Overview

Distribution

Localities documented in Tropicos sources

Acorus L.:
United States (North America)

Note: This information is based on publications available through Tropicos and may not represent the entire distribution. Tropicos does not categorize distributions as native or non-native.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage

Barcode of Life Data Systems (BOLD) Stats
                                        
Specimen Records:167Public Records:138
Specimens with Sequences:158Public Species:8
Specimens with Barcodes:158Public BINs:0
Species:8         
Species With Barcodes:8         
          
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Barcode data

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Locations of barcode samples

Collection Sites: world map showing specimen collection locations for Acorus

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Wikipedia

Acorus


Acorus is a genus of monocot flowering plants. This genus was once placed within the family Araceae (aroids), but more recent classifications place it in its own family Acoraceae and order Acorales, of which it is the sole genus of the oldest surviving line of monocots. The exact relationship of Acorus to other monocots, however, is still debated by scientists. Some studies indicate that it is placed in a lineage (the order Alismatales), that also includes aroids (Araceae), Tofieldiaceae, and several families of aquatic monocots (e.g., Alismataceae, Posidoniaceae). Common names include Calamus and Sweet Flag. It is known as vasambu in Tamil language.[2]

The name 'acorus' is derived from the Greek word 'acoron', a name used by Dioscorides, which in turn was derived from 'coreon', meaning 'pupil', because it was used in herbal medicine as a treatment for inflammation of the eye.

The genus is native to North America and northern and eastern Asia, and naturalised in southern Asia and Europe from ancient cultivation. The known wild populations are diploid except for some tetraploids in eastern Asia, while the cultivated plants are sterile triploids, probably of hybrid origin between the diploid and tetraploid forms.

Taxonomy[edit]

Although the family Acoraceae was originally described in 1820, since then Acorus has traditionally been included in Araceae in most classification systems, as in the Cronquist system. The family has recently been resurrected as molecular systematic studies have shown that Acorus is not closely related to Araceae or any other monocot family, leading plant systematists to place the genus and family in its own order. This placement currently lacks support from traditional plant morphology studies, and some taxonomists still place it as a subfamily of Araceae, in the order Alismatales. The APG II system recognizes order Acorales, distinct from the Alismatales, and as the sister group to all other monocots.

Characteristics[edit]

Habit of Acorus calamus.

These plants are found in wetlands, particularly marshes, where they spread by means of thick rhizomes. Like many other marsh plants, they depend upon aerenchyma to transport oxygen to the rooting zone.[3] They frequently occur on shorelines and floodplains where water levels fluctuate seasonally. The native North American species appears in many ecological studies. Compared to other species of wetland plants, they have relatively high competitive ability.[4] Although many marsh plants accumulate large banks of buried seeds,[5] seed banks of Acorus may not accumulate in some wetlands owing to low seed production.[6] The seeds appear to be adapted to germinate in clearings; after a period of cold storage, the seeds will germinate after seven days of light with fluctuating temperature, and somewhat longer under constant temperature.[7] A comparative study of its life history traits classified it as a "tussock interstitial", that is, a species that has a dense growth form and tends to occupy gaps in marsh vegetation, not unlike Iris versicolor.[8]

The inconspicuous flowers are arranged on a lateral spadix (a thickened, fleshy axis). Unlike aroids, there is no spathe (large bract, enclosing the spadix). The spadix is 4–10 cm long and is enclosed by the foliage. The bract can be ten times longer than the spadix. The leaves are linear with entire margin.

The parallel-veined leaves of some species contain ethereal oils that give a sweet scent when dried. Fine-cut leaves used to be strewn across the floor in the Middle Ages, both for the scent, and for presumed efficacy against pests.

Regulation[edit]

Sweet Flag (drawing)

Products derived from Acorus calamus were banned in 1968 as food additives by the United States Food and Drug Administration.[9] The questionable chemical derived from the plant was β-asarone. Confusion exists whether all strains of A. calamus contain this substance.

Four varieties of A. calamus strains exist in nature: diploid, triploid, tetraploid and hexaploid.[10] Diploids do not produce the carcinogenic β-asarone. Diploids are known to grow naturally in Eastern Asia (Mongolia and C Siberia) and North America. The triploid cytotype probably originated in the Himalayan region, as a hybrid between the diploid and tetraploid cytotypes.[11] The North American Calamus is known as Acorus calamus var. americanus or more recently as simply Acorus americanus. Like the diploid strains of A. calamus in parts of the Himalayas, Mongolia, and C Siberia, the North American diploid strain does not contain the carcinogenic β-asarone.[12][13][14] Research has consistently demonstrated that "β-asarone was not detectable in the North American spontaneous diploid Acorus [Calamus var. Americanus]".[15]

Species[edit]

In older literature and on many websites, there is still much confusion, with the name Acorus calamus equally but wrongfully applied to Acorus americanus (formerly Acorus calamus var. americanus).

The genus includes as many as six species:

  • Acorus americanus (Raf.) Raf. (formerly known as A. calamus var. americanus) – American Sweet Flag; fertile diploid (2n = 24); occurring in Alaska, Canada and northern USA. Diploid plants in Siberia and temperate Asia may also belong here, but have not been fully investigated.[16] Recently recognised as a distinct species by the Flora of North America.
  • Acorus calamus L.Common Sweet Flag; sterile triploid (3n = 36); probably of cultivated origin. It is native to Europe, temperate India and the Himalayas and southern Asia, widely cultivated and naturalised elsewhere.
  • Acorus gramineus Sol. ex AitonJapanese Sweet Flag or Grassy-leaved Sweet Flag; fertile diploid (2n = 18); occurring in the Himalayas to Japan, Myanmar, Thailand, the Philippines.
  • Acorus triqueter Turcz. ex Schott (syn. A. calamus var. angustatus) – fertile tetraploid (4n = 48); occurring in eastern Asia, Japan and Taiwan.
  • Acorus latifolius Z.Y.Zhu : native to China
  • Acorus xiangyeus Z.Y.Zhu : native to China

Acorus from Europe, China and Japan have been planted in the United States.

References and external links[edit]

References[edit]

  1. ^ a b Reveal, James L. (1998–onward). "Indices Nominum Supragenericorum Plantarum Vascularium – S, Solanales". Indices Nominum Supragenericorum Plantarum Vascularium Alphabetical Listing by Genera of Validly Published Suprageneric Names. University of Maryland and Cornell University. 
  2. ^ "Vasambu". Tamilnadu.com. 1 April 2013. 
  3. ^ Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. Chapter 1.
  4. ^ Gaudet, C.L. and P.A. Keddy. 1988. Predicting competitive ability from plant traits: a comparative approach. Nature 334:242–243. Figure 1.
  5. ^ van der Valk, A. G. and Davis, C. B. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–35.
  6. ^ Leck, Mary Allessio and Robert L. Simpson. 1995. Ten-year seed bank and vegetation dynamics of a tidal freshwater marsh. American Journal of Botany 82: 1547–1557.
  7. ^ Shipley, B., P.A. Keddy, D.R.J. Moore and K. Lemky. 1990. Regeneration and establishment strategies of emergent macrophytes. Journal of Ecology 77: 1093–1110. Appendix 3.
  8. ^ Boutin, C. and P. A. Keddy. 1993. A functional classification of wetland plants. Journal of Vegetation Science 4: 591–600. Figure 2.
  9. ^ "Code of Federal regulations, title 21". 
  10. ^ Ginwal, HS, An efficient genomic DNA isolation protocol for RAPD and SSR analysis in Acorus calamus L.
  11. ^ Evstatieva et al., Fitologiya 48: 19–22. 1996; Löve & Löve, Proc. Genet. Soc. Canada 2: 14–17. 1957
  12. ^ Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L.B Marongiu, A Piras, S Porcedda… – J. Agric., 2005 – ACS Publications
  13. ^ (Rost and Bos, 1979)
  14. ^ Antimicrobial activities of the crude methanol extract of Acorus calamus Linn., S Phongpaichit, N Pujenjob, J. Songklanakarin
  15. ^ Radušienė, J.; Judžentienė, A.; Pečiulytė, D.; Janulis, V. (2007). "Essential oil composition and antimicrobial assay of Acorus calamus leaves from different wild populations". Plant Genetic Resources 5: 37. doi:10.1017/S1479262107390928.  edit
  16. ^ Acorus americanus (Rafinesque) Rafinesque at Flora of North America
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Average rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!