anamorph of Myrothecium roridum infects and damages dry, brittle stem (base) of Solanum tuberosum
Remarks: Other: uncertain

Foodplant / sap sucker
Myzus persicae sucks sap of Solanum tuberosum

Foodplant / feeds on
Fusarium anamorph of Nectria ventricosa feeds on rotting tuber of Solanum tuberosum
Remarks: season: 10-7

Foodplant / open feeder
nocturnal larva of Pachyprotasis variegata grazes on leaf of Solanum tuberosum

Foodplant / pathogen
colony of Pectobacterium atrosepticum infects and damages soft, rotting tuber of Solanum tuberosum

Foodplant / parasite
Phacidiopycnis coelomycetous anamorph of Phacidiopycnis tuberivora parasitises live Solanum tuberosum

Foodplant / pathogen
immersed pycnidium of Phoma coelomycetous anamorph of Phoma exigua var. foveata infects and damages tuber of Solanum tuberosum

Foodplant / feeds on
subterranean larva of Phyllopertha horticola feeds on live root of Solanum tuberosum
Other: unusual host/prey

Foodplant / pathogen
Phytophthora erythroseptica infects and damages live, yellow, wilted leaf of Solanum tuberosum

Foodplant / pathogen
colony of Phytophthora infestans infects and damages live, patchily dull grey tuber of Solanum tuberosum
Remarks: season: 5-8 onwards

Foodplant / pathogen
effuse colony of Polyscytalum dematiaceous anamorph of Polyscytalum pustulans infects and damages live stem of Solanum tuberosum

Foodplant / pathogen
Potato Aucuba Mosaic virus infects and damages live tuber (flesh) of Solanum tuberosum
Other: minor host/prey

Foodplant / pathogen
Potato Leaf Roll virus infects and damages upward rolling, stiff, brittle leaflet of Solanum tuberosum

Foodplant / pathogen
Potato Mop Top virus infects and damages mop-headed haulm of Solanum tuberosum

Foodplant / pathogen
Potato Mosaic virus A infects and damages faintly mottled leaf of Solanum tuberosum

Foodplant / pathogen
Potato Mosaic virus X infects and damages faintly mottled leaf of Solanum tuberosum

Foodplant / pathogen
Potato Mosaic virus Y infects and damages roughened, puckered leaf of Solanum tuberosum

Animal / pathogen
Potato Paracrinkle virus infects Solanum tuberosum

Foodplant / sap sucker
Pseudococcus sucks sap of live green part of sprouting of Solanum tuberosum

Foodplant / spot causer
densely gregarious, covered pycnidium of Pyrenochaeta coelomycetous anamorph of Pyrenochaeta ferox causes spots on live stem (lower part) of Solanum tuberosum
Remarks: season: 7

Foodplant / pathogen
Rosellinia necatrix infects and damages brown rotting, blackening tuber of Solanum tuberosum
Other: major host/prey

Foodplant / gall
Spongospora subterranea f.sp. subterranea causes gall of live root of Solanum tuberosum

Foodplant / gall
Streptomyces acidiscabies causes gall of live tuber of Solanum tuberosum

Foodplant / gall
Streptomyces scabies causes gall of live tuber of Solanum tuberosum

Foodplant / gall
Streptomyces turgidiscabies causes gall of live tuber of Solanum tuberosum

Foodplant / gall
Synchytrium endobioticum causes gall of live stem of Solanum tuberosum

Foodplant / open feeder
nocturnal larva of Tenthredo atra grazes on leaf of Solanum tuberosum

Foodplant / parasite
teleomorph of Thanatephorus cucumeris parasitises live stem (base) of Solanum tuberosum

Foodplant / pathogen
Tobacco Necrosis virus infects and damages cracked, blistered tuber of Solanum tuberosum

Foodplant / pathogen
Tobacco Rattle virus infects and damages tuber flesh of Solanum tuberosum

Foodplant / pathogen
Tomato Black Ring virus infects and damages necrotic spotted leaf of Solanum tuberosum

Foodplant / miner
larva of Tuta absoluta mines stem of Solanum tuberosum

Foodplant / saprobe
larva of Xylota segnis is saprobic on wet, decaying tuber of Solanum tuberosum

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Cyclicity

Flower/Fruit

Fl. Per.: May-August.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Evolution and Systematics

Systematics or Phylogenetics

Synonyms

  • Solanum esculentum Neck. Delic. Gallo-Belg. 1: 119. 1768
  • Lycopersicon tuberosum (L.) Mill. Gard. Dict. ed. 8, no. 7. 1768.
  • Solanum fonckii Phil. ex Reiche Anales Univ. Chile 124: 463. 1909.
  • Solanum cultum (A.DC.) Berthault Recherc. Bot. var. Cult. Solanum tuberosum, etc. 127, 128. 1911.
  • Solanum chiloense (A.DC.) Berthault Ann. Sci. Agron. Franç. Étrangère, ser. 3, 6: 180. 1911.
  • Solanum diemii Brücher Darwiniana 13: 108. 1964.
  • Solanum chilotanum forma magnicorollatum Lechn. Trudy Prikl. Bot. Genet. Selek. 73(2) : 116. 1982.
  • Solanum chilotanum forma parvicorollatum Lechn. Trudy Prikl. Bot. Genet. Selek. 73(2) : 116. 1982.
  • Solanum chilotanum var. talukdarii Lechn. Trudy Prikl. Bot. Genet. Selek. 73(2) : 116. 1982.
Names associated with this species that have not been validly published:
  • Solanum parmentieri Molina ex Walp. Rep. 3: 38. 1844.
  • Solanum chilotanum Hawkes Potato Collect. Exped. Mexico& S. Amer.: II. Syst. Classif. Collect. (Imp. Bur. Pl. Breedi
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

Partner Web Site: Solanaceae Source

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Barcode data: Solanum tuberosum

The following is a representative barcode sequence, the centroid of all available sequences for this species.


Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Solanum tuberosum

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 8
Specimens with Barcodes: 8
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

Sandra Knapp

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

Canada

Rounded National Status Rank: NNA - Not Applicable

United States

Rounded National Status Rank: NNA - Not Applicable

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: GNR - Not Yet Ranked

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

These species are introduced in Switzerland.
  • Aeschimann, D. & C. Heitz. 2005. Synonymie-Index der Schweizer Flora und der angrenzenden Gebiete (SISF). 2te Auflage. Documenta Floristicae Helvetiae N° 2. Genève.   http://www.crsf.ch/ External link.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Info Flora (CRSF/ZDSF) & Autoren 2005

Supplier: Name It's Source (profile not public)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Potato

The potato is a starchy, tuberous crop from the perennial nightshade Solanum tuberosum L. The word "potato" may refer either to the plant itself or the edible tuber. In the Andes, where the species is indigenous, there are some other closely related cultivated potato species. Potatoes were introduced outside the Andes region approximately four centuries ago,[1] and have since become an integral part of much of the world's food supply. It is the world's fourth-largest food crop, following maize, wheat, and rice.[2]

Wild potato species occur throughout the Americas from the United States to southern Chile.[3] The potato was originally believed to have been domesticated independently in multiple locations,[4] but later genetic testing of the wide variety of cultivars and wild species proved a single origin for potatoes in the area of present-day southern Peru and extreme northwestern Bolivia (from a species in the Solanum brevicaule complex), where they were domesticated approximately 7,000–10,000 years ago.[5][6][7] Following centuries of selective breeding, there are now over a thousand different types of potatoes.[6] Over 99% of the presently cultivated potatoes worldwide descended from varieties that originated in the lowlands of south-central Chile, which have displaced formerly popular varieties from the Andean highlands.[8][9]

The annual diet of an average person in the first decade of the 21st century included about 33 kg (73 lb) of potato.[citation needed] However, the local importance of potato is extremely variable and rapidly changing. It remains an essential crop in Europe (especially eastern and central Europe), where per capita production is still the highest in the world, but the most rapid expansion over the past few decades has occurred in southern and eastern Asia. China now leads the world in potato production, and nearly a third of the world's potatoes are harvested in China and India.[10]

Etymology[edit]

"Spud" redirects here. For other uses, see Spud (disambiguation).

The English word potato comes from Spanish patata (the name used in Spain). The Spanish Royal Academy says the Spanish word is a compound of the Taino batata (sweet potato) and the Quechua papa (potato).[11] The name potato originally referred to a type of sweet potato rather than the other way around, although the two plants are not closely related; in many of the chronicles detailing agriculture and plants, no distinction is made between the two.[12] The 16th-century English herbalist John Gerard used the terms "bastard potatoes" and "Virginia potatoes" for this species, and referred to sweet potatoes as "common potatoes".[13] Potatoes are occasionally referred to as "Irish potatoes" or "white potatoes" in the United States, to distinguish them from sweet potatoes.[13]

The name spud for a small potato comes from the digging of soil (or a hole) prior to the planting of potatoes. The word has an unknown origin and was originally (c. 1440) used as a term for a short knife or dagger, probably related to Dutch spyd or the Latin "spad-" root meaning "sword"; cf. Spanish "espada", English "spade" and "spadroon". The word spud traces back to the 16th century. It subsequently transferred over to a variety of digging tools. Around 1845, the name transferred to the tuber itself.[14] The origin of the word "spud" has erroneously been attributed to a 19th-century activist group dedicated to keeping the potato out of Britain, calling itself The Society for the Prevention of an Unwholesome Diet.[14] It was Mario Pei's 1949 The Story of Language that can be blamed for the word's false origin. Pei writes, "the potato, for its part, was in disrepute some centuries ago. Some Englishmen who did not fancy potatoes formed a Society for the Prevention of Unwholesome Diet. The initials of the main words in this title gave rise to spud." Like most other pre-20th century acronymic origins, this is false.[14]

Characteristics[edit]

Flowers of a potato plant
Russet potatoes with sprouts

Potato plants are herbaceous perennials that grow about 60 cm (24 in) high, depending on variety, with the culms dying back after flowering, fruiting and tuber formation. They bear white, pink, red, blue, or purple flowers with yellow stamens. In general, the tubers of varieties with white flowers have white skins, while those of varieties with colored flowers tend to have pinkish skins.[15] Potatoes are mostly cross-pollinated by insects such as bumblebees, which carry pollen from other potato plants, though a substantial amount of self-fertilizing occurs as well. Tubers form in response to decreasing day length, although this tendency has been minimized in commercial varieties.[16]

Potato plants

After flowering, potato plants produce small green fruits that resemble green cherry tomatoes, each containing about 300 seeds. Like all parts of the plant except the tubers, the fruit contain the toxic alkaloid solanine and are therefore unsuitable for consumption. All new potato varieties are grown from seeds, also called "true potato seed TPS or "botanical seed" to distinguish it from seed tubers. New varieties grown from seed can be propagated vegetatively by planting tubers, pieces of tubers cut to include at least one or two eyes, or cuttings, a practice used in greenhouses for the production of healthy seed tubers. Plants propagated from tubers are clones of the parent, whereas those propagated from seed produce a range of different varieties.[citation needed]

Genetics[edit]

There are about 5,000 potato varieties worldwide. Three thousand of them are found in the Andes alone, mainly in Peru, Bolivia, Ecuador, Chile, and Colombia. They belong to eight or nine species, depending on the taxonomic school. Apart from the 5,000 cultivated varieties, there are about 200 wild species and subspecies, many of which can be cross-bred with cultivated varieties. Cross-breeding has been done repeatedly to transfer resistances to certain pests and diseases from the gene pool of wild species to the gene pool of cultivated potato species. Genetically modified varieties have met public resistance in the United States and in the European Union.[17][18]

The major species grown worldwide is Solanum tuberosum (a tetraploid with 48 chromosomes), and modern varieties of this species are the most widely cultivated. There are also four diploid species (with 24 chromosomes): S. stenotomum, S. phureja, S. goniocalyx, and S. ajanhuiri. There are two triploid species (with 36 chromosomes): S. chaucha and S. juzepczukii. There is one pentaploid cultivated species (with 60 chromosomes): S. curtilobum. There are two major subspecies of Solanum tuberosum: andigena, or Andean; and tuberosum, or Chilean.[19] The Andean potato is adapted to the short-day conditions prevalent in the mountainous equatorial and tropical regions where it originated; the Chilean potato, however, native to the Chiloé Archipelago, is adapted to the long-day conditions prevalent in the higher latitude region of southern Chile.[20]

The International Potato Center, based in Lima, Peru, holds an ISO-accredited collection of potato germplasm.[21] The international Potato Genome Sequencing Consortium announced in 2009 that they had achieved a draft sequence of the potato genome.[22] The potato genome contains 12 chromosomes and 860 million base pairs, making it a medium-sized plant genome.[23] More than 99 percent of all current varieties of potatoes currently grown are direct descendants of a subspecies that once grew in the lowlands of south-central Chile.[24] Nonetheless, genetic testing of the wide variety of cultivars and wild species affirms that all potato subspecies derive from a single origin in the area of present-day southern Peru and extreme northwestern Bolivia (from a species in the Solanum brevicaule complex).[5][6][7]

Most modern potatoes grown in North America arrived through European settlement and not independently from the South American sources; however, at least one wild potato species, Solanum fendleri, is found as far north as Texas and is used in breeding for resistance to a nematode species that attacks cultivated potatoes. A secondary center of genetic variability of the potato is Mexico, where important wild species that have been used extensively in modern breeding are found, such as the hexaploid Solanum demissum, as a source of resistance to the devastating late blight disease.[25] Another relative native to this region, Solanum bulbocastanum, has been used to genetically engineer the potato to resist potato blight.[26]

Potatoes yield abundantly with little effort, and adapt readily to diverse climates as long as the climate is cool and moist enough for the plants to gather sufficient water from the soil to form the starchy tubers. Potatoes do not keep very well in storage and are vulnerable to molds that feed on the stored tubers and quickly turn them rotten; however, crops such as grain can be stored for several years with a low risk of rot.[27]

History[edit]

Main article: History of the potato

The potato was first domesticated in the region of modern-day southern Peru and extreme northwestern Bolivia[5] between 8000 and 5000 BC.[6] It has since spread around the world and become a staple crop in many countries.

According to conservative estimates, the introduction of the potato was responsible for a quarter of the growth in Old World population and urbanization between 1700 and 1900.[28] Following the Spanish conquest of the Inca Empire, the Spanish introduced the potato to Europe in the second half of the 16th century. The staple was subsequently conveyed by European mariners to territories and ports throughout the world. The potato was slow to be adopted by distrustful European farmers, but soon enough it became an important food staple and field crop that played a major role in the European 19th century population boom.[7] However, lack of genetic diversity, due to the very limited number of varieties initially introduced, left the crop vulnerable to disease. In 1845, a plant disease known as late blight, caused by the fungus-like oomycete Phytophthora infestans, spread rapidly through the poorer communities of western Ireland, resulting in the crop failures that led to the Great Irish Famine.[25] Thousands of varieties still persist in the Andes however, where over 100 cultivars might be found in a single valley, and a dozen or more might be maintained by a single agricultural household.[29]

Role in world food supply[edit]

Potato yield in producing countries, 2000
Top Potato Producers
in 2011
(million metric tons)
 People's Republic of China88.4
 India42.3
 Russia32.7
 Ukraine24.2
 United States19.4
 Germany11.8
 Bangladesh8.3
 Poland8.2
 France8.0
 Belarus7.7
World Total374.4
Source:
UN Food & Agriculture Organisation
(FAO)
[2]

The United Nations FAO reports that the world production of potatoes in 2010 was about 324 million tonnes.[30] Just over two thirds of the global production is eaten directly by humans with the rest being fed to animals or used to produce starch. This means that the annual diet of an average global citizen in the first decade of the 21st century included about 33 kg (or 73 lb) of potato.[2] However, the local importance of potato is extremely variable and rapidly changing. It remains an essential crop in Europe (especially eastern and central Europe), where per capita production is still the highest in the world, but the most rapid expansion over the past few decades has occurred in southern and eastern Asia. China is now the world's largest potato-producing country, and nearly a third of the world's potatoes are harvested in China and India.[10] The geographic shift of potato production has been away from wealthier countries toward lower-income areas of the world, although the degree of this trend is ambiguous.[31]

In 2008, several international organizations highlighted the potato's role in world food production, in the face of developing economic problems. They cited its potential derived from its status as a cheap and plentiful crop that grows in a wide variety of climates and locales.[32] Due to perishability, only about 5% of the world's potato crop is traded internationally; its minimal presence in world financial markets contributed to its stable pricing during the 2007–2008 world food price crisis.[33][34] Thus, the United Nations officially declared 2008 as the International Year of the Potato,[35] to raise its profile in developing nations, calling the crop a "hidden treasure".[36] This followed the International Rice Year in 2004.

Nutrition[edit]

Potato, raw, with skin
Nutritional value per 100 g (3.5 oz)
Energy321 kJ (77 kcal)
17.47 g
Starch15.44 g
Dietary fiber2.2 g
0.1 g
2 g
Vitamins
Thiamine (B1)
(7%)
0.08 mg
Riboflavin (B2)
(3%)
0.03 mg
Niacin (B3)
(7%)
1.05 mg
(6%)
0.296 mg
Vitamin B6
(23%)
0.295 mg
Folate (B9)
(4%)
16 μg
Vitamin C
(24%)
19.7 mg
Vitamin E
(0%)
0.01 mg
Vitamin K
(2%)
1.9 μg
Trace metals
Calcium
(1%)
12 mg
Iron
(6%)
0.78 mg
Magnesium
(6%)
23 mg
Manganese
(7%)
0.153 mg
Phosphorus
(8%)
57 mg
Potassium
(9%)
421 mg
Sodium
(0%)
6 mg
Zinc
(3%)
0.29 mg
Other constituents
Water75 g

Percentages are roughly approximated using US recommendations for adults.
Source: USDA Nutrient Database

The potato contains vitamins and minerals, as well as an assortment of phytochemicals, such as carotenoids and natural phenols. Chlorogenic acid constitutes up to 90% of the potato tuber natural phenols. Others found in potatoes are 4-O-caffeoylquinic acid (crypto-chlorogenic acid), 5-O-caffeoylquinic (neo-chlorogenic acid), 3,4-dicaffeoylquinic and 3,5-dicaffeoylquinic acids.[37] A medium-size 150 g (5.3 oz) potato with the skin provides 27 mg of vitamin C (45% of the Daily Value (DV)), 620 mg of potassium (18% of DV), 0.2 mg vitamin B6 (10% of DV) and trace amounts of thiamin, riboflavin, folate, niacin, magnesium, phosphorus, iron, and zinc. The fiber content of a potato with skin (2 g) is equivalent to that of many whole grain breads, pastas, and cereals.

The potato is best known for its carbohydrate content (approximately 26 grams in a medium potato). The predominant form of this carbohydrate is starch. A small but significant portion of this starch is resistant to digestion by enzymes in the stomach and small intestine, and so reaches the large intestine essentially intact. This resistant starch is considered to have similar physiological effects and health benefits as fiber: It provides bulk, offers protection against colon cancer, improves glucose tolerance and insulin sensitivity, lowers plasma cholesterol and triglyceride concentrations, increases satiety, and possibly even reduces fat storage.[38][39][40] The amount of resistant starch in potatoes depends much on preparation methods. Cooking and then cooling potatoes significantly increases resistant starch. For example, cooked potato starch contains about 7% resistant starch, which increases to about 13% upon cooling.[41]

The cooking method used can significantly affect the nutrient availability of the potato.

Potatoes are often broadly classified as high on the glycemic index (GI) and so are often excluded from the diets of individuals trying to follow a low-GI diet. In fact, the GI of potatoes can vary considerably depending on type (such as red, russet, white, or Prince Edward), origin (where it was grown), preparation methods (i.e., cooking method, whether it is eaten hot or cold, whether it is mashed or cubed or consumed whole, etc.), and with what it is consumed (i.e., the addition of various high-fat or high-protein toppings).[42]

In the UK, potatoes are not considered by the NHS as counting towards the five portions of fruit and vegetables diet.[43]

Comparison to other major staple foods[edit]

The following table shows the nutrient content of potato and other major staple foods, each in respective raw form. Staple foods are not commonly eaten raw and are usually sprouted or cooked before eating. In sprouted and cooked form, the relative nutritional and anti-nutritional contents of each of these grains may be different from the values reported in this table.

Nutrient content of major staple foods[44]
STAPLE:Maize / Corn[A]Rice[B]Wheat[C]Potato[D]Cassava[E]Soybean (Green)[F]Sweet potato[G]Sorghum[H]Yam[Y]Plantain[Z]
Component (per 100g portion)AmountAmountAmountAmountAmountAmountAmountAmountAmountAmount
Water (g)1012137960687797065
Energy (kJ)1528152813693226706153601419494511
Protein (g)9.47.112.62.01.413.01.611.31.51.3
Fat (g)4.740.661.540.090.286.80.053.30.170.37
Carbohydrates (g)74807117381120752832
Fiber (g)7.31.312.22.21.84.236.34.12.3
Sugar (g)0.640.120.410.781.704.1800.515
Calcium (mg)7282912161973028173
Iron (mg)2.710.83.190.780.273.550.614.40.540.6
Magnesium (mg)127251262321652502137
Phosphorus (mg)2101152885727194472875534
Potassium (mg)287115363421271620337350816499
Sodium (mg)35526141555694
Zinc (mg)2.211.092.650.290.340.990.300.240.14
Copper (mg)0.310.220.430.110.100.130.15-0.180.08
Manganese (mg)0.491.093.990.150.380.550.26-0.40-
Selenium (μg)15.515.170.70.30.71.50.600.71.5
Vitamin C (mg)00019.720.6292.4017.118.4
Thiamin (mg)0.390.070.300.080.090.440.080.240.110.05
Riboflavin (mg)0.200.050.120.030.050.180.060.140.030.05
Niacin (mg)3.631.65.461.050.851.650.562.930.550.69
Pantothenic acid (mg)0.421.010.950.300.110.150.80-0.310.26
Vitamin B6 (mg)0.620.160.30.300.090.070.21-0.290.30
Folate Total (μg)1983816271651102322
Vitamin A (IU)214092131801418701381127
Vitamin E, alpha-tocopherol (mg)0.490.111.010.010.1900.2600.390.14
Vitamin K1 (μg)0.30.11.91.91.901.802.60.7
Beta-carotene (μg)97051808509083457
Lutein+zeaxanthin (μg)1355022080000030
Saturated fatty acids (g)0.670.180.260.030.070.790.020.460.040.14
Monounsaturated fatty acids (g)1.250.210.20.000.081.280.000.990.010.03
Polyunsaturated fatty acids (g)2.160.180.630.040.053.200.011.370.080.07
A corn, yellowB rice, white, long-grain, regular, raw, unenriched
C wheat, hard red winterD potato, flesh and skin, raw
E cassava, rawF soybeans, green, raw
G sweet potato, raw, unpreparedH sorghum, raw
Y yam, rawZ plantains, raw

Toxicity[edit]

Early Rose variety seed tuber with sprouts

Potatoes contain toxic compounds known as glycoalkaloids, of which the most prevalent are solanine and chaconine. Solanine is also found in other plants in the family Solanaceae, which includes such plants as the deadly nightshade (Atropa belladonna), henbane (Hyoscyamus niger) and tobacco (Nicotiana) as well as the potato, eggplant, and tomato. This toxin affects the nervous system, causing weakness and confusion.[citation needed]

These compounds, which protect the plant from its predators, are, in general, concentrated in its leaves, stems, sprouts, and fruits.[45] Exposure to light, physical damage, and age increase glycoalkaloid content within the tuber;[46] the highest concentrations occur just underneath the skin. Cooking at high temperatures —over 170 °C (340 °F) — partly destroys these. The concentration of glycoalkaloid in wild potatoes suffices to produce toxic effects in humans. Glycoalkaloids may cause headaches, diarrhea, cramps, and in severe cases coma and death; however, poisoning from potatoes occurs very rarely. Light exposure causes greening from chlorophyll synthesis, thus giving a visual clue as to areas of the tuber that may have become more toxic; however, this does not provide a definitive guide, as greening and glycoalkaloid accumulation can occur independently of each other. Some varieties of potato contain greater glycoalkaloid concentrations than others; breeders developing new varieties test for this, and sometimes have to discard an otherwise promising cultivar.

The toxic fruits produced by mature potato plants

Breeders try to keep solanine levels below 200 mg/kg (200 ppmw). However, when these commercial varieties turn green, even they can approach concentrations of solanine of 1000 mg/kg (1000 ppmw). In normal potatoes, analysis has shown solanine levels may be as little as 3.5% of the breeders' maximum, with 7–187 mg/kg being found.[47] While a normal potato has 12–20 mg/kg of glycoalkaloid content, a green tuber contains 250–280 mg/kg, and green skin 1500–2200 mg/kg.[48]

The U.S. National Toxicology Program suggests that the average American consume at most 12.5 mg/day of solanine from potatoes (the toxic dose is actually several times this, depending on body weight). Douglas L. Holt, the State Extension Specialist for Food Safety at the University of Missouri, notes that no reported cases of potato-source solanine poisoning have occurred in the U.S. in the last 50 years, and most cases involved eating green potatoes or drinking potato-leaf tea.[citation needed]

Growth and cultivation[edit]

Potato planting
Potato field in Fort Fairfield, Maine
Potatoes grown in a tall bag are common in gardens as they minimize the amount of digging required at harvest

Potatoes are generally grown from seed potatoes – these are tubers specifically grown to be disease free and provide consistent and healthy plants. To be disease free, the areas where seed potatoes are grown are selected with care. In the USA this restricts production of seed potatoes to only 15 states out of the 50 states that grow potatoes.[49] These locations are selected for their cold hard winters that kill pests and long sunshine hours in the summer for optimum growth. In the UK, most seed potatoes originate in Scotland in areas where westerly winds prevent aphid attack and thus prevent spread of potato virus pathogens.[50] Potato growth has been divided into five phases. During the first phase, sprouts emerge from the seed potatoes and root growth begins. During the second, photosynthesis begins as the plant develops leaves and branches. In the third phase stolons develop from lower leaf axils on the stem and grow downwards into the ground and on these stolons new tubers develop as swellings of the stolon. This phase is often (but not always) associated with flowering. Tuber formation halts when soil temperatures reach 27 °C (81 °F); hence potatoes are considered a cool-season crop.[51] Tuber bulking occurs during the fourth phase, when the plant begins investing the majority of its resources in its newly formed tubers. At this stage, several factors are critical to yield: optimal soil moisture and temperature, soil nutrient availability and balance, and resistance to pest attacks. The final phase is maturation: The plant canopy dies back, the tuber skins harden, and their sugars convert to starches.[52]

New tubers may arise at the soil surface. Since exposure to light leads to greening of the skins and the development of solanine, growers are interested in covering such tubers. Commercial growers usually address this problem by piling additional soil around the base of the plant as it grows ("hilling", or in British English "earthing up"). An alternative method used by home gardeners and smaller-scale growers involves covering the growing area with organic mulches such as straw or with plastic sheets.[52]

Correct potato husbandry can be an arduous task in some circumstances. Good ground preparation, harrowing, plowing, and rolling are always needed, along with a little grace from the weather and a good source of water. Three successive plowings, with associated harrowing and rolling, are desirable before planting. Eliminating all root-weeds is desirable in potato cultivation. In general, the potatoes themselves are grown from the eyes of another potato and not from seed. Home gardeners often plant a piece of potato with two or three eyes in a hill of mounded soil. Commercial growers plant potatoes as a row crop using seed tubers, young plants or microtubers and may mound the entire row. Seed potato crops are 'rogued' in some countries to eliminate diseased plants or those of a different variety from the seed crop.

Potatoes are sensitive to heavy frosts, which damage them in the ground. Even cold weather makes potatoes more susceptible to bruising and possibly later rotting, which can quickly ruin a large stored crop.

At harvest time, gardeners usually dig up potatoes with a long-handled, three-prong "grape" (or graip), i.e., a spading fork, or a potato hook, which is similar to the graip but with tines at a 90° angle to the handle. In larger plots, the plow is the fastest implement for unearthing potatoes. Commercial harvesting is typically done with large potato harvesters, which scoop up the plant and surrounding earth. This is transported up an apron chain consisting of steel links several feet wide, which separates some of the dirt. The chain deposits into an area where further separation occurs. Different designs use different systems at this point. The most complex designs use vine choppers and shakers, along with a blower system or "Flying Willard" to separate the potatoes from the plant. The result is then usually run past workers who continue to sort out plant material, stones, and rotten potatoes before the potatoes are continuously delivered to a wagon or truck. Further inspection and separation occurs when the potatoes are unloaded from the field vehicles and put into storage.

Immature potatoes may be sold as "new potatoes" and are particularly valued for taste. These are often harvested by the home gardener or farmer by "grabbling", i.e. pulling out the young tubers by hand while leaving the plant in place.

Potatoes are usually cured after harvest to improve skin-set. Skin-set is the process by which the skin of the potato becomes resistant to skinning damage. Potato tubers may be susceptible to skinning at harvest and suffer skinning damage during harvest and handling operations. Curing allows the skin to fully set and any wounds to heal. Wound-healing prevents infection and water-loss from the tubers during storage. Curing is normally done at relatively warm temperatures 50 to 60 °C (122 to 140 °F) with high humidity and good gas-exchange if at all possible.[53]

Storage[edit]

Storage facilities need to be carefully designed to keep the potatoes alive and slow the natural process of decomposition, which involves the breakdown of starch. It is crucial that the storage area is dark, well ventilated and for long-term storage maintained at temperatures near 4 °C (39 °F). For short-term storage before cooking, temperatures of about 7 to 10 °C (45 to 50 °F) are preferred.[54][55]

On the other hand, temperatures below 4 °C (39 °F) convert potatoes' starch into sugar, which alters their taste and cooking qualities and leads to higher acrylamide levels in the cooked product, especially in deep-fried dishes—the discovery of acrylamides in starchy foods in 2002 has led to many international health concerns as they are believed to be possible carcinogens and their occurrence in cooked foods is currently under study as a possible influence in potential health problems.[a][56]

Under optimum conditions possible in commercial warehouses, potatoes can be stored for up to ten to twelve months.[54] When stored in homes, the shelf life is usually only a few weeks.[55] If potatoes develop green areas or start to sprout, these areas should be trimmed before using.[55] Trimming or peeling green areas are inadequate to remove copresent toxins, and such potatoes are no longer suitable as animal food.[57][58]

Commercial storage of potatoes involves several phases: drying of surface moisture; a wound healing phase at 85% to 95% relative humidity and temperatures below 25 °C (77 °F); a staged cooling phase; a holding phase; and a reconditioning phase, during which the tubers are slowly warmed. Mechanical ventilation is used at various points during the process to prevent condensation and accumulation of carbon dioxide.[54]

Yield[edit]

The world dedicated 18.6 million hectares in 2010 for potato cultivation. The average world farm yield for potato was 17.4 tonnes per hectare, in 2010. Potato farms in the United States were the most productive in 2010, with a nationwide average of 44.3 tonnes per hectare.[59] United Kingdom was a close second.

New Zealand farmers have demonstrated some of the best commercial yields in the world, ranging between 60 to 80 tonnes per hectare, some reporting yields of 88 tonnes potatoes per hectare.[60][61][62]

There is a big gap among various countries between high and low yields, even with the same variety of potato. Average potato yields in developed economies ranges between 38–44 tonnes per hectare. The two largest producers of potato, China and India which accounted for over a third of world's production in 2010, had yields of 14.7 and 19.9 tonnes per hectare respectively.[59] The yield gap between farms in developing economies and developed economies represents an opportunity loss of over 400 million tonnes of potato, or an amount greater than 2010 world potato production. Potato crop yields are determined by factors such as the crop breed, seed age and quality, crop management practices and the plant environment. Improvements in one or more of these yield determinants, and a closure of the yield gap, can be a major boost to food supply and farmer incomes in the developing world.[63][64]

Varieties[edit]

Bamberg potatoes
Organically grown Russet Burbanks

While there are close to 4000 different varieties of potato,[65] it has been bred into many standard or well-known varieties, each of which has particular agricultural or culinary attributes. In general, varieties are categorized into a few main groups, such as russets, reds, whites, yellows (also called Yukons) and purples—based on common characteristics. Around 80 varieties are commercially available in the UK.[66] For culinary purposes, varieties are often differentiated by their waxiness. Floury, or mealy (baking) potatoes have more starch (20–22%) than waxy (boiling) potatoes (16–18%). The distinction may also arise from variation in the comparative ratio of two potato starch compounds: amylose and amylopectin. Amylose, a long-chain molecule, diffuses from the starch granule when cooked in water, and lends itself to dishes where the potato is mashed. Varieties that contain a slightly higher amylopectin content, a highly branched molecule, help the potato retain its shape when boiled.[67]

The European Cultivated Potato Database (ECPD) is an online collaborative database of potato variety descriptions, updated and maintained by the Scottish Agricultural Science Agency within the framework of the European Cooperative Programme for Crop Genetic Resources Networks (ECP/GR)—which is run by the International Plant Genetic Resources Institute (IPGRI).[68]

Popular varieties (cultivars) include:

Blue varieties[edit]

Two dark-skinned potatoes on a white plate. A further potato is cut into sections to show the variety's purple-blue flesh, placed at lower-right on the plate.
Potato variety "Blue Swede"

The blue potato (or purple potato) originated in South America. It has purple skin and flesh, which becomes blue once cooked. It has a slight whitish scab that seems to be present in all samples. The variety, called "Cream of the Crop", has been introduced into Ireland and has proved popular.[71]

A mutation in the varieties' P locus causes production of the antioxidant anthocyanin.[72]

Genetically modified potatoes[edit]

Genetic research has produced several genetically modified varieties. 'New Leaf', owned by Monsanto Company, incorporates genes from Bacillus thuringiensis, which confers resistance to the Colorado potato beetle; 'New Leaf Plus' and 'New Leaf Y', approved by US regulatory agencies during the 1990s, also include resistance to viruses. McDonald's, Burger King, Frito-Lay, and Procter & Gamble announced they would not use genetically modified potatoes, and Monsanto published its intent to discontinue the line in March 2001.[73]

Waxy potato varieties produce two main kinds of potato starch, amylose and amylopectin, the latter of which is most industrially useful. The German chemical company BASF created the Amflora potato, which has been modified to contain antisense against the enzyme that drives synthesis of amylose, namely granule bound starch synthase.[74] This resulting potato almost exclusively produces amylopectin, and thus is more useful for the starch industry. In 2010, the European Commission cleared the way for 'Amflora' to be grown in the European Union for industrial purposes only—not for food. Nevertheless, under EU rules, individual countries have the right to decide whether they will allow this potato to be grown on their territory. Commercial planting of 'Amflora' was expected in the Czech Republic and Germany in the spring of 2010, and Sweden and the Netherlands in subsequent years.[75] Another GM potato variety developed by BASF is 'Fortuna' which was made resistant to late blight by adding two resistance genes, blb1 and blb2, which originate from the Mexican wild potato Solanum bulbocastanum.[76][77] In October 2011 BASF requested cultivation and marketing approval as a feed and food from the EFSA. In 2012, GMO development in Europe was stopped by BASF.[78][79]

In 2010, a team of Indian scientists announced they had developed a genetically modified potato with 35 to 60% more protein than non-modified potatoes. Protein content was boosted by adding the gene AmA1 from the grain amaranth. They also found 15 to 25% greater crop yields with these potatoes.[80] The researchers expected that a key market for the GM potato would be the developing world, where more than a billion people are chronically undernourished.[81]

In May 2013, the J.R. Simplot Company sought USDA approval for their "Innate" potatoes, which contain 10 genetic modifications that prevent bruising and produce less acrylamide when fried than conventional potatoes; the inserted genetic material comes from cultivated or wild potatoes, and leads to RNA interference, which prevents certain proteins from being formed.[82][83][84]

Pests[edit]

A potato ruined by late blight

The historically significant Phytophthora infestans (late blight) remains an ongoing problem in Europe[25][85] and the United States.[86] Other potato diseases include Rhizoctonia, Sclerotinia, black leg, powdery mildew, powdery scab and leafroll virus.

Insects that commonly transmit potato diseases or damage the plants include the Colorado potato beetle, the potato tuber moth, the green peach aphid (Myzus persicae), the potato aphid, beet leafhoppers, thrips, and mites. The potato cyst nematode is a microscopic worm that thrives on the roots, thus causing the potato plants to wilt. Since its eggs can survive in the soil for several years, crop rotation is recommended.

Pesticides[edit]

During the crop year 2008, many of the certified organic potatoes produced in the United Kingdom and certified by the Soil Association as organic were sprayed with a copper pesticide[87] to control potato blight (Phytophthora infestans).[88] According to the Soil Association, the total copper that can be applied to organic land is 6 kg/ha/year.[89]

According to an Environmental Working Group analysis of USDA and FDA pesticide residue tests performed from 2000 through 2008, 84% of the 2,216 tested potato samples contained detectable traces of at least one pesticide. A total of 36 unique pesticides were detected on potatoes over the 2,216 samples, though no individual sample contained more than 6 unique pesticide traces, and the average was 1.29 detectable unique pesticide traces per sample. The average quantity of all pesticide traces found in the 2,216 samples was 1.602 ppm. While this was a very low value of pesticide residue, it was the highest amongst the 50 vegetables analyzed.[90]

Uses[edit]

  • Potatoes are used to brew alcoholic beverages such as vodka, potcheen, or akvavit.
  • They are also used as food for domestic animals.
  • Potato starch is used in the food industry as, for example, thickeners and binders of soups and sauces, in the textile industry, as adhesives, and for the manufacturing of papers and boards.[91][92]
  • Maine companies are exploring the possibilities of using waste potatoes to obtain polylactic acid for use in plastic products; other research projects seek ways to use the starch as a base for biodegradable packaging.[92][93]
  • Potato skins, along with honey, are a folk remedy for burns in India. Burn centers in India have experimented with the use of the thin outer skin layer to protect burns while healing.[94][95]
  • Potatoes (mainly Russets) are commonly used in plant research. The consistent parenchyma tissue, the clonal nature of the plant and the low metabolic activity provide a very nice "model tissue" for experimentation. Wound-response studies are often done on potato tuber tissue, as are electron transport experiments. In this respect, potato tuber tissue is similar to Drosophila melanogaster, Caenorhabditis elegans and Escherichia coli: they are all "standard" research organisms.

Culinary uses[edit]

Various potato dishes

Potatoes are prepared in many ways: skin-on or peeled, whole or cut up, with seasonings or without. The only requirement involves cooking to swell the starch granules. Most potato dishes are served hot, but some are first cooked, then served cold, notably potato salad and potato chips/crisps.

Common dishes are: mashed potatoes, which are first boiled (usually peeled), and then mashed with milk or yogurt and butter; whole baked potatoes; boiled or steamed potatoes; French-fried potatoes or chips; cut into cubes and roasted; scalloped, diced, or sliced and fried (home fries); grated into small thin strips and fried (hash browns); grated and formed into dumplings, Rösti or potato pancakes. Unlike many foods, potatoes can also be easily cooked in a microwave oven and still retain nearly all of their nutritional value, provided they are covered in ventilated plastic wrap to prevent moisture from escaping; this method produces a meal very similar to a steamed potato, while retaining the appearance of a conventionally baked potato. Potato chunks also commonly appear as a stew ingredient.

Potatoes are boiled between 10 and 25[96] minutes, depending on size and type, to become soft.

Grading[edit]

In the U.S., potato grading for Idaho potatoes is performed in which No. 1 potatoes are the highest quality and No. 2 are rated as lower in quality due to their appearance (e.g. blemishes or bruises, pointy ends).[97] Potato density assessment can be performed by floating them in brines.[98] High-density potatoes are desirable in the production of dehydrated mashed potatoes, potato crisps and french fries.[98]

Latin America[edit]

Peruvian cuisine naturally contains the potato as a primary ingredient in many dishes, as around 3,000 varieties of this tuber are grown there.[99] Some of the more notable dishes include boiled potato as a base for several dishes or with ají-based sauces like in Papa a la Huancaína or ocopa, diced potato for its use in soups like in cau cau, or in Carapulca with dried potato (papa seca). Smashed condimented potato is used in causa Limeña and papa rellena. French-fried potatoes are a typical ingredient in Peruvian stir-fries, including the classic dish lomo saltado.

Chuño is a freeze-dried potato product traditionally made by Quechua and Aymara communities of Peru and Bolivia,[100] and is known in various countries of South America, including Peru, Bolivia, Argentina, and Chile. In Chile's Chiloé Archipelago, potatoes are the main ingredient of many dishes, including milcaos, chapaleles, curanto and chochoca. In Ecuador, the potato, as well as being a staple with most dishes, is featured in the hearty locro de papas, a thick soup of potato, squash, and cheese.

European cuisine[edit]

In the UK, potatoes form part of the traditional staple fish and chips. Roast potatoes are commonly served with a Sunday roast, and mashed potatoes form a major component of several other traditional dishes such as shepherd's pie, bubble and squeak, and bangers and mash. New potatoes are often cooked with mint and served with a little melted butter.

The Tattie scone is a popular Scottish dish containing potatoes. Colcannon is a traditional Irish food made with mashed potato, shredded kale or cabbage, and onion; champ is a similar dish. Boxty pancakes are eaten throughout Ireland, although associated especially with the north, and in Irish diaspora communities; they are traditionally made with grated potatoes, soaked to loosen the starch and mixed with flour, buttermilk and baking powder. A variant eaten and sold in Lancashire, especially Liverpool, is made with cooked and mashed potatoes.

Bryndzové halušky is the Slovakian national dish, made of a batter of flour and finely grated potatoes that is boiled to form dumplings. These are then mixed with regionally varying ingredients.[101]

In Northern and Eastern Europe, especially in Scandinavian countries, Poland, Russia, Belarus and Ukraine, newly harvested, early ripening varieties are considered a special delicacy. Boiled whole and served un-peeled with dill, these "new potatoes" are traditionally consumed with Baltic herring. Puddings made from grated potatoes (kugel, kugelis, and potato babka) are popular items of Ashkenazi, Lithuanian, and Belarussian cuisine.[102]

A baked potato served with butter

In Western Europe, especially in Belgium, sliced potatoes are fried to create frieten, the original French fried potatoes. Stamppot, a traditional Dutch meal, is based on mashed potatoes mixed with vegetables.

In France, the most notable potato dish is the Hachis Parmentier, named after Antoine-Augustin Parmentier, a French pharmacist, nutritionist, and agronomist who, in the late 18th century, was instrumental in the acceptance of the potato as an edible crop in the country. The pâté aux pommes de terre is a regional potato dish from the central Allier and Limousin regions.

In the north of Italy, in particular, in the Friuli region of the northeast, potatoes serve to make a type of pasta called gnocchi.[103] Similarly, cooked and mashed potatoes or potato flour can be used in the Knödel or dumpling eaten with or added to meat dishes all over central and Eastern Europe, but especially in Bavaria and Luxembourg. Potatoes form one of the main ingredients in many soups such as the vichyssoise and Albanian potato and cabbage soup. In western Norway, komle is popular.

A traditional Canary Islands dish is Canarian wrinkly potatoes or papas arrugadas. Tortilla de patatas (potato omelete) and patatas bravas (a dish of fried potatoes in a spicy tomato sauce) are near-universal constituent of Spanish tapas.

North America[edit]

French fries served with a hamburger
Poutine: Fried potatoes, cheese curds, and gravy

In the United States, potatoes have become one of the most widely consumed crops and thus have a variety of preparation methods and condiments. French fries and often hash browns are commonly found in typical American fast-food burger joints and cafeterias. One popular favorite involves a baked potato with cheddar cheese (or sour cream and chives) on top, and in New England "smashed potatoes" (a chunkier variation on mashed potatoes, retaining the peel) have great popularity. Potato flakes are popular as an instant variety of mashed potatoes, which reconstitute into mashed potatoes by adding water, with butter or oil and salt to taste. A regional dish of Central New York, salt potatoes are bite-size new potatoes boiled in water saturated with salt then served with melted butter. At more formal dinners, a common practice includes taking small red potatoes, slicing them, and roasting them in an iron skillet. Among American Jews, the practice of eating latkes (fried potato pancakes) is common during the festival of Hanukkah.

A traditional Acadian dish from New Brunswick is known as poutine râpée. The Acadian poutine is a ball of grated and mashed potato, salted, sometimes filled with pork in the center, and boiled. The result is a moist ball about the size of a baseball. It is commonly eaten with salt and pepper or brown sugar. It is believed to have originated from the German Klöße, prepared by early German settlers who lived among the Acadians.

Poutine, by contrast, is a hearty serving of French fries, fresh cheese curds and hot gravy. Tracing its origins to Quebec in the 1950s, it has become a widespread and popular dish throughout Canada.

South Asia[edit]

In South Asia, Potato is very popular traditional staple. In India, the most popular potato dishes are aloo ki sabzi, batata vada, and samosa, which is spicy mashed potato mixed with a small amount of vegetable stuffed in conical dough, and deep fried. Potatoes are also a major ingredient as fast food items, such as aloo chaat, where they are deep fried and served with chutney. In Northern India, alu dum and alu paratha are a favorite part of the diet; the first is a spicy curry of boiled potato, the second is a type of stuffed chapati.

A dish called masala dosa from South India is very notable all over India. It is a thin pancake of rice and pulse paste rolled over spicy smashed potato and eaten with sambhar and chutney. Poori in south India in particular in Tamil Nadu is almost always taken with smashed potato masal. Other favorite dishes are alu tikki and pakoda items.

Vada pav is a popular vegetarian fast food dish in Mumbai and other regions in the Maharashtra in India.

Aloo posto (a curry with potatoes and poppy seeds) is immensely popular in East India, especially Bengal. Although potatoes are not native to India, it has become a vital part of food all over the country especially North Indian food preparations. In Tamil Nadu this tuber acquired a name based on its appearance 'urulai-k-kizhangu' (உருளைக் கிழங்கு) meaning cylindrical tuber.

The Aloo gosht, Potato and meat curry, is one of the popular dishes in South Asia, especially in Pakistan.

East Asia[edit]

In East Asia, particularly Southeast Asia, rice is by far the predominant starch crop, with potatoes a secondary crop, especially in China and Japan. However, it is used in northern China where rice is not easily grown, with a popular dish being 青椒土豆丝 (qīng jiāo tǔ dòu sī), made with green pepper, vinegar and thin slices of potato. In the winter, roadside sellers in northern China will also sell roasted potatoes. It is also occasionally seen in Korean and Thai cuisines.[104]

Art[edit]

The potato has been an essential crop in the Andes since the pre-Columbian Era. The Moche culture from Northern Peru made ceramics from earth, water, and fire. This pottery was a sacred substance, formed in significant shapes and used to represent important themes. Potatoes are represented anthropomorphically as well as naturally.[105]

During the late 19th century, numerous images of potato harvesting appeared in European art, including the works of Willem Witsen and Anton Mauve.[106] Van Gogh's 1885 painting "The Potato Eaters" portrays a family eating potatoes.[107]

Invented in 1949 and marketed and sold commercially by Hasbro in 1952, Mr. Potato Head is an American toy that consists of a plastic potato and attachable plastic parts such as ears and eyes to make a face. It was the first toy ever advertised on television.[108]

See also[edit]

Notes[edit]

  1. ^ See text: acrylamides, esp introduction; acrylamide was accidentally discovered in foods in April 2002 by scientists in Sweden when they found the chemical in starchy foods, such as potato chips, French fries, and bread that had been heated (production of acrylamide in the heating process was shown to be temperature-dependent)

References[edit]

  1. ^ "Basalt-Firth Since 1900". mocavo.com. 1972. p. 10. 
  2. ^ a b "International Year of the Potato 2008 – The potato" (PDF). United Nations Food and Agricultural Organisation. 2009. Retrieved 26 October 2011. 
  3. ^ Hijmans, RJ; Spooner, DM (2001). "Geographic distribution of wild potato species". American Journal of Botany (Botanical Society of America) 88 (11): 2101–12. doi:10.2307/3558435. JSTOR 3558435. 
  4. ^ University of Wisconsin-Madison, Finding rewrites the evolutionary history of the origin of potatoes (2005) [1]
  5. ^ a b c Spooner, David M.; McLean, Karen; Ramsay, Gavin; Waugh, Robbie; Bryan, Glenn J. (2005). "A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping". PNAS 102 (41): 14694–99. doi:10.1073/pnas.0507400102. PMC 1253605. PMID 16203994. 
  6. ^ a b c d Office of International Affairs (1989). "Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation". nap.edu. p. 92. ISBN 030904264X. 
  7. ^ a b c John Michael Francis (2005). Iberia and the Americas. ABC-CLIO. ISBN 1-85109-426-1. 
  8. ^ Miller, N (29 January 2008). "Using DNA, scientists hunt for the roots of the modern potato". American Association for the Advancement of Science. Retrieved 10 September 2008. 
  9. ^ Ames, M.; Spooner, D. M. (February 2008). "DNA from herbarium specimens settles a controversy about origins of the European potato". American Journal of Botany 95 (2): 252–257. doi:10.3732/ajb.95.2.252. PMID 21632349.  edit
  10. ^ a b Hijmans, Robert (2001). "Global distribution of the potato crop". [American Journal of Potato Research] 78 (6): 403–12. doi:10.1007/BF02896371. 
  11. ^ "Real Academia Española. Diccionario Usual" (in Spanish). Buscon.rae.es. Retrieved 16 July 2010. 
  12. ^ Weatherford, J. McIver (1988). Indian givers: how the Indians of the Americas transformed the world. New York: Fawcett Columbine. p. 69. ISBN 0-449-90496-2. 
  13. ^ a b J. Simpson, E. Weiner (eds), ed. (1989). "potato, n". Oxford English Dictionary (2nd ed.). Oxford: Clarendon Press. ISBN 0-19-861186-2. 
  14. ^ a b c David Wilton, Ivan Brunetti; p94 Word myths: debunking linguistic urban legends; Oxford University Press US; 2004; ISBN 0-19-517284-1
  15. ^ Tony Winch (2006). Growing Food: A Guide to Food Production. Springer Science+Business Media. ISBN 1-4020-6624-4. 
  16. ^ Virginia Amador, Jordi Bou, Jaime Martínez-García, Elena Monte, Mariana Rodríguez-Falcon, Esther Russo and Salomé Prat (2001). "Regulation of potato tuberization by daylength and gibberellins" (PDF). International Journal of Developmental Biology (45): S37–S38. Retrieved 8 January 2009. 
  17. ^ "Consumer acceptance of genetically modified potatoes". American Journal of Potato Research cited through Bnet. 2002. Retrieved 19 February 2012. 
  18. ^ Rosenthal, Elisabeth (24 July 2007). "A Genetically Modified Potato, Not for Eating, Is Stirring Some Opposition in Europe". New York Times. Retrieved 15 November 2008. 
  19. ^ "Chilean Tetraploid Cultivated Potato, ''Solanum tuberosum'' is Distinct from the Andean Populations: Microsatellite Data, Celeste M. Raker and David M. Spooner, Univewrsity of Wisconsin, published in ''Crop Science'', Vol.42, 2002" (PDF). Retrieved 16 July 2010. 
  20. ^ "Molecular description and similarity relationships among native germplasm potatoes (Solanum tuberosum ssp. tuberosum L.) using morphological data and AFLP markers". Electronic Journal of Biotechnology. Retrieved 6 December 2009. 
  21. ^ "ISO accreditation a world-first for CIP genebank". International Potato Center. 2008. Retrieved 19 November 2008. 
  22. ^ "Potato Draft Sequence Available". Genoweb Daily News. 24 September 2009. Retrieved 1 May 2011. 
  23. ^ Visser, R. G. F.; Bachem, C. W. B.; Boer, J. M.; Bryan, G. J.; Chakrabati, S. K.; Feingold, S.; Gromadka, R.; Ham, R. C. H. J.; Huang, S.; Jacobs, J. M. E.; Kuznetsov, B.; Melo, P. E.; Milbourne, D.; Orjeda, G.; Sagredo, B.; Tang, X. (2009). "Sequencing the Potato Genome: Outline and First Results to Come from the Elucidation of the Sequence of the World's Third Most Important Food Crop". American Journal of Potato Research 86 (6): 417–429. doi:10.1007/s12230-009-9097-8.  edit
  24. ^ Story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of Wisconsin-Madison (4 February 2008). "Using DNA, Scientists Hunt For The Roots Of The Modern Potato". ScienceDaily (with information from a report originally appearing in the American Journal of Botany). Retrieved 27 August 2011. 
  25. ^ a b c Nowicki, Marcin et al.; Foolad, Majid R.; Nowakowska, Marzena; Kozik, Elzbieta U. (17 August 2011). "Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding". Plant Disease (Plant Disease, ASP) 96: 4. doi:10.1094/PDIS-05-11-0458. Retrieved 30 August 2011 
  26. ^ "Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight, Junqi Song et al., PNAS 2003". Pnas.org. Retrieved 16 July 2010. 
  27. ^ The yield of Calories per acre (about 9.2 million) is higher than that of maize (7.5 million), rice (7.4 million), wheat (3 million), or soybean (2.8 million). Ensminger, Audrey; Ensminger, M. E.; Konlande, James E. (1994). Foods & Nutrition Encyclopedia. CTC Press. ISBN 0-8493-8981-X. 
  28. ^ Nunn, Nathan; Qian, Nancy (2011). "The Potato's Contribution to Population and Urbanization: Evidence from a Historical Experiment". Quarterly Journal of Economics 126 (2): 593–650. doi:10.1093/qje/qjr009. Retrieved 7 July 2012. 
  29. ^ Theisen, K (1 January 2007). "History and overview". World Potato Atlas: Peru. International Potato Center. Archived from the original on 14 January 2008. Retrieved 10 September 2008. 
  30. ^ "FAOSTAT". faostat.fao.org. Retrieved 22 August 2012. 
  31. ^ "World-wide potato production statistics". Potato World. Retrieved 10 September 2008. 
  32. ^ As other staples soar, potatoes break new ground By Terry Wade, Reuters, 15 April 2008.
  33. ^ "Getting Out of the food crisis". Global Policy Forum. Retrieved 14 November 2008. 
  34. ^ Rosenthal, Elisabeth (26 October 2008). "Potatoes called savior in global food crisis". San Francisco Chronicle. Retrieved 14 November 2008. 
  35. ^ "No Page Found". Khaleejtimes.com. Retrieved 16 October 2012. 
  36. ^ 'Humble' Potato Emerging as World's next Food Source, p. 20
  37. ^ Ferretti F (2011). "The correspondence between Élisée Reclus and Pëtr Kropotkin as a source for the history of geography". Journal of Historical Geography 37 (2): 216. doi:10.1016/j.jhg.2010.10.001. 
  38. ^ Cummings JH, Beatty ER, Kingman SM, Bingham SA, Englyst HN (May 1996). "Digestion and physiological properties of resistant starch in the human large bowel". Br. J. Nutr. 75 (5): 733–47. doi:10.1079/BJN19960177. PMID 8695600. 
  39. ^ Hylla S, Gostner A, Dusel G, et al. (January 1998). "Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention". Am. J. Clin. Nutr. 67 (1): 136–42. PMID 9440388. 
  40. ^ Raben A, Tagliabue A, Christensen NJ, Madsen J, Holst JJ, Astrup A (October 1994). "Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety". Am. J. Clin. Nutr. 60 (4): 544–51. PMID 8092089. 
  41. ^ Englyst HN, Kingman SM, Cummings JH (1992). "Classification and measurement of nutritionally important starch fractions". Eur J Clin Nutr. 46: S33–S50. PMID 1330528. 
  42. ^ Fernandes G, Velangi A, Wolever TMS (2005). "Glycemic index of potatoes commonly consumed in North America". Journal of the American Dietetic Association 105 (4): 557–62. doi:10.1016/j.jada.2005.01.003. PMID 15800557. 
  43. ^ List of what counts towards 5 A DAY portions of fruit and vegetables NHS 18 December 2009. Retrieved 29 March 2010
  44. ^ "Nutrient data laboratory". United States Department of Agriculture. Retrieved June 2014. 
  45. ^ "Tomato-like Fruit on Potato Plants". Iowa State University. Retrieved 8 January 2009. 
  46. ^ "Greening of potatoes". Food Science Australia. 2005. Retrieved 15 November 2008. 
  47. ^ Glycoalkaloid and calystegine contents of eight potato cultivars J-Agric-Food-Chem. 2003 May 7; 51(10): 2964–73
  48. ^ Shaw, Ian (2005). Is it Safe to Eat?: Enjoy Eating and Minimize Food Risks. Berlin: Springer. p. 129. ISBN 3-540-21286-8. Retrieved 19 September 2011. 
  49. ^ United States Potato Board -Seed Potatoes
  50. ^ Scottish Government -Seed and Ware Potatoes
  51. ^ "Potato". University of Illinois Extension Service. Retrieved 27 June 2010. 
  52. ^ a b "Growing Potatoes in the Home Garden". Cornell University Extension Service. Retrieved 27 June 2010. 
  53. ^ Kleinkopf G.E. and N. Olsen. 2003. Storage Management, in: Potato Production Systems, J.C. Stark and S.L. Love (eds), University of Idaho Agricultural Communications, 363–381.
  54. ^ a b c Potato storage, value Preservation: Kohli, Pawanexh (2009). "Potato storage and value Preservation: The Basics". CrossTree techno-visors. 
  55. ^ a b c "Potato Storage and Care" (PDF). Retrieved 19 September 2011. 
  56. ^ Tareke E, Rydberg P. et al. (2002). "Analysis of acrylamide, a carcinogen formed in heated foodstuffs". J. Agric. Food. Chem. 50 (17): 4998–5006. doi:10.1021/jf020302f. PMID 12166997. 
  57. ^ Carol Deppe (2010). The Resilient Gardener: Food Production and Self-Reliance in Uncertain Times. White River Junction, VT: Chelsea Green Publishing. p. 157. ISBN 1-60358-031-X. Retrieved 17 September 2011. 
  58. ^ Small, Ernest (2009). Top 100 food plants. Ottawa: NRC Research Press. p. 421. ISBN 0-660-19858-4. Retrieved 19 September 2011. "Green-colored potatoes should be discarded." 
  59. ^ a b "FAOSTAT: Production-Crops, 2010 data". Food and Agriculture Organization of the United Nations. 2011. 
  60. ^ Sarah Sinton (2011). "There’s yet more gold in them thar "hills"!". Grower Magazine, The Government of New Zealand. 
  61. ^ "Phosphate and potatoes". Ballance. 2009. 
  62. ^ "International Year of the Potato: 2008, Asia and Oceania". Potato World. 2008. 
  63. ^ Workshop to Commemorate the International Year of the Potato. The Food and Agriculture Organization of the United Nations. 2008. 
  64. ^ Foley, Ramankutty et al. (12 October 2011). "Solutions for a cultivated planet". Nature 478 (7369): 337–342. doi:10.1038/nature10452. PMID 21993620. 
  65. ^ John Roach (10 June 2002). "Saving the Potato in its Andean Birthplace". National Geographic. Retrieved 11 September 2009. 
  66. ^ Potato Council Ltd. "Potato Varieties". Potato Council website. Agriculture & Horticulture Development Board. Retrieved 13 September 2009. 
  67. ^ "Potato Primer" (PDF). Cooks Illustrated. Retrieved 8 December 2008. 
  68. ^ "Europotato.org". Europotato.org. Retrieved 16 July 2010. 
  69. ^ "Descripción de tuberculos". Papas Nativas de Chiloé. Retrieved 6 December 2009. 
  70. ^ Norgold Russet, potatoassociation.org
  71. ^ McCann, Nuala (March 4, 2008). "Eat your blues!". BBC News. 
  72. ^ Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, De Jong WS (January 2005). "The potato P locus codes for flavonoid 3',5'-hydroxylase". TAG 110 (2): 269–75. doi:10.1007/s00122-004-1829-z. PMID 15565378. 
  73. ^ "Genetically Engineered Organisms Public Issues Education Project/Am I eating GE potatoes?". Cornell University. Retrieved 16 December 2008. 
  74. ^ GMO compass database
  75. ^ GM potatoes: BASF at work GMO Compass 5 March 2010. Retrieved 19 October 2011.
  76. ^ Research in Germany, 17 November 2011. Business BASF applies for approval for another biotech potato
  77. ^ Burger, Ludwig (31 October 2011) BASF applies for EU approval for Fortuna GM potato Reuters, Frankfurt. Retrieved 29 December 2011
  78. ^ BASF stops GM crop development in Europe, Deutsche Welle, 17 January 2012
  79. ^ Basf stop selling GM Product in Europe, New York Times, 16 January 2012
  80. ^ Chakrabortya, Subhra; Chakrabortya, Niranjan; Agrawala, Lalit; Ghosha, Sudip; Narulaa, Kanika; Shekhara, Shubhendu; Naikb, Prakash S.; Pandec, P. C. et al. (20 September 2010). "Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber" (PDF). Proceedings of the National Academy of Sciences 107 (41): 17533–8. doi:10.1073/pnas.1006265107. PMC 2955143. PMID 20855595. Retrieved 19 October 2011. 
  81. ^ Scientists invent genetically-modified 'superspud' that could help fight hunger in the Third World The Daily Mail, 20 September 2010. Retrieved 24 September 2010.
  82. ^ J.R. Simplot Company Bets On Biotech Potatoes In Idaho, Associated Press, 14-May-2013
  83. ^ Potato Pro. May 8, 2013. Simplot asks USDA for deregulation of their GM Innate potatoes
  84. ^ Federal Register. May 3, 2013. J.R. Simplot Co.; Availability of Petition for Determination of Nonregulated Status of Potato Genetically Engineered for Low Acrylamide Potential and Reduced Black Spot Bruise
  85. ^ "NJF seminar No. 388 Integrated Control of Potato Late Blight in the Nordic and Baltic Countries. Copenhagen, Denmark, 29 November −1 December 2006" (PDF). Nordic Association of Agricultural Scientists. Retrieved 14 November 2008. 
  86. ^ "Organic Management of Late Blight of Potato and Tomato (Phytophthora infestans)". Michigan State University. 
  87. ^ Section 4.11.11, page 103 Soil Association Organic Standards for Producer, Verion 16, January, 2009
  88. ^ "Thousands of tons of organic food produced using toxic chemicals" article by David Derbyshire in The Daily Mail 1 January 2008
  89. ^ "Links to forms permitting application of copper fungicide on the website of the Soil Association". Soilassociation.org. Retrieved 16 July 2010. 
  90. ^ "Metrics Used in EWG's Shopper's Guide to Pesticides Compiled from USDA and FDA Data". Environmental Working Group. Retrieved 1 September 2010. 
  91. ^ Grant M. Campbell, Colin Webb, Stephen L. McKee (1997). Cereals: Novel Uses and Processes. Springer. ISBN 0-306-45583-8. 
  92. ^ a b Jai Gopal, S. M. Paul Khurana (2006). Handbook of Potato Production, Improvement, and Postharvest. Haworth Press. ISBN 978-1-56022-272-9. 
  93. ^ "Potatoes to Plastics" (PDF). University of Maine. Retrieved 8 January 2009. 
  94. ^ Why Do Men Have Nipples?: Hundreds of Questions You'd Only Ask a Doctor ... - Billy Goldberg, M.D., Mark Leyner - Google Books. Books.google.com. 2005-07-26. ISBN 9780307337047. Retrieved 16 October 2012. 
  95. ^ "International Abstracts". Medbc.com. Retrieved 16 October 2012. 
  96. ^ "Cookbook:Potato - Wikibooks, open books for an open world". En.wikibooks.org. 17 September 2011. Retrieved 16 October 2012. 
  97. ^ "Frequently Asked Questions". Idaho Potato Commission. Retrieved 6 December 2013. 
  98. ^ a b Sivasankar, B. (2002). Food Processing and Preservation. PHI Learning Pvt. Ltd. pp. 175-177. ISBN 8120320867
  99. ^ Hayes, Monte (24 June 2007). "''Peru Celebrates Potato Diversity''". The Washington Post. Retrieved 16 July 2010. 
  100. ^ Timothy Johns: With bitter Herbs They Shall Eat it : Chemical ecology and the origins of human diet and medicine, The University of Arizona Press, Tucson 1990, ISBN 0-8165-1023-7, p. 82-84
  101. ^ Sinkovec, Magdalena (2004). "Bryndzové Halušky / Potato Dumplings with 'Bryndza' Sheep Cheese and Bacon". Culinary Cosmic Top Secrets A Nato Cookbook. Lulu. pp. 115–116. ISBN 978-1-4116-0837-5. 
  102. ^ von Bremzen, Anya; Welchman, John (1990). Please to the Table: The Russian Cookbook. New York: Workman Publishing. pp. 319–20. ISBN 0-89480-845-1. 
  103. ^ Roden, Claudia (1990). The Food of Italy. London: Arrow Books. p. 72. ISBN 0-09-976220-X. 
  104. ^ Solomon, Charmaine (1996). Charmaine Solomon's Encyclopedia of Asian Food. Melbourne: William Heinemann Australia. p. 293. ISBN 0-85561-688-1. 
  105. ^ Berrin, Katherine & Larco Museum. The Spirit of Ancient Peru: Treasures from the Museo Arqueológico Rafael Larco Herrera. New York:Thames and Hudson, 1997.
  106. ^ Steven Adams, Anna Gruetzner Robins (2000). Gendering Landscape Art. University of Manchester. ISBN 0-7190-5628-4. 
  107. ^ van Tilborgh, Louis (2009). "The Potato Eaters by Vincent van Gogh". The Vincent van Gogh Gallery. Retrieved 11 September 2009. 
  108. ^ "Mr Potato Head". Museum of Childhood website. V&A Museum of Childhood. Retrieved 11 September 2009. 

Sources[edit]

  • Economist. "Llamas and mash", The Economist 28 February 2008 online
  • Economist. "The potato: Spud we like", (leader) The Economist 28 February 2008 online
  • Boomgaard, Peter. "In the Shadow of Rice: Roots and Tubers in Indonesian History, 1500–1950." Agricultural History (2003) 77#4 pp 582–610. in JSTOR
  • Hawkes, J.G. (1990). The Potato: Evolution, Biodiversity & Genetic Resources, Smithsonian Institution Press, Washington, D.C.
  • Lang, James. (2001) Notes of a Potato Watcher (Texas A&M University Agriculture Series) excerpt and text search* Langer, William L. "American Foods and Europe's Population Growth 1750–1850", Journal of Social History (1975) 8#2 pp. 51–66 in JSTOR
  • McNeill, William H. "How the Potato Changed the World's History." Social Research (1999) 66#1 pp 67–83. Issn: 0037-783x Fulltext: Ebsco, by a leading historian
  • McNeill William H (1948). "The Introduction of the Potato into Ireland". Journal of Modern History 21 (3): 218–21. doi:10.1086/237272. JSTOR 1876068. 
  • Ó Gráda, Cormac. Black '47 and Beyond: The Great Irish Famine in History, Economy, and Memory. (1999). 272 pp.
  1. Ó Gráda, Cormac, Richard Paping, and Eric Vanhaute, eds. When the Potato Failed: Causes and Effects of the Last European Subsistence Crisis, 1845–1850. (2007). 342 pp. ISBN 978-2-503-51985-2. 15 essays by scholars looking at Ireland and all of Europe
  • Reader, John. Propitious Esculent: The Potato in World History (2008), 315pp a standard scholarly history
  • Salaman, Redcliffe N. (1989). The History and Social Influence of the Potato, Cambridge University Press (originally published in 1949; reprinted 1985 with new introduction and corrections by J.G. Hawkes).
  • Stevenson, W.R., Loria, R., Franc, G.D., and Weingartner, D.P. (2001) Compendium of Potato Diseases, 2nd ed, Amer. Phytopathological Society, St. Paul, Minnesota.
  • Zuckerman, Larry. The Potato: How the Humble Spud Rescued the Western World. (1998). 304 pp. Douglas & McIntyre. ISBN 0-86547-578-4.

Further reading[edit]

Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Notes

Comments

The ‘potato’ is widely cultivated for its edible tubers in Pakistan. Does well in hilly areas up to 3000 m. Several varieties and races are known. The plant parts (including the tubers) contain a poisonous alkaloid, solanine, which is soon lost on boiling the tubers; sprouting or green tubers should be ovoided for edible purposes. Apart from starch, the potato is also a rich source of protein and vitamin C. The berry is rarely produced.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 1 person

Average rating: 2.0 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!