Articles on this page are available in 1 other language: Dutch (1) (learn more)

Overview

Brief Summary

Mussels are found in large quantities along the Dutch coastline. People collect the mussels from natural beds or farm them for consumption on mussel lots in the Wadden Sea and delta region. In addition to people, shorebirds such as herring gulls and eider ducks also like to eat mussels. Mussels attach themselves to stones or shells with the help of strong threads, known as the mussel's 'beard'. For man and animal alike, it can be quite a job loosening a mussel from a stone. The threads keep the mussel in place so that it isn't affected by movement in the water.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© Copyright Ecomare

Source: Ecomare

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Biology

The mussel is a filter-feeder; it filters bacteria, plankton, and detritus from the water (3). When large beds of this gregarious species form, individuals are bonded together with threads of byssus. Predation is the greatest cause of mortality; a range of predators take mussels, including dog-whelks (Nucella lapillus), crabs, sea urchins, star-fish, and birds such as the oystercatcher (Haematopus ostralegus) (3). Although mussels seem fairly defenceless, remarkably they are able to fend off marauding dog whelks and other predatory gastropods; a number of mussels work together to immobilise the predator with bysuss threads (3). Organisms that attach to mussels, such as seaweeds and barnacles, may increase the risk of the mussel becoming detached by wave action; however, mussels are able to sweep their foot over their shell, which may help to minimise the likelihood of such an organism becoming attached (3). The sexes are separate, fertilisation occurs externally and spawning peaks in spring and summer (2). The larval stage is free-swimming and planktonic for around 4 weeks (2), before settling first on filamentous organisms such as seaweeds (3). After growing for a while, they detach and drift in the water on a long byssal thread; a mode of dispersal likened to that of young spiders floating through the air on a silk thread (2). After four weeks or so, the young mussel will have settled again, this time on a mussel bed (2). Young mussels are thought to have evolved primary settlement on filamentous substrates in order to avoid having to compete with adult mussels (3). Mussels are host to the pea crab (Pinnotheres pisum), and a copepod (Mytilicola intestinalis), both of which are not parasites, as was once thought, but commensal organisms (they benefit from living with the mussel, but the mussel is not affected) (2). Furthermore, mussel beds provide habitats for a variety of marine life, and support higher levels of biodiversity than surrounding mudflats (3). The biodiversity of the bed increases with its size and age (3).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Description

The common mussel has a roughly triangular shell, which is bluish, purplish or brown in colour and covered with a black outer layer (3). The inside of the shell is pearly, with a blue outer edge (2).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Comprehensive Description

Description

 The shell is inequilateral and roughly triangular in outline, however, shell shape varies considerably with environmental conditions. Shell smooth with a sculpturing of concentric lines but no radiating ribs. The ligament is inconspicuous. The shell colour varies, usually purple or blue but sometimes brown. Length varies, specimens usually ranging from 5 -10 cm although some populations never attain more than 2-3 cm, and the largest specimens may reach 15 -20 cm. Mytilus edulis may be confused with the Mediterranean mussel Mytilus galloprovincialis.Mytilus edulis and Mytilus galloprovincialis often occur in the same location in the northern range of Mytilus galloprovincialis. As they both show great variation in shell shape due to environmental conditions (Seed, 1968, 1992), they are often difficult to distinguish. In addition, they may hybridize. However, in Mytilus galloprovincialis:
  • the umbones turn down, giving the basal line of the shell a concave appearance;
  • the valves are higher and less angular;
  • the mantle edges are darker, becoming blue or purple, and
  • Mytilus galloprovincialis tends to grow larger (Tebble, 1976).
Note no single morphological characteristic can be used to separate Mytilus species (Gosling, 1992c; Seed, 1992, 1995). Recent evidence suggests that there are only three lineages of the genus, Mytilus edulis, Mytilus galloprovincialis and Mytilus trossulus, although some authorities suggest that all of the smooth shelled mussels belong to the same species (for discussion see Seed, 1992).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

©  The Marine Biological Association of the United Kingdom

Source: Marine Life Information Network

Trusted

Article rating from 1 person

Average rating: 4.0 of 5

Description

Mytilus edulis, Linné, 1758. Plate 56, fig. 4.

 

Shell attaining sometimes a large size, oblong-oval or triangular, dilated behind, the beaks anterior and terminal, smooth. Beaks slightly uncinate, close together. Anterior end narrowed, pointed, and usually somewhat inflate, the dorsal margin ascending on the anterior half, the posterior part broadly rounded or almost straight. Posterior end regularly convex, the basal margin straight or more or less concave. Sculpture consisting of fine concentric growth-lines and very fine radiate striæ; under the beaks a small triangular area with prominent ribs corresponding with the hinge-teeth. Epidermis thin, dark olive-brown. Colour deep blackish-blue, sometimes whitish-yellow with brown at the anterior basal part. Interior bluish-white, black outside the pallial line, polished. Margins smooth and sharp. Hinge-plate narrow, oval with 3 or 4 teeth in each valve, which may be reduced to 2 or 1. Ligament external, long and strong, deep-seated. Adductor-scars 2, the anterior very small, behind the umbo; the posterior large, roundish, situate at the upper part of posterior end, and confluent with the long and narrow byssus retractor scar; the anterior retractor scar of the foot is small, oblong, on the dorsal side behind the beak. Pallial line simple. Byssus consisting of a round stalk, from which on all sides the threads of attachment are given off.

 

Diameter. – Ant.-post., 50 mm. to 120 mm.; dorso-ventral, 25 mm. to 67 mm.: thickness 17 mm. to 40 mm.

 

Anatomy. – Alex. Purdie, “Studies in Biology for New Zealand Students,” No. 3, 1887.

 

Hab. – Throughout New Zealand, but more common in the south. Auckland and Campbell Islands.

 

The species is abundant around the coasts of the North Atlantic, and in the Mediterranean; Strait of Magellan to St. Catharina, Brazil, and extending on the west coast of America to California; Falkland Islands; Kerguelen Island. It is not recorded from Tasmania and Australia.

 

Remarks. – Specimens from our subantarctic islands are of a very large size. The animal is used as food and for bait. These mussels, like those of other species, contain sometimes pearls of an inferior quality.

 

Fossil in the Pliocene and Pleistocene of Europe and northern parts of America, and in the Miocene and Pliocene of New Zealand.”

 

(Suter, 1913)

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© National Museum of Natural History, Smithsonian Institution

Source: Antarctic Invertebrates Website (NMNH)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Distribution

Arctic Ocean to South Carolina; Alaska to Carolina
  • North-West Atlantic Ocean species (NWARMS)
Creative Commons Attribution 3.0 (CC BY 3.0)

© WoRMS for SMEBD

Source: World Register of Marine Species

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Geographic Range

Mytilus edulis is found in coastal areas of the northern Atlantic Ocean, including North America, Europe, and the northern Palearctic. They are found from the White Sea in Russia to southern France, throughout the British Isles, with large commercial beds in the Wash, Morecambe Bay, Conway Bay and southwest England, north Wales, and west Scotland. In the west Atlantic, M. edulis occupies the southern Canadian Maritime provinces to North Carolina.

Biogeographic Regions: nearctic (Native ); atlantic ocean (Native ); pacific ocean (Introduced )

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

National Distribution

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Type of Residency: Year-round

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Range

Extremely common around the coasts of Britain; very large commercial mussel beds occur in the Wash, Conway bay, Morecambe Bay, and estuaries of southwest England, west Scotland and west Wales (3). Elsewhere, it is found from the White Sea in northern Russia to southern France, and in the West Atlantic from Canada to North Carolina (3). It also occurs off Chile, the Falkland Isles, Argentina and the Kerguelen Isles (3).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Physical Description

Morphology

Physical Description

Mytilus edulis is characterized by a smooth inequilateral shell, usually purple, blue, or dark brown, which features concentric growth lines emanating from the hinge. The interior of the shell is pearl-white. Internally the mantle has a whitish/yellow color, with a posterior adductor scar significantly larger than its anterior adductor scar. Extending from the closed shell are fibrous brown byssal threads for attachment to a surface.

Range mass: 1.4 to 6.5 g.

Range length: 2 to 20 cm.

Average length: 5-10 cm.

Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry

Sexual Dimorphism: female larger

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Ecology

Habitat

intertidal, bathyal, infralittoral and circalittoral of the Gulf and estuary
  • North-West Atlantic Ocean species (NWARMS)
Creative Commons Attribution 3.0 (CC BY 3.0)

© WoRMS for SMEBD

Source: World Register of Marine Species

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Mytilus edulis is eurythermal and are able to withstand freezing conditions for several months. Blue mussels are well acclimated to a 5 to 20 °C temperature range, with an upper sustained thermal tolerance limit of about 29 °C for adults. Blue mussels do not thrive in salinities of less than 15%, but can withstand wide environmental fluctuations. Their depth ranges from 5 to 10 meters. Usually, M. edulis is found in subtidal and intertidal beds on rocky shores, and remain permanently attached there. The range of Mytilus edulis is limited by the movement of drifting larval and juvenile stages.

Range depth: 1 to 10 m.

Habitat Regions: temperate ; polar ; saltwater or marine

Aquatic Biomes: coastal ; brackish water

Other Habitat Features: estuarine ; intertidal or littoral

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Depth range based on 2627 specimens in 4 taxa.
Water temperature and chemistry ranges based on 276 samples.

Environmental ranges
  Depth range (m): -3 - 408
  Temperature range (°C): -1.363 - 23.436
  Nitrate (umol/L): 0.660 - 18.830
  Salinity (PPS): 6.095 - 36.284
  Oxygen (ml/l): 2.113 - 8.544
  Phosphate (umol/l): 0.048 - 1.740
  Silicate (umol/l): 1.824 - 50.947

Graphical representation

Depth range (m): -3 - 408

Temperature range (°C): -1.363 - 23.436

Nitrate (umol/L): 0.660 - 18.830

Salinity (PPS): 6.095 - 36.284

Oxygen (ml/l): 2.113 - 8.544

Phosphate (umol/l): 0.048 - 1.740

Silicate (umol/l): 1.824 - 50.947
 
Note: this information has not been validated. Check this *note*. Your feedback is most welcome.

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

 Occurs from the high intertidal to the shallow subtidal attached by fibrous byssus threads to suitable substrata. Found on the rocky shores of open coasts attached to the rock surface and in crevices, and on rocks and piers in sheltered harbours and estuaries, often occurring as dense masses.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

©  The Marine Biological Association of the United Kingdom

Source: Marine Life Information Network

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

The common mussel can be found from the middle shore to the shallow sublittoral zone, and attaches to substrates such as piers, rocks and stones with protein threads known as 'byssus' (2). It may also occur on soft sediments in estuaries, and large beds often form; mussels are farmed commercially in many areas (2).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Trophic Strategy

Food Habits

The diet of Mytilus edulis consists of phytoplankton, dinoflagellates, small diatoms, zoospores, flagellates, other protozoans, various unicellular algae, and detritus filtered from the surrounding water. Blue mussels are suspension filter feeders and are considered scavengers, collecting anything in the water column that is small enough to ingest.

Animal Foods: eggs; zooplankton

Plant Foods: algae; phytoplankton

Other Foods: detritus ; microbes

Foraging Behavior: filter-feeding

Primary Diet: planktivore ; detritivore

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Associations

Ecosystem Roles

Mytilus edulis has a high tolerance for increased sediment levels and help to remove sediments from the water column. Large blue mussel beds provide habitat and prey for other animals and act as a substrate for algal attachment, increasing local diversity. Blue mussel larvae are an important food source for plantivorous animals as well.

Commensal/Parasitic Species:

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Predation

Blue mussels are most often found in large mussel beds, where they are somewhat protected from predation by virtue of their numbers. The shell of Mytilus edulis acts as a protective layer, though some predator species are able to crush the shell.

Some predators of M. edulis wait until the mussel is forced to open its valves to breathe. The predator then pushes the mussel's siphon into the gap, wedging the mussel open so it can be eaten.

Known Predators:

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Known predators

Mytilus edulis (Mytilus edulis blue mussel) is prey of:
Thais lapillus
Leptasterias
Pisaster
Pycnopodia
Thais canaliculata
Tadorna tadorna
Somateria mollissima
Haematopus ostralegus
Calidris alpina
Arenaria interpres
Larus marinus
Sterna sandvicensis
Corvus corone
Ammodytes tobianus
Pholis gunnellus
Zoarces viviparus
Pomatoschistus minutus
Pomatoschistus microps
Pleuronectes platessa
Platichthys flesus
Crangon crangon
Himasthla elongata
Himasthla interrupta
Profilicollis botulus
Psilostomum brevicolle

Based on studies in:
USA: New England (Littoral, Rocky shore)
USA: Washington (Littoral, Rocky shore)
USA: Alaska, Torch Bay (Littoral, Rocky shore)
USA: Washington, Cape Flattery (Littoral, Rocky shore)
Scotland (Estuarine)

This list may not be complete but is based on published studies.
  • B. A. Menge and J. P. Sutherland, Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity, Am. Nat. 110(973):351-369, from p. 355 (1976).
  • B. A. Menge and J. P. Sutherland, Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity, Am. Nat. 110(973):351-369, from p. 360 (1976).
  • R. T. Paine, Food webs: linkage, interaction strength and community infrastructure, J. Anim. Ecol. 49:667-685, from p. 670 (1980).
  • Hall SJ, Raffaelli D (1991) Food-web patterns: lessons from a species-rich web. J Anim Ecol 60:823–842
  • Huxham M, Beany S, Raffaelli D (1996) Do parasites reduce the chances of triangulation in a real food web? Oikos 76:284–300
Creative Commons Attribution 3.0 (CC BY 3.0)

© SPIRE project

Source: SPIRE

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Known prey organisms

Mytilus edulis (Mytilus edulis blue mussel) preys on:
detritus
plankton
POM

Based on studies in:
USA: New England (Littoral, Rocky shore)
USA: Washington (Littoral, Rocky shore)
USA: Alaska, Torch Bay (Littoral, Rocky shore)
USA: Washington, Cape Flattery (Littoral, Rocky shore)
Scotland (Estuarine)

This list may not be complete but is based on published studies.
  • B. A. Menge and J. P. Sutherland, Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity, Am. Nat. 110(973):351-369, from p. 355 (1976).
  • B. A. Menge and J. P. Sutherland, Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity, Am. Nat. 110(973):351-369, from p. 360 (1976).
  • R. T. Paine, Food webs: linkage, interaction strength and community infrastructure, J. Anim. Ecol. 49:667-685, from p. 670 (1980).
  • Hall SJ, Raffaelli D (1991) Food-web patterns: lessons from a species-rich web. J Anim Ecol 60:823–842
  • Huxham M, Beany S, Raffaelli D (1996) Do parasites reduce the chances of triangulation in a real food web? Oikos 76:284–300
Creative Commons Attribution 3.0 (CC BY 3.0)

© SPIRE project

Source: SPIRE

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

General Ecology

DMS in the odor landscape of the sea

Dimethyl Sulfide or DMS is present throughout the ocean(1). It’s an important odor component of many fish and shellfish, including clams, mussels, oysters, scallops, crabs and shrimp(2-9). Where does it come from? Usually from the marine plants they feed on.

Many species of plants and algae produce DMS, but not all species produce significant amounts of it. Nearly all of these are marine, and they tend to be in closely related groups with other DMS-producers, including Chlorophyte (green) seaweeds, the Dinophyceae in the dinoflagellates, and some members of the Chrysophyceae and the Bacillariophyceae (two classes of diatoms). Other large groups, like cyanobacteria and freshwater algae, tend not to produce DMS. (10,11)

Why do these groups produce DMS? In algae, most researchers believe a related chemical, DMSP, is used by the algae for osmoregulation- by ensuring the ion concentration inside their cells stays fairly close to the salinity in the seawater outside, they prevent osmotic shock. Otherwise, after a sudden exposure to fresh water (rain at the sea surface, for instance) cells could swell up and explode. In vascular plants, like marsh grasses and sugar cane, it’s not clear what DMS is used for. (12,13)

Freshly harvested shellfish can smell like DMS because DMSP has accumulated in their tissue from the algae in their diet. Some animals, including giant Tridacna clams and the intertidal flatworm Convoluta roscoffensis, harbor symbiotic algae in their tissues, which produce DMSP; this may not be important to their symbioses, but for Tridacna, the high DMS levels can be a problem for marketing the clams to human consumers. After death, DMSP begins to break down into DMS. A little DMS creates a pleasant flavor, but high concentrations offend the human palate.(2,14)

Not all grazers retain DMS in their tissues, though. At sea, DMS is released when zooplankton feed on algae. It’s been shown in the marine copepods Labidocera aestiva and Centropages hamatus feeding on the dinoflagellate Gymnodinium nelson that nearly all the DMS in the consumed algae is quickly released during feeding and digestion.(15) This has a disadvantage for the grazing zooplankton. Marine predators, like procellariiform seabirds, harbor seals, penguins, whale sharks, cod, and coral reef fishes like brown chromis, Creole wrasse and boga, can use the smell of DMS to locate zooplankton to feed on. (8,16,17)

It’s not easy to measure how much DMS is released from the Ocean into the air every year. Recent estimates suggest 13-37 Teragrams, or 1.3-3.7 billion kilograms. This accounts for about half the natural transport of Sulfur into the atmosphere, is the conveyor belt by which Sulfur cycles from the ocean back to land. In the atmosphere, DMS is oxidized into several compounds that serve as Cloud Condensation Nuclei (CCN). The presence of CCN in the air determines when and where clouds form, which affects not only the Water cycle, but the reflection of sunlight away from the Earth. This is why climate scientists believe DMS plays an important role in regulating the Earth’s climate. (12,18)

  • 1) BATES, T. S., J. D. Cline, R. H. Gammon, and S. R. Kelly-Hansen. 1987. Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. J. Geophys. Res.92: 2930- 2938
  • 2) Hill, RW, Dacey, JW and A Edward. 2000. Dimethylsulfoniopropionate in giant clams (Tridacnidae). The Biological Bulletin, 199(2):108-115
  • 3) Brooke, R.O., Mendelsohn, J.M., King, F.J. 1968. Significance of Dimethyl Sulfide to the Odor of Soft-Shell Clams. Journal of the Fisheries Research Board of Canada, 25:(11) 2453-2460
  • 4) Linder, M., Ackman, R.G. 2002. Volatile Compounds Recovered by Solid-Phase Microextraction from Fresh Adductor Muscle and Total Lipids of Sea Scallop (Placopecten magellanicus) from Georges Bank (Nova Scotia). Journal of Food Science, 67(6): 2032–2037
  • 5) Le Guen, S., Prost, C., Demaimay, M. 2000. Critical Comparison of Three Olfactometric Methods for the Identification of the Most Potent Odorants in Cooked Mussels (Mytilus edulis). J. Agric. Food Chem., 48(4): 1307–1314
  • 6) Piveteau, F., Le Guen, S., Gandemer, G., Baud, J.P., Prost, C., Demaimay, M. 2000. Aroma of Fresh Oysters Crassostrea gigas: Composition and Aroma Notes. J. Agric. Food Chem., 48(10): 4851–4857
  • 7) Tanchotikul, U., Hsieh, T.C.Y. 2006. Analysis of Volatile Flavor Components in Steamed Rangia Clam by Dynamic Headspace Sampling and Simultaneous Distillation and Extraction. Journal of Food Science, 56(2): 327–331
  • 8) Ellingsen, O.F., Doving, K.B. 1986. Chemical fractionation of shrimp extracts inducing bottom food search behavior in cod (Gadus morhua L.). J. Chem. Ecol., 12(1): 155-168
  • 9) Sarnoski, P.J., O’Keefe, S.F., Jahncke, M.L., Mallikarjunan, P., Flick, G. 2010. Analysis of crab meat volatiles as possible spoilage indicators for blue crab (Callinectes sapidus) meat by gas chromatography–mass spectrometry. Food Chemistry, 122(3):930–935
  • 10) Malin, G., Kirst, G.O. 1997. Algal Production of Dimethyl Sulfide and its Atmospheric Role. J. Phycol., 33:889-896
  • 11) Keller, M.D., Bellows, W.K., Guillard, R.L. 1989. Dimethyl Sulfide Production in Marine Phytoplankton. Biogenic Sulfur in the Environment. Chapter 11, pp 167–182. ACS Symposium Series, Vol. 393. ISBN13: 9780841216129eISBN: 9780841212442.
  • 12) Yoch, D.C. 2002. Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide. Appl Environ Microbiol., 68(12):5804–5815.
  • 13) Otte ML, Wilson G, Morris JT, Moran BM. 2004. Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J Exp Bot., 55(404):1919-25
  • 14) Van Bergeijk, S.A., Stal, L.J. 2001. Dimethylsulfonopropionate and dimethylsulfide in the marine flatworm Convoluta roscoffensis and its algal symbiont. Marine Biology, 138:209-216
  • 15) Dacey , J.W.H. and Stuart G. Wakeham. 1986. Oceanic Dimethylsulfide: Production during Zooplankton Grazing on Phytoplankton. Science, 233( 4770):1314-1316
  • 16) Nevitt, G. A., Veit, R. R. & Kareiva, P. (1995) Dimethyl Sulphide as a Foraging Cue for Antarctic Procellariiform Seabirds. Nature 376, 680-682.
  • 17) Debose, J.L., Lema, S.C., & Nevitt, G.A. (2008). Dimethylsulfionoproprianate as a foraging cue for reef fishes. Science, 319, 1356.
  • 18) Charlson, R.J., Lovelock, J.E., Andraea, M.O., Warren, S.G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326:655-661
Creative Commons Attribution 3.0 (CC BY 3.0)

Supplier: Jennifer Hammock

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Life History and Behavior

Behavior

Communication and Perception

Blue mussels have statocysts to aid in geo-positioning and orientation. Blue mussels have chemoreceptors capable of detecting the release of gametes. These chemoreceptors also help juvenile blue mussels avoid settling temporarily on substrata near mature blue mussle, presumably to decrease competition for food.

Communication Channels: chemical

Perception Channels: tactile ; chemical

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Life Cycle

Development

After the egg is fertilized it turns into a ciliated trocophore larva. The trochophore larva then becomes a veliger, which persists 1 to 1.5 months. In this phase, the larva bears ciliated fan-like protrusions and filter feeds before becoming a juvenile and finding a primary settlement location. The primary settlement location is often located in openings in the substrata, or amongst bryozoans or other filamentous structures and often situated away from mature mussels, presumably to decrease competition. After weeks there, the juvenile has doubled in size and detaches to drift again and find a permanent substrate to which to attach. The young adult will attach to the sea floor with a byssus thread or, if such open substrate is not stable, may attach to another mussel, creating a mussel bed.

Development - Life Cycle: metamorphosis ; colonial growth ; indeterminate growth

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Life Expectancy

Lifespan/Longevity

The lifespan of Mytilus edulis may vary considerably depending on attachment location. Settline in more exposed coastal areas make individuals significantly more vulnerable to predation, in large part avian. Quality and stability of the substrate also plays a role in the lifespan. Mussels that settle in exposed locations can experience mortality up to 98% per year. Drifting larval and juvenile stages suffer the highest mortality rates.

Range lifespan

Status: wild:
18 to 24 years.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Reproduction

Mytilus edulis sexes are separate and gametes are shed into the water where fertilization occurs.

Mating System: polygynandrous (promiscuous)

Mytilus edulis spawns from April to September, depending on water temperature, currents, and other environmental factors. In most populations, resting gonads begin to develop from October to November, with gametogenesis occurring throughout winter so that gonads are mature in early spring. A partial spawning in spring is followed by rapid gametogenesis, with gonads maturing by early summer, resulting in a less intensive secondary spawning in late August or September. Larvae spawned in spring can take advantage of phytoplankton blooms. Occurrence of the secondary spawning is opportunistic, depending on favorable environmental conditions and food availability. Gametogenesis, spawning, and reproductive strategies vary with geographic location. An individual female can produce 5 to 8 million eggs, larger individuals may produce as many as 40 million eggs. In optimal conditions, larval development may be complete in less than 20 days but larval growth and metamorphosis between spring and early summer, at 10 °C, usually takes 1 month. Pediveligers can delay metamorphosis for up to 40 days at 10 °C or for up to 6 months in some cases.

Breeding interval: Reproductive output is influenced by temperature, food availability, and tidal exposure and can therefore vary from year to year and from place to place.

Breeding season: Blue mussels generally breed during the spring to late summer.

Range number of offspring: 5000000 to 40000000.

Average number of offspring: 7000000.

Range age at sexual or reproductive maturity (female): 1 to 2 years.

Range age at sexual or reproductive maturity (male): 1 to 2 years.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); fertilization (External ); broadcast (group) spawning

There is no parental care after fertilization.

Parental Investment: no parental involvement; pre-fertilization (Provisioning, Protecting: Female)

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Evolution and Systematics

Functional Adaptations

Functional adaptation

Byssus threads resist forces: blue mussel
 

The byssus threads of mollusks are strong anchors that can resist hydrodynamic forces because of mechanically distinct regions within each thread.

     
  "One particular use of a collagenous rope gives a sense of the range of performance nature can get from this material--and of some of the peculiarities of applying data from standard analyses. As familiar to anyone who has poked around rocky, wave-swept shores, mussels don't dislodge easily. Each is attached to rocks by twenty to sixty stringy byssus threads of sufficient tenacity to resist extreme hydrodynamic forces. (Denny [1988] provides an especially good view of the origin of these forces.) At first glance, a collagenous material looks inappropriate for the mission. After all, low extensibility means that unless particularly well matched and faced with forces of invariant strength and direction, only some subset of threads will bear the load. Imagine hanging from a group of inextensible ropes each of slightly different length--having more than one will gain you nothing, since they'll break one by one instead of sharing the load.

A byssus thread contains two mechanically distinct regions, called, for their distance from the shell, proximal and distal. The material of both regions proves to be unusually extensible for collagens, which sounds right and proper. But then, according to Bell and Gosline (1996) things get more complex. The proximal region can be strained to a greater fraction of unloaded length, but it never achieves the breaking strength of the distal region, as you can see from figure 16.14a. So it looks as if their proximal regions take care of distributing the load among the threads. Not so. The distal region of threads happens to be two to four times longer and only half as wide. So a given force will stretch it quite far. Replotting the data as force against extension for a whole thread as a structure, as in figure 16.14b, shows a nice match. Even better, it shows how the distal thread yields (the horizontal portion of its curve) just short of the breaking force--an extension that will permit threads to reorient closer to the direction of the applied force and to share increasing loads among an increasing number of threads." (Vogel 2003:347)
  Learn more about this functional adaptation.
  • Steven Vogel. 2003. Comparative Biomechanics: Life's Physical World. Princeton: Princeton University Press. 580 p.
  • Bell EC; Gosline JM. 1996. Mechanical design of mussel byssus: material yield enhances attachment strength. Journal of Experimental Biology. 199: 1005-1017.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Functional adaptation

Secretions gain adhesive/cohesive qualities: marine invertebrates
 

Secretions of several marine invertebrates may gain adhesive and cohesive qualities in part via phosphorylation of certain proteins.

       
  "Protein phosphorylation is an important regulator of both cellular and extracellular events. Recently, protein phosphorylation has also emerged as an important process in biological adhesives. During the last decade, Herbert Waite and his group have indeed characterized several polyphosphoproteins from the adhesive secretions of two different marine organisms, mussels and tube-building worms. This suggests the possibility that polyphosphoproteins could be important components of several bioadhesives and may, therefore, be widely distributed throughout the animal kingdomThese findings bring to three the number of animal groups in which adhesive processes involve polyphosphoproteins and raise interesting questions about the convergent evolution of these adhesives.

"In the marine environment, attachment mechanisms developed by animals usually rely on highly viscous or solid adhesive secretions, which all contain specialized proteins. Functional convergences are noted among marine animals, particularly in terms of the type of adhesion used: permanent, temporary, or instantaneous. Although marine adhesive proteins from non-related organisms do not present any sequence homologies, molecular convergences have been recognized, and some adhesive motifs have been found to be shared by phylogenetically different animals. DOPA has long been known as one such motif. Now, another modified amino acid, phosphoserine (pSer), is emerging as an important motif in biological adhesives. Indeed, our findings bring the number of polyphosphoprotein-containing marine adhesives to three. The occurrence of high levels of pSer in adhesive systems from totally unrelated animals, which moreover use different types of adhesion, raise questions about the convergent evolution of these adhesives." (Flammang et al. 2009:447, 462-3)
  Learn more about this functional adaptation.
  • Flammang P; Lambert A; Bailly P; Hennebert E. 2009. Polyphosphoprotein-containing marine adhesives. The Journal of Adhesion. 85(8): 447 - 464.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Functional adaptation

Threads have hard flexible coating: mussel
 

The byssal threads of mussels display both hardness and extensibility thanks to sacrificial cross-links in the outer cuticle.

       
  "Sacrificial bonds and hidden length in structural molecules and composites have been found to greatly increase the fracture toughness of biomaterials by providing a reversible, molecular-scale energy-dissipation mechanism. This mechanism relies on the energy, of order 100 eV, needed to reduce entropy and increase enthalpy as molecular segments are stretched after being released by the breaking of weak bonds, called sacrificial bonds. This energy is relatively large compared to the energy needed to break the polymer backbone, of order a few eV. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby additionally providing a 'self-healing' property to the material." (Fantner 2006:1411)

"The extensible byssal threads of marine  mussels are shielded from abrasion  in wave-swept habitats by an  outer cuticle that is largely  proteinaceous and approximately  fivefold harder than the thread  core. Threads from several species exhibit granular  cuticles containing a protein that  is rich in the catecholic amino acid  3,4-dihydroxyphenylalanine (dopa)  as well as inorganic ions,  notably Fe3+. Granular  cuticles exhibit a remarkable  combination of high hardness and  high extensibility. We explored byssus cuticle chemistry by  means of in situ resonance Raman  spectroscopy and demonstrated that  the cuticle is a polymeric scaffold  stabilized by catecholato-iron  chelate complexes having an  unusual clustered distribution. Consistent with byssal  cuticle chemistry and mechanics,  we present a model in which dense cross-linking in  the granules provides hardness, whereas  the less cross-linked matrix provides  extensibility." (Harrington et al. 2010:216)
  Learn more about this functional adaptation.
  • Steven Vogel. 2003. Comparative Biomechanics: Life's Physical World. Princeton: Princeton University Press. 580 p.
  • Weaver, James C.; Aizenberg, Joanna; Fantner, Georg E.; Kisailus, David; Woesz, Alexander; Allen, Peter; Fields, Kirk; Porter, Michael J.; Zok, Frank W.; Hansma, Paul K.; Fratzl, Peter; Morse, Daniel E. 2007. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology. 158(1): 93-106.
  • Fantner, G. E.; Oroudjev, E.; Schitter, G.; Golde, L. S.; Thurner, P.; Finch, M. M.; Turner, P.; Gutsmann, T.; Morse, D. E.; Hansma, H. 2006. Sacrificial Bonds and Hidden Length: Unraveling Molecular Mesostructures in Tough Materials. Biophysical Journal. 90(4): 1411-1418.
  • Harrington MJ; Masic A; Holten-Andersen N; Waite H; Fratzl P. 2010. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science. 328(5975): 216 - 220.
  • 2010. How marine mussels grip rocks: iron atoms convey mussel fibers with a robust but stretchy covering. Science Daily [Internet],
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Functional adaptation

Sticky proteins serve as glue: blue mussel
 

Byssus threads of the blue mussel attach to a wet, solid surface due to catechols on adhesive proteins that overcome the surface’s affinity for water molecules.

     
  "Pounding waves are no match for the mighty mussel, that produces strong, flexible threads that cling to rocks…mussels secrete a unique amino acid called dihydroxyphenylalanine…Researchers have developed a new group of adhesives for wood products inspired by the ability of mussels to cling to rocks using thread-like tentacles. These threads are proteins that retain powerful adhesive properties even in water.” (ScienceDaily 2005)

  Learn more about this functional adaptation.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage: Mytilus edulis

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 238
Specimens with Barcodes: 343
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Barcode data: Mytilus edulis

The following is a representative barcode sequence, the centroid of all available sequences for this species.


There are 242 barcode sequences available from BOLD and GenBank.  Below is a sequence of the barcode region Cytochrome oxidase subunit 1 (COI or COX1) from a member of the species.  See the BOLD taxonomy browser for more complete information about this specimen and other sequences.

TTGATAATCCGCATACAACTTGGTCACCCTGGGGTCTTTCTCAAAAGA---GACTGGTTTTTTAATGTAGTGGTTACAACACATGCTTTAATGATGATTTTTTTTGCCGTAATACCAATCTTAATCGGGGCTTTTGGCAATTGGCTTATCCCGTTGTTG---GTAGGAGGTAAGGATATAATTTACCCCCGGATGAACAATTTGAGATATTGACTGTCTCCAAACGCATTGTACTTACTCATATTATCTTTTAGGACAGATAAAGGGGTAGGTGCTGGATGAACTGTCTACCCTCCACTATCCAGGTACCCGTACCATAGAGGGCCAAGAATGGACGTT---CTTATTGTGGCTCTTCATTTAGCTGGAGTAAGGTCTCTAGTAGGGGCTATTAATTTTGCTAGTACTAACAAAAACATACCGGCCTTGGAGATAAAAGGGGAGCGAGCTGAGCTCTATGTCTTAAGAATCAGGATCACTGCAGCCCTTCTAATCATTTCTATTCCAGTTCTA---GGAGGAGGAATTACAATAATCTTGTTTGACCGAAACTTCAACACGACGTTTTTCGACCCTGCAGGGGGCGGGGATCCTGTTCTGTTTCAACATTTA------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------TTT
-- end --

Download FASTA File
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Genomic DNA is available from 17 specimens with morphological vouchers housed at A.N. Severtzov Institute of Ecology and Evolution and Museum of Tropical Queensland
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© Ocean Genome Legacy

Source: Ocean Genome Resource

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Conservation

Conservation Status

Mytilus edulis is fairly common and is abundant in many coastal areas and has therefore not been placed on any conservation list or given any special status.

US Federal List: no special status

CITES: no special status

State of Michigan List: no special status

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

National NatureServe Conservation Status

United States

Rounded National Status Rank: NNR - Unranked

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: GNR - Not Yet Ranked

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Status

Common and widespread; not listed under any conservation designations (2).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Threats

This species is currently widespread and not threatened.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Management

Conservation

Conservation action has not been targeted at this common species.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Economic Importance for Humans: Negative

There are no known adverse effects of Mytilus edulis on humans.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Economic Importance for Humans: Positive

People harvest blue mussels as food and they are used in commercial aquaculture. Blue mussels are considered an important food source in some coastal areas and the shells are used in jewelry manufacturing. Blue mussels also help limit algae growth, which has become problematic in the Mediterranean Sea and elsewhere.

Positive Impacts: food ; research and education

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© The Regents of the University of Michigan and its licensors

Source: Animal Diversity Web

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Wikipedia

Blue mussel

The blue mussel (Mytilus edulis), also known as the common mussel,[1] is a medium-sized edible marine bivalve mollusc in the family Mytilidae, the mussels. Blue mussels are subject to commercial use and intensive aquaculture.

Systematics and distribution[edit]

The Mytilus edulis complex[edit]

Systematically blue mussels consist of a group of (at least) three closely related taxa of mussels, known as the Mytilus edulis complex. Collectively they occupy both coasts of the North Atlantic (including the Mediterranean) and of the North Pacific in temperate to polar waters, as well as coasts of similar nature in the Southern Hemisphere. The distribution of the component taxa has been recently modified as a result of human activity (invasive species). The taxa can hybridise with each other, if present at the same locality.

Mytilus edulis, strict sense[edit]

The Atlantic blue mussel is native on the North American Atlantic coast, but is found intermixed with M. trossulus north of Maine. In Europe it is found from French Atlantic coast northwards to Novaya Zemlya and Iceland, but not in the Baltic Sea. In France and in the British Isles, it makes hybrid zones with M. galloprovincialis, and also is sometimes intermixed with M. trossulus.

A genetically distinct lineage of M. edulis is present in the Southern Hemisphere, and has been attributed to subspecies Mytilus edulis platensis. This includes the Chilean mussel.[2]

Habitat[edit]

Blue mussels are boreo-temperate invertebrates that live in intertidal areas attached to rocks and other hard substrates by strong (and somewhat elastic) thread-like structures called byssal threads, secreted by byssal glands located in the foot of the mussel.

Description[edit]

The shape of the shell is triangular and elongate with rounded edges. The shell is smooth with a sculpturing of fine concentric growth lines but no radiating ribs. The shells of this species are purple, blue or sometimes brown in color, occasionally with radial stripes. The outer surface of the shell is covered by the periostracum which as eroded, exposes the colored prismatic calcitic layer. Blue Mussels are semi-sessile, having the ability to detach and reattach to a surface allowing the mollusk to reposition itself relative to the water position.

Reproduction[edit]

Mussels have separate sexes. Once the sperm and eggs are fully developed they are released into the water column for fertilization. Although there are about 10,000 sperm per egg,[3] large proportions of eggs deposited by blue mussel are never fertilized. As few as 1% of larvae that do mature ever reach adulthood, the majority are eaten by predators before completing metamorphosis.

The reproductive strategy seen in blue mussels is characteristic of planktotrophs, by minimizing nutrients in egg production to the bare minimum they are able to maximize the number of gametes produced. If the adult mussels are stressed during the beginning of gametogenesis, the process is terminated.[4] When stressed while fresh gametes are present, adult mussels reabsorb gametes. Larvae viability is also effected by the condition of parents: high water temperatures, pollutants and scarcity of food, during gamete production.[4] The reduction in viability is probably due to the lack of lipid reserves distributed to the eggs.

Larval development[edit]

Larval development can last from 15 to 35 days depending environmental conditions including salinity and temperature, as well as location. Larvae originating from Connecticut mature normally at 15–20 °C, though at 15 °C normal development occurs at salinities between 15 and 35 ppt and 20 at 35 ppt at 20 °C.[5]

The first stage of development is the ciliated embryo, which in 24-hours for fertilization form the trochophore. At this point although mobile, it is still reliant on the yolk for nutrients. Characterized by a functional mouth and alimentary canal the veliger stage also has cilia which are used for filtering food as well as propulsion. A thin translucent shell is secreted by the shell gland forming the notable straight hinge of the prodissoconch I shell. The veliger continues to mature forming the prodissoconch II shell. In the end stage of veliger development photosensitive eye spots and elongated foot with a byssal gland are formed.

Once the pediveliger is fully developed, its foot extends and makes contact with substrate. The initial contact with the substrate is loose. If the substrate is suitable, the larva will metamorphoses into the juvenile form, plantigrade, and attach byssus threads. The mussel will remain in that state until reaching 1-1.5mm in length. This attachment is the prerequisite for the foundation for the blue mussel population. In sheltered environments large masses sometimes form beds which offer shelter and food for other invertebrates. Byssal thread are secreted by byssal glands located in the foot of the mussel, and are made up of polyphenolic proteins are proteins which serve as a bioadhesive.[6]

Aggregation[edit]

Blue mussels occasionally form clumps, or aggregates, of individuals when population density is low.The mussels attach to one another via collagenous protein strands called byssal threads. The aggregates are observed mostly in Mussel fields, which are short-lived populations of Mussels, usually exhibiting a clumped distribution pattern.[7] It is hypothesized that the mussels form these aggregates to increase reproductive success in low density populations.[8] This hypothesis, however, has yet to be conclusively proven. Alternative possible reasons for the behavior include resisting wave action and increasing water flow through the siphons of the mussel. The significance of the behavior is its relation to the formation of mussel beds from mussel fields. Mussel beds are persistent, dense mussel populations. Beds generally form from fields that persist long enough to establish a dense population.[7] Thus in areas where blue mussels are threatened, such as the Wadden Sea, it is of great importance to enhance the survival of mussel fields, of which mussel aggregates are the primary component.

Predators[edit]

Predation of blue mussels is greatest during the 3 weeks it spends as a planktonic larva. During this stage it is susceptible to jellyfish and fish larvae through adults. Once it metamorphoses the mussel is still restricted by predation, with smaller mussels with thinner, weaker shells most affected. Once the shells becomes stronger, blue mussels are preyed upon by sea stars such as Asterias vulgaris as well as by several species of sea gulls. Small mussels are also eaten by the dog whelk, Nucella lapillus.[9] The blue mussel is host to a wide range of parasites, but these parasites usually do not cause much damage.

Uses[edit]

Blue mussels are filter feeders and play a vital role in estuaries by removing bacteria and toxins.

Boiled blue mussels

Mytilus edulis is commonly harvested for food throughout the world, from both wild and farmed sources. Mussels are a staple of many seafood dishes in various cuisines including Spanish (especially Galician), Portuguese, French, Dutch, Belgian and Italian. They are also commonly used as lab animals. Blue mussels were also harvested by the indigenous peoples of North America.[10]

Gallery[edit]

References[edit]

  1. ^ Paul Sterry (1997). Collins Complete Guide to British Wildlife. HarperCollins. ISBN 978-0-00-723683-1. 
  2. ^ a b Borsa, P., Rolland, V., Daguin-Thiebaut, C. (2012). "Genetics and taxonomy of Chilean smooth-shelled mussels, Mytilus spp. (Bivalvia: Mytilidae)". Comptes Rendus Biologies 335 (1): 51–61. doi:10.1016/j.crvi.2011.10.002. PMID 22226163. 
  3. ^ Thompson, R.J. (1979). "Fecundity and reproductive effort in the blue mussel (Mytilus edulis), the sea urchin (Strongylocentrotus droebachiensis), and the snow crab (Chionoecetes opilio) from populations in Nova Scotia and Newfoundland". Journal of the Fisheries Research Board of Canada 36 (8): 955–964. doi:10.1139/f79-133. 
  4. ^ a b Bayne, B.; Widdows, J.; Thompson, R. (1976). "Physiological integrations". Marine mussels: their ecology and physiology. New York, NY: Cambridge University Press. pp. 261–291. 
  5. ^ Hrs-Brenko, M.; Calabrese, A. (1976). "The combined effects of salinity and temperature on larvae of the mussel Mytilus edulis". Marine Biology: 224–266. 
  6. ^ Rzepecki, Leszek M.; Hansen, Karolyn M.; Waite, J. Herbert (August 1992). "Characterization of a cystine-rich polyphenolic protein family from the blue mussel Mytilus edulis L.". The Biological Bulletin 183 (1): 123–37. doi:10.2307/1542413. JSTOR 1542413. 
  7. ^ a b Georg Nehls, Sophia Witte, Heike Büttger, Norbert Dankers, Jeroen Jansen, Gerald Millat, Mark Herlyn, Alexandra Markert, Per Sand Kristensen, Maarten Ruth, Christian Buschbaum and Achim Wehrmann, 2009. Beds of blue mussels and Pacific oysters. Thematic Report No. 11. In: Marencic, H. & de Vlas, J. (Eds.), 2009. Quality Status Report 2009. WaddenSea Ecosystem No. 25. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Wilhelmshaven, Germany.
  8. ^ DOWNING, J. and DOWNING, W. 1992. Spatial Aggregation, Precision, and Power in Surveys of Fresh-Water Mussel Populations. Can. J. Fish. Aquat. Sci. 49(5): 985-991. doi:10.1139/f92-110.
  9. ^ Petraitis, P. S. (1987). "Immobilization of the Predatory Gastropod , Nucella lapillus, by its prey, Mytilus edulis". Biol Bull. 172: 307-314.
  10. ^ http://books.google.com/books?id=fvuChpvgVZAC&pg=PA33&dq=%22Blue+mussel%22+native&hl=en&sa=X&ei=A7ovUbnWOsrK0wHdnoHQAw&ved=0CEsQ6AEwBQ#v=onepage&q=%22Blue%20mussel%22%20native&f=false

Further reading[edit]

Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Average rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!