Comprehensive Description

Description of Artemia

Brine shrimp. Artemia were first discovered in Lymington Lymington is a port on the Solent, in the New Forest district of Hampshire, England. It is to the east of the Bournemouth conurbation, and faces Yarmouth on the Isle of Wight which is connected to it by a car ferry.   The town has a population of about 40,000 and has a large tourist industry, based on proximity to the New Forest and the harbour..    ..... Click the link for more information. , England England (In detail) ( In detail ) Royal motto: Dieu et mon droit (French: God and my right) Official language None; English is de facto Capital London Capital's coordinates 51 degrees 30' N, 0 degrees 10' W Largest city London Area  - Total Ranked 1st UK 130,395 km² Population  - Total (2004)  - Density Ranked 1st UK  ..... Click the link for more information. in 1755  Years: 1752 1753 1754 - 1755 - 1756 1757 1758 Decades: 1720s 1730s 1740s - 1750s - 1760s 1770s 1780s Centuries: 17th century - 18th century - 19th century    --------------------------------------------------------------------------------  1755 in art 1755 in literature 1755 in music 1755 in science    -------------------------------------------------------------------------------- List of state leaders in 1755 List of religious leaders in 1755  ..... Click the link for more information. . There are mixed views on whether all brine shrimp are part of one species or whether the varieties that have been identified are properly classified as separate species.  Brine shrimp are metabolically inactive as embryos   An embryo is an animal or a plant in its earliest stage of development.    PlantsIn botany, a plant embryo is part of a seed, consisting of precursor tissues for the leaves, stem (see hypocotyl), and root (see radicle), as well as one or more cotyledons. Once the embryo begins to germinate €” grow out from the seed €” it is called a seedling. ..... Click the link for more information. and can remain in this state for several years in dry oxygen-free conditions. Once placed in water, the cyst-like embryos hatch within a few hours, and will grow to a length of around one centimeter on average. Brine shrimp have a life cycle Life cycle refers to:   Biological life cycle  New product development   ..... Click the link for more information. of one year. This short life span, and other characteristics, such as their ability to remain dormant for long periods have made them invaluable in scientific research, including space experiments Space exploration is the physical exploration of outer-earth objects and generally anything that involves the technologies, science, and politics regarding space endeavors.   The idea of sending an object to space was conceived in the minds of many science fiction authors hundreds of years before it was actually feasible. Some of these works even included various descriptions of exactly how that would be done. During the 20th century, with the development of adequate propulsion technologies, stronger and lighter materials and other technological and scientific breakthroughs, the idea of outer-earth missions was no longer a dream, but a viable practice. ..... Click the link for more information. .   Brine shrimp can tolerate varying levels of salinity Salinity is the saltiness of a body of water.    DefinitionsWater is defined as saline if it contains 3 to 5% salt by volume. The ocean is naturally saline at approximately 3.5% salt (see sea water). Some inland salt lakes (seas) are even saltier. The technical term for ocean saltiness is halinity, from the fact that halides (chloride, specifically) are the most abundant anion in the mix of dissolved solids. In oceanography, it has been traditional to express salinity as concentration in parts per thousand (ppt or €°), which is grams salt per liter of water. After 1978, oceanographers defined salinity as the electrical conductivity ratio of a sea water to a standard KCl solution. Ratios have no units. ..... Click the link for more information. , and a common biology experiment in school On this page, you will find a list of fun experiments and demonstrations that are suitable for a school science lab or possible at home. Do not assume that they are safe! Most will have some sort of safety advice on the page but the absence of written precautions does not mean that you can just plough ahead. If you are an adult, you should use your own judgement. If you are under 18, you should ask the advice of your teachers or parents.   ..... Click the link for more information. is to investigate the effect of salinity levels on the growth of these creatures.  The nutritional properties of newly hatched brine shrimp make them particularly suitable to be sold as aquarium An aquarium is a glass-sided container (terrarium) in which water-dwelling plants and animals (usually fish) are kept in captivity. The term is also used of a public establishment that maintains a large number of aquatic species in captivity, much as a zoo does for land animals.    Aquarium hobby In 1665 the diarist Samuel Pepys recorded seeing in London "a fine rarity, of fishes ..... Click the link for more information. food as they are high in lipids Lipids are fatty acid esters, a class of relatively water-insoluble organic molecules, which are the "basic" components of biological membranes. There are three forms of lipids: phospholipids, steroids. and triglycerides.   Lipids consist of a polar or hydrophilic (attracted to water) head and one to three nonpolar or hydrophobic (repelled by water) tails (Fig. 1). Since lipids have both functions, they are called amphiphilic. The hydrophobic tail consists of one or two (in triglycerides, three) fatty acids. These are unbranched chains of carbon atoms (with the correct number of H atoms), which are connected by single bonds alone (saturated fatty acids) or by both single and double bonds (unsaturated fatty acids). The chains are usually 14-24 carbon groups long. ..... Click the link for more information. and unsaturated The term saturation can refer to the following:   In chemistry, saturation has a number of meanings.  In color theory, saturation refers to the intensity of a specific hue. Saturation is also a coordinate in the HSV color space. See also: hue.  An atmospheric humidity of 100% represents the saturation point, at which the air can hold no more moisture. see also Dew point  In economics, there is the concept of market saturation.  For magnetic materials, saturation is the state when the material cannot absorb a stronger magnetic field, such that an increase in magnetization does not produce significant change in magnetic flux density.  In telecommunications, the term saturation has a number of meanings.   ..... Click the link for more information. fatty acids In chemistry, especially biochemistry, a fatty acid is a carboxylic acid (or organic acid), often with a long aliphatic tail (long chains), either saturated or unsaturated. Most of the natural fatty acids have an even number of carbon atoms, because they are made up of acetate which has two carbon atoms.  Industrially, fatty acids are produced by the hydrolysis of the ester linkages in a fat or biological oil (both of which are triglycerides), with the removal of glycerol. See oleochemicals. ..... Click the link for more information. . These nutritional benefits are likely to be one reason that brine shrimp are found only in highly salinated waters, as these areas are uninhabitable for potential predators.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)


Source: BioPedia


Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage

Barcode of Life Data Systems (BOLD) Stats
Specimen Records: 217
Specimens with Sequences: 216
Specimens with Barcodes: 211
Species: 19
Species With Barcodes: 19
Public Records: 203
Public Species: 19
Public BINs: 9
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)


Article rating from 0 people

Default rating: 2.5 of 5

Barcode data

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)


Article rating from 0 people

Default rating: 2.5 of 5


Brine shrimp

Artemia is a genus of aquatic crustaceans known as brine shrimp. Artemia, the only genus in the family Artemiidae, has changed little externally since the Triassic period. The historical record of the existence of Artemia dates back to 982 from Urmia Lake, Iran, although the first unambiguous record is the report and drawings made by Schlösser in 1756 of animals from Lymington, England.[2] Artemia populations are found worldwide in inland saltwater lakes, but not in oceans. Artemia are able to avoid cohabiting with most types of predators, such as fish, by their ability to live in waters of very high salinity (up to 25%).[3]

The ability of the Artemia to produce dormant eggs, known as cysts, has led to extensive use of Artemia in aquaculture. The cysts may be stored for long periods and hatched on demand to provide a convenient form of live feed for larval fish and crustaceans.[3] Nauplii of the brine shrimp Artemia constitute the most widely used food item, and over 2000 tonnes of dry Artemia cysts are marketed worldwide annually. In addition, the resilience of Artemia makes them ideal animals for running biological toxicity assays and it is now one of the standard organisms for testing the toxicity of chemicals. A breed of Artemia is sold as a novelty gift under the marketing name Sea-Monkeys.


The brine shrimp Artemia comprises a group of eight species very likely to have diverged from an ancestral form living in the Mediterranean area about 5.5 million years ago.[4]

Artemia is a typical primitive arthropod with a segmented body to which is attached broad leaf-like appendages. The body usually consists of 19 segments, the first 11 of which have pairs of appendages, the next two which are often fused together carry the reproductive organs, and the last segments lead to the tail.[5] The total length is usually about 8–10 millimetres (0.31–0.39 in) for the adult male and 10–12 mm (0.39–0.47 in) for the female, but the width of both sexes, including the legs, is about 4 mm (0.16 in).

The body of Artemia is divided into head, thorax, and abdomen. The entire body is covered with a thin, flexible exoskeleton of chitin to which muscles are attached internally and shed periodically.[6] In female Artemia a moult precedes every ovulation.

For brine shrimp, many functions, including swimming, digestion and reproduction are not controlled through the brain; instead, local nervous system ganglia may control some regulation or synchronization of these functions.[6] Autotomy, the voluntary shedding or dropping of parts of the body for defence, is also controlled locally along the nervous system.[5] Artemia have two types of eyes. They have two widely separated compound eyes mounted on flexible stalks. These compound eyes are the main optical sense organ in adult brine shrimps. The median eye, or the naupliar eye, is situated anteriorly in the centre of the head and is the only functional optical sense organ in the nauplii, which is functional until the adult stage.[6]

Ecology and behaviour[edit]

Brine shrimp can tolerate varying levels of salinity from 25‰ to 250‰ (25–250 g/L),[7] with an optimal range of 60‰–100‰,[7] and occupy the ecological niche that can protect them from predators.[8] Physiologically, optimal levels of salinity are about 30–35‰, but due to predators at these salt levels, brine shrimp seldom occur in natural habitats at salinities of less than 60–80‰. Locomotion is achieved by the rhythmic beating of the appendages acting in pairs. Respiration occurs on the surface of the legs through fibrous, feather-like plates (lamellar epipodites)[5]

An Artemia cyst


Males differ from females by having the second antennae markedly enlarged, and modified into clasping organs used in mating.[9] Adult female brine shrimp ovulate approximately every 140 hours. In favourable conditions, the female brine shrimp can produce eggs that almost immediately hatch. While in extreme conditions, such as low oxygen level or salinity above 150‰, female brine shrimp produce eggs with a chorion coating which has a brown colour. These eggs, also known as cysts, are metabolically inactive and can remain in total stasis for two years while in dry oxygen-free conditions, even at temperatures below freezing. This characteristic is called cryptobiosis, meaning "hidden life". While in cryptobiosis, brine shrimp eggs can survive temperatures of liquid air (−190 °C or −310 °F) and a small percentage can survive above boiling temperature (105 °C or 221 °F) for up to two hours.[8] Once placed in briny (salt) water, the eggs hatch within a few hours. The nauplius larvae are less than 0.4 mm in length when they first hatch. Brine shrimp have a biological life cycle of one year.


In their first stage of development, Artemia do not feed but consume their own energy reserves stored in the cyst.[10] Wild brine shrimp eat microscopic planktonic algae. Cultured brine shrimp can also be fed particulate foods including yeast, wheat flour, soybean powder or egg yolk.[11]


Artemia breeding ponds, San Francisco Bay

Fish farm owners search for a cost-effective, easy to use, and available food that is preferred by the fish. From cysts, brine shrimp nauplii can readily be used to feed fish and crustacean larvae just after one-day incubation. Instar I (the nauplii that just hatched and with large yolk reserves in their body) and instar II nauplii (the nauplii after first moult and with functional digestive tracts) are more widely used in aquaculture, because they are easy for operation, rich in nutrients, and of small size, which makes them suitable for feeding fish and crustacean larvae live or after drying.

Toxicity test[edit]

Artemia found favour as a "standard" organism in toxicological assays, despite the recognition that it is too robust an organism to be a sensitive indicator species.[12][citation needed]

In pollution research Artemia, the brine shrimp, has had extensive use as a test organism and in some circumstances is an acceptable alternative to the toxicity testing of mammals in the laboratory.[13] The fact that millions of brine shrimp are so easily reared has been an important help in assessing the effects of a large number of environmental pollutants on the shrimps under well controlled experimental conditions.


Artemia monica, the variety commonly known as Mono Lake brine shrimp, are found only in Mono Lake, Mono County, California. In 1987, Dennis D. Murphy from Stanford University petitioned the United States Fish and Wildlife Service to add A. monica to the endangered species list under the Endangered Species Act (1973). The diversion of water by the Los Angeles Department of Water and Power resulted in rising salinity and concentration of sodium hydroxide in Mono Lake. Despite the presence of trillions of brine shrimp in the lake, the petition contended that the increase in pH would endanger them.

The threat to the lake's water levels was addressed by a revision to California State Water Resources Control Board's policy, and the US Fish and Wildlife Service found on 7 September 1995 that the Mono Lake brine shrimp did not warrant listing.[14]

Space experiment[edit]

Scientists have taken the eggs of brine shrimp to outer space to test the impact of radiation on life. Brine shrimp cysts were flown on the U.S. Biosatellite II, Apollo 16, and Apollo 17 missions, and on the Russian Bion-3 (Cosmos 782), Bion-5 (Cosmos 1129), Foton 10, and Foton 11 flights. Some of the Russian flights carried European Space Agency experiments.

On Apollo 16 and Apollo 17, the cysts traveled to the Moon and back. The cosmic ray passed through an egg would be detected on the photographic film in their container. Some eggs were kept on Earth as experimental controls to ensure a fair test. Also, as the take-off in a spacecraft involves a lot of shaking and acceleration, one control group of egg cysts was accelerated to seven times the force of gravity and vibrated mechanically from side to side for several minutes so that they could experience the same violence of a rocket take-off.[15] There were 400 eggs in each experimental group. All the egg cysts from the experiment were then placed in salt water to hatch under optimum conditions. As a result, a high sensitivity to cosmic radiation was observed on Artemia salina eggs; 90% of the embryos, which were induced to develop from hit eggs, died at different developmental stages.[16]


  1. ^ Alireza Asem, Nasrullah Rastegar-Pouyani, Patricio De Los Rios (2010). "The genus Artemia Leach, 1819 (Crustacea: Branchiopoda): true and false taxonomical descriptions". Latin American Journal of Aquatic Research 38: 501–506. 
  2. ^ Alireza Asem (2008). "Historical record on brine shrimp Artemia more than one thousand years ago from Urmia Lake, Iran". Journal of Biological Research-Thessaloniki 9: 113–114. 
  3. ^ a b Martin Daintith (1996). Rotifers and Artemia for Marine Aquaculture: a Training Guide. University of Tasmania. OCLC 222006176. 
  4. ^ F. A. Abreu-Grobois (1987). "A review of the genetics of Artemia". In P. Sorgerloo, D. A. Bengtson, W. Decleir & E. Jasper. Artemia Research and its Applications. Proceedings of the Second International Symposium on the Brine Shrimp Artemia, organised under the patronage of His Majesty the King of Belgium 1. Wetteren, Belgium: Universa Press. pp. 61–99. OCLC 17979639. 
  5. ^ a b c Cleveland P. Hickman (1967). Biology of Invertebrates. St. Louis, Missouri: C. V. Mosby. 
  6. ^ a b c R. J. Criel & H. T. Macrae (2002). "Artemia morphology and structure". In T. J. Abatzopoulos, J. A. Breardmore, J. S. Clegg & P. Sorgerloos. Artemia: Basic and Applied Biology. Kluwer Academic Publishers. pp. 1–33. ISBN 978-1-4020-0746-0. 
  7. ^ a b John K. Warren (2006). "Halotolerant life in feast or famine (a source of hydrocarbons and a fixer of metals)". Evaporites: Sediments, Resources and Hydrocarbons. Birkhäuser. pp. 617–704. ISBN 978-3-540-26011-0. 
  8. ^ a b Whitey Hitchcock. "Brine shrimp". Clinton High School Science. Archived from the original on September 3, 2010. Retrieved March 13, 2010. 
  9. ^ Greta E. Tyson & Michael L. Sullivan (1980). "Scanning electron microscopy of the frontal knobs of the male brine shrimp". Transactions of the American Microscopical Society 99 (2): 167–172. JSTOR 3225702. 
  10. ^ P. Sorgeloos, P. Dhert & P. Candreva (2001). "Use of the brine shrimp, Artemia spp., in marine fish larviculture". Aquaculture 200: 147–159. doi:10.1016/s0044-8486(01)00698-6. 
  11. ^ Kai Schumann (August 10, 1997). "Artemia (Brine Shrimp) FAQ 1.1". Portland State University. Archived from the original on August 14, 2007. Retrieved March 13, 2010. 
  12. ^ Micharl Dockey & Stephen Tonkins. "Brine shrimp ecology". British Ecological Society. 
  13. ^ L. Lewan, M. Anderrson & P. Morales-Gomez (1992). "The use of Artemia salina in toxicity testing". Alternatives to Laboratory Animals 20: 297–301. 
  14. ^ "Endangered and Threatened Wildlife and Plants; 12-Month Finding for a Petition to List the Mono Lake Brine Shrimp as Endangered". Federal Register (United States Fish and Wildlife Service) 60 (173): 46571–46572. 1995. 
  15. ^ H. Planel, Y. Gaubin, R. Kaiser & B. Pianezzi (1980). "The effects of cosmic rays on Artemia egg cysts". Laboratoire Medicale. Report for National Aeronautics and Space Administration (Faculté de Médcine, Toulouse, France). 
  16. ^ H. Bücker & G. Horneck (1975). "The biological effectiveness of HZE-particles of cosmic radiation studied in the Apollo 16 and 17 Biostack experiments". Acta Astronautica 2 (3–4): 247–264. doi:10.1016/0094-5765(75)90095-8. 
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia


Article rating from 0 people

Default rating: 2.5 of 5


EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!