Overview

Comprehensive Description

The term "mangrove" may be used for a variety of tropical and subtropical plant species (in many cases not closely related to each other) that grow in highly saline coastal environments and as a consequence share many adaptations that allow them to survive and reproduce under these conditions (e.g., thick, waxy leaves to minimize water loss in their salty surroundings). Mangroves are trees or shrubs that grow with their roots partly or wholly submerged in sea water. The Red Mangrove (Rhizophora mangle) is particularly extreme in its ability to survive with its roots bathed in salt water. In Florida, Red Mangroves reach about 6 meters, but in the tropics they may grow to four times that height. The dark green leaves are shiny and broad. Reddish prop roots arch from the trunk into the water; old individuals may have aerial roots hanging from branches. Stalked yellow, waxy flowers are produced in groups of 4. The fruit is a leathery brown, conical berry about 2.5 cm long. The Red Mangrove is one of a number of mangrove species that are "viviparous", i.e., the seeds germinate while still attached to the parent. Red Mangrove seedlings (sometimes known as "sea pencils") up to 30 cm long hang from branches during much of the year. (Kaplan 1988)

Mangroves are builders. They help build up new land along the shore and are the anchors for rich and complex communities involving diverse animals, plants, fungi, and microorganisms (although plant species diversity in mangrove habitats is generally much lower than animal diversity). They serve as nurseries for many fish and invertebrates, including many that migrate along the shore or out into the ocean as adults. They filter the water and buffer the effects of hurricanes. Kaplan (1988) provides an excellent and accessible introduction to the ecology of mangroves and mangrove swamps.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 1 person

Average rating: 4.0 of 5

Mangrove swamps dominate much of the world's tropical and sub-tropical coastlines, and have a similar distribution pattern as coral reefs. There are approximately 35 species of true mangroves and another 60 or more species of mangrove associates. Most species occur throughout the Indo-Pacific region, with 3 commonly occurring in the Americas.Rhizophora mangle, the red mangrove, is a subtropical/tropical tree which colonizes coastlines and brackish water habitats below the 20 degree isotherm in both the northern and southern hemispheres. Red mangrove trees dominate the Atlantic and Gulf coasts of the United States to about 28 degrees north latitude, after which a zone of transition to salt marshes occurs.Red mangroves generally are found closest to the water's edge and are distinguished easily from other mangroves by their prominent prop roots which extend into the water from higher up on the stem of the plant. Red mangroves have leaves which are somewhat larger and shinier than those of other mangroves. They are further distinguished by their fruits, or propagules, which are long and pencil-shaped. While these may resemble seed pods, they are actually embryonic root structures.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

Range Description

This species is native along the Atlantic coast from Florida to Southern Brazil, and from western Africa from Senegal to Angola (Howard 1989). Freezing sets the northern limit of mangrove forests (Stuart et al. 2007), which was recently defined for R. mangle at 29°42'94"N, 81°14'35"W in the continental United States (Zomlefer et al. 2006). However, Bermuda is the most northerly extent of its range (Thomas 1993, Smith 1998).









Presences in the middle Atlantic Islands has been recorded for this species (Trinidade e Martim Vaz, St. Helenia, Ascension-), but this is not confirmed.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

National Distribution

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Global Range: Found on shores of central and southern Florida including Florida Keys, Bermuda, and throughout West Indies to Trinidad and Tobago and Dutch West Indies. Also on both coasts of continental tropical America from central Mexico south to Ecuador, northwestern Peru and to Brazil (Little and Wadsworth 1964). Found in Melanesia, Polynesia, Galapagos Islands (Chudnoff 1993), Cape Verde Islands, Hawaii (Tree Talk 1994) and along the west coast of Africa (Record and Mell 1924).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Rhizophora mangle occurs worldwide in coastal and estuarine areas of the tropics and subtropics to about 28° in both the northern and southern hemispheres. In the Indian River Lagoon, red mangroves are common landscape features to approximately 28° North, around the vicinity of Merritt Island. North of this location is the transition zone where mangrove forests gradually give way to salt marshes. Frost stress north of the transition zone prevents red mangroves from becoming established.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Red Mangrove (Rhizophora mangle) is found in peninsular Florida, Bermuda, the West Indies, Central and South America, and Africa (Tiner 1993)

Red Mangrove is found from West Africa to the Pacific Coast of tropical America. In Africa, its latidudinal limits are not clear, but it has been recorded as far south as Angola and as far north as Mauritania. In the Americas it has a wide distribution on the Atlantic side, from about 25° N in Florida south to eastern Brazil; on the Pacific side, Red Mangrove occurs from Mexico to northern Chile, where its southern range is limited by cold, dry climate. Populations in New Caledonia, Fiji, Tonga, and Samoa are treated by some researchers as a form of R. mangle, but by others as a closely related but distinct species, R. samoensis. There has been some suggestion that R samoensis co-occurs with R. mangle in Pacific South America. (Tomlinson 1986)

Red Mangrove propagules from Florida were introduced to the southwestern part of Moloka'i (in the Hawaiian Archipelago) in 1902 to stabilize coastal mudflat erosion from pastures and sugarcane fields and for honey production. The mangrove introduction on Moloka'i was very successful, and today it composes the largest stand of mangroves in the Hawaiian Islands. The first confirmed mangrove introduction on O‘ahu occurred in 1922 when several species of Old World mangroves, possibly including Red Mangrove, were planted in He‘eia by the Hawaiian Sugar Planter’s Association. However, there is a report of a small mangrove tree growing near Honolulu as early as 1917, probably a propagule from Moloka‘i. Most of the (at least) six species of mangroves or closely associated species that have been introduced to Hawai‘i over the years have disappeared or are very limited in their distribution (Allen 1998). However, Red Mangrove has been very persistent and has successfully colonized all the main islands except Kaho‘olawe and Ni‘ihau. (Chimner et al. 2006 and references therein). This species has been introduced and become established in other far flung places as well, such as Tahiti (Zomlefer et al. 2006).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Red Mangrove (Rhizophora mangle) is a broad-leaved evergreen tropical shrub or tree that may reach 24 meters. It has conspicuous arching prop, or stilt, roots. Older bark is reddish and smooth; younger bark is grayish. Twigs are silverish to shiny dark brown. The stalked, oppositely arranged leaves (5 to 16 cm long and up to 8 cm wide) are simple, entire, and smooth, with a prominent midrib. They are leathery, dark green and shiny above and lighter green (often speckled) below. The somewhat leathery, 4-petaled flowers are pale yellowish or cream colored. They are borne on stalks (about 1 to 4 cm long) in clusters of 2 or more. The fruit is an elongate greenish capsule, about 2.5 cm before germination. The seed germinates while still on the plant, giving the fruit a curved, elongate appearance. (Tiner 1993)

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Size

Little is known regarding typical age to maturation in mangroves in south Florida, though it has been hypothesized that maturation age for mangroves in Florida is in some way linked to the periodicity of hurricanes.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Look Alikes

Lookalikes

In Florida, Red Mangrove (Rhizophora mangle) can be most obviously distinguished from Black Mangrove (Avicennia germinans) and White Mangrove (Laguncularia racemosa) by the fact that these latter two species have numerous (especially Black Mangrove) erect breather roots emerging from the water, as well as by the Red Mangrove's distinctive seedlings attached to the parent. Gray Mangrove (or Buttonwood, Conocarpus erectus) has alternately arranged leaves, in contrast to the opposite leaves of the Red, Black, and White Mangroves. (Petrides 1988)

An excellent resource for identifying the mangroves of Florida can be found at http://www.selby.org/

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Marismas Nacionales-San Blas Mangroves Habitat

This taxon is found in the Marismas Nacionales-San Blas mangroves ecoregion contains the most extensive block of mangrove ecosystem along the Pacific coastal zone of Mexico, comprising around 2000 square kilometres. Mangroves in Nayarit are among the most productive systems of northwest Mexico. These mangroves and their associated wetlands also serve as one of the most important winter habitat for birds in the Pacific coastal zone, by serving about eighty percent of the Pacific migratory shore bird populations.

Although the mangroves grow on flat terrain, the seven rivers that feed the mangroves descend from mountains, which belong to the physiographic province of the Sierra Madre Occidental. The climate varies from temperate-dry to sub-humid in the summer, when the region receives most of its rainfall (more than 1000 millimetres /year).

Red Mangrove (Rhizophora mangle), Black Mangrove (Avicennia germinans), Buttonwood (Conocarpus erectus) and White Mangrove trees (Laguncularia racemosa) occur in this ecoregion. In the northern part of the ecoregion near Teacapán the Black Mangrove tree is dominant; however, in the southern part nearer Agua Brava, White Mangrove dominates. Herbaceous vegetation is rare, but other species that can be found in association with mangrove trees are: Ciruelillo (Phyllanthus elsiae), Guiana-chestnut (Pachira aquatica), and Pond Apple (Annona glabra).

There are are a number of reptiles present, which including a important population of Morelet's Crocodile (Crocodylus moreletii) and American Crocodile (Crocodylus acutus) in the freshwater marshes associated with tropical Cohune Palm (Attalea cohune) forest. Also present in this ecoregion are reptiles such as the Green Iguana (Iguana iguana), Mexican Beaded Lizard (Heloderma horridum) and Yellow Bellied Slider (Trachemys scripta). Four species of endangered sea turtle use the coast of Nayarit for nesting sites including Leatherback Turtle (Dermochelys coriacea), Olive Ridley Turtle (Lepidochelys olivacea), Hawksbill Turtle (Eretmochelys imbricata) and Green Turtle (Chelonia mydas).

A number of mammals are found in the ecoregion, including the Puma (Puma concolor), Ocelot (Leopardus pardalis), Jaguar (Panthera onca), Southern Pygmy Mouse (Baiomys musculus), Saussure's Shrew (Sorex saussurei). In addition many bat taxa are found in the ecoregion, including fruit eating species such as the Pygmy Fruit-eating Bat (Artibeus phaeotis); Aztec Fruit-eating Bat (Artibeus aztecus) and Toltec Fruit-eating Bat (Artibeus toltecus); there are also bat representatives from the genus myotis, such as the Long-legged Myotis (Myotis volans) and the Cinnamon Myotis (M. fortidens).

There are more than 252 species of birds, 40 percent of which are migratory, including 12 migratory ducks and approximately 36 endemic birds, including the Bumblebee Hummingbird, (Atthis heloisa) and the Mexican Woodnymph (Thalurania ridgwayi). Bojórquez considers the mangroves of Nayarit and Sinaloa among the areas of highest concentration of migratory birds. This ecoregion also serves as wintering habitat and as refuge from surrounding habitats during harsh climatic conditions for many species, especially birds; this sheltering effect further elevates the conservation value of this habitat.

Some of the many representative avifauna are Black-bellied Whistling Duck (Dendrocygna autumnalis), Great Blue Heron (Ardea herodias), Roseate Spoonbill (Ajaia ajaja), Snowy Egret (Egretta thula), sanderling (Calidris alba), American Kestrel (Falco sparverius), Blue-winged Teal (Anas discors), Mexican Jacana (Jacana spinosa), Elegant Trogan (Trogan elegans), Summer Tanager (Piranga rubra), White-tailed Hawk (Buteo albicaudatus), Merlin (Falco columbarius), Plain-capped Starthroat (Heliomaster constantii), Painted Bunting (Passerina ciris) and Wood Stork (Mycteria americana).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© World Wildlife Fund & C. Michael Hogan

Supplier: C. Michael Hogan

Trusted

Article rating from 1 person

Average rating: 5.0 of 5

Belizean Coast Mangroves Habitat

This species is found in the Belizean coast mangroves ecoregion (part of the larger Mesoamerican Gulf-Caribbean mangroves ecoregion), extending along the Caribbean Coast from Guatemala, and encompassing the mangrove habitat along the shores of the Bahía de Annatique; this ecoregion continues along the Belizean coast up to the border with Mexico. The Belizean coast mangroves ecoregion includes the mainland coastal fringe, but is separate from the distinct ecoregion known as the Belizean reef mangroves which are separated from the mainland. This ecoregion includes the Monterrico Reserve in Guatemala, the estuarine reaches of the Monkey River and the Placencia Peninsula. The ecoregion includes the Burdon Canal Nature Reserve in Belize City, which reach contains mangrove forests and provides habitat for a gamut of avian species and threatened crocodiles.

Pygmy or scrub mangrove forests are found in certain reaches of the Belizean mangroves. In these associations individual plants seldom surpass a height of 150 centimetres, except in circumstances where the mangroves grow on depressions filled with mangrove peat. Many of the shrub-trees are over forty years old. In these pygmy mangrove areas, nutrients appear to be limiting factors, although high salinity and high calcareous substrates may be instrumental. Chief disturbance factors are due to hurricanes and lightning strikes, both capable of causing substantial mangrove treefall. In many cases a pronounced gap is formed by lightning strikes, but such forest gaps actually engender higher sapling regrowth, due to elevated sunlight levels and slightly diminished salinity in the gaps.

Chief mangrove tree species found in this ecoregion are White Mangrove (Laguncularia racemosa), Red Mangrove (Rhizophora mangle), Black Mangrove (Avicennia germinans); the Button Mangrove (Conocarpus erectus) is a related tree associate. Red mangrove tends to occupy the more seaward niches, while Black mangrove tends to occupy the more upland niches. Other plant associates occurring in this ecoregion are Dragonsblood Tree (Pterocarpus officinalis), Guiana-chestnut (Pachira aquatica) and Golden Leatherfern (Acrostichum aureum).

In addition to hydrological stabilisation leading to overall permanence of the shallow sea bottom, the Belizean coastal zone mangrove roots and seagrass blades provides abundant nutrients and shelter for a gamut of juvenile marine organisms. A notable marine mammal found in the shallow seas offshore is the threatened West Indian Manatee (Trichecus manatus), who subsists on the rich Turtle Grass (Thalassia hemprichii) stands found on the shallow sea floor.

Wood borers are generally more damaging to the mangroves than leaf herbivores. The most damaging leaf herbivores to the mangrove foliage are Lepidoptera larvae. Other prominent herbivores present in the ecoregion include the gasteropod Littorina angulifera and the Mangrove Tree Crab, Aratus pisonii.

Many avian species from further north winter in the Belizean coast mangroves, which boast availability of freshwater inflow during the dry season. Example bird species within or visiting this ecoregion include the Yucatan Parrot (Amazona xantholora), , Yucatan Jay (Cyanocorax yucatanicus), Black Catbird (Dumetella glabrirostris) and the Great Kiskadee (Pitangus sulfuratus)

Upland fauna of the ecoregion include paca (Agouti paca), coatimundi (Nasua narica),  Baird’s Tapir (Tapirus bairdii), with Black Howler Monkey (Alouatta caraya) occurring in the riverine mangroves in the Sarstoon-Temash National Park. The Mantled Howler Monkey (Alouatta palliata) can be observed along the mangrove fringes of the Monkey River mouth and other portions of this mangrove ecoregion.

Other aquatic reptiian species within the ecoregion include Morelet's Crocodile (Crocodylus moreletti), Green Turtle (Chelonia mydas), Hawksbill Sea Turtle (Eretmochelys imbricata), Loggerhead Sea Turtle (Caretta caretta), and Kemp’s Ridley (Lepidochelys kempi).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© C. Michael Hogan

Supplier: C. Michael Hogan

Trusted

Article rating from 1 person

Average rating: 5.0 of 5

Rio Negro-Rio San Sun Mangroves Habitat

This taxon occurs in the Rio Negro-Rio San Sun mangroves, which consists of a disjunctive coastal ecoregion in parts of Costa Rica, extending to the north slightly into Nicaragua and south marginally into Panama. Furthermore, this species is not necessarily restricted to this ecoregion. Mangroves are sparse in this ecoregion, and are chiefly found in estuarine lagoons and small patches at river mouths growing in association with certain freshwater palm species such as the Yolillo Palm (Raphia taedigera), which taxon has some saline soil tolerance, and is deemed a basic element of the mangrove forest here. These mangrove communities are also part of a mosaic of several habitats that include mixed rainforest, wooded swamps, coastal wetlands, estuarine lagoons, sand backshores and beaches, sea-grasses, and coral reefs.

The paucity of mangroves here is a result of the robust influx of freshwater to the coastline ocean zone of this ecoregion. Among the highest rates of rainfall in the world, this ecoregion receives over six metres (m) a year at the Nicaragua/ Costa Rica national border. Peak rainfall occurs in the warmest months, usually between May and September. A relatively dry season occurs from January to April, which months coincides with stronger tradewinds. Tides are semi-diurnal and have a range of less than one half metre.

Mangroves play an important role in trapping sediments from land that are detrimental to the development of both coral reefs and sea grasses that are associated with them. Mangrove species including Rhizopora mangle, Avicennia germinans, Laguncularia racemosa, Conocarpus erecta and R. harrisonii grow alone the salinity gradient in appropriate areas. Uncommon occurrences of Pelliciera rhizophorae and other plant species associated with mangroves include Leather ferns Acrostichum spp., which also invade cut-over mangrove stands and provide some protection against erosion. In this particular ecoregion, the mangroves are associated with the indicator species, freshwater palm, Raphia taedigera. Other mangrove associated species are Guiana-chestnut ( Pachira aquatica) and Dragonsblood Tree (Pterocarpus officinalis).

Reptiles include the Basilisk Lizard (Basiliscus basiliscus), Caiman (Caiman crocodilus), Green Sea Turtle (Chelonia mydas), Leatherback Turtle (Dermochelys coriacea) and Green Iguana (Iguana iguana). The beaches along the coast within this ecoregion near Tortuguero are some of the most important for nesting green turtles. The offshore seagrass beds, which are among the most extensive in the world, are a source of food and refuge for the endangered Green Sea Turtle (Chelonia mydas). Several species of frogs  of the family Dendrobatidae are found in this mangrove ecoregion as well other anuran species and some endemic salamander taxa.

Mammal species found in this highly diverse ecoregion include: Lowland Paca (Agouti paca), primates such as Mantled Howler Monkey (Alouatta palliata), Geoffrey's Spider Monkey (Ateles geoffroyi), White-faced Capuchin (Cebus capucinus), Brown-throated Sloth (Bradypus variegatus), Silky Anteater (Cyclopes didactylus) and Nine-banded Armadillo (Dasypus novemcintus).  Also found in this ecoregion are carnivores such as Ocelot (Leopardus pardalis),  Central American Otter (Lutra annectens), Jaguar (Panthera onca), Northern Racooon (Procyoon lotor), and Crab-eating Racoon (P. cancrivorus).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© World Wildlife Fund & C. Michael Hogan

Supplier: C. Michael Hogan

Trusted

Article rating from 1 person

Average rating: 5.0 of 5

Moist Pacific Coast Mangroves Habitat

This taxon occurs in the Moist Pacific Coast mangroves, an ecoregion along the Pacific coast of Costa Rica with a considerable number of embayments that provide shelter from wind and waves, thus favouring mangrove establishment. Tidal fluctuations also directly influence the mangrove ecosystem health in this zone. The Moist Pacific Coast mangroves ecoregion has a mean tidal amplitude of three and one half metres,

Many of the streams and rivers, which help create this mangrove ecoregion, flow down from the Talamanca Mountain Range. Because of the resulting high mountain sediment loading, coral reefs are sparse along the Pacific coastal zone of Central America, and thus reef zones are chiefly found offshore near islands. In this region, coral reefs are associated with the mangroves at the Isla del Caño Biological Reserve, seventeen kilometres from the mainland coast near the Térraba-Sierpe Mangrove Reserve. The Térraba-Sierpe, found at the mouths of the Térraba and Sierpe Rivers, is considered a wetland of international importance.

Because of high moisture availability, the salinity gradient is more moderate than in the more northern ecoregion such as the Southern dry Pacific Coast ecoregion. Resulting mangrove vegetation is mixed with that of marshland species such as Dragonsblood Tree (Pterocarpus officinalis), Campnosperma panamensis, Guinea Bactris (Bactris guineensis), and is adjacent to Yolillo Palm (Raphia taedigera) swamp forest, which provides shelter for White-tailed Deer (Odocoileus virginianus) and Mantled Howler Monkeys (Alouatta palliata). Mangrove tree and shrub taxa include Red Mangrove (Rhizophora mangle), Mangle Caballero (R. harrisonii) R. racemosa (up to 45 metres in canopy height), Black Mangrove (Avicennia germinans) and Mangle Salado (A. bicolor), a mangrove tree restricted to the Pacific coastline of Mesoamerica.

Two endemic birds listed by IUCN as threatened in conservation status are found in the mangroves of this ecoregion, one being the Mangrove Hummingbird (Amazilia boucardi EN), whose favourite flower is the Tea Mangrove (Pelliciera rhizophorae), the sole mangrove plant pollinated by a vertebrate. Another endemic avain species to the ecoregion is the  Yellow-billed Cotinga (Carpodectes antoniae EN).  Other birds clearly associated with the mangrove habitat include Roseate Spoonbill (Ajaia ajaja), Gray-necked Wood Rail (Aramides cajanea), Rufous-necked Wood Rail (A. axillaris), Mangrove Black-hawk (Buteogallus anthracinus subtilis),Striated Heron (Butorides striata), Muscovy Duck (Cairina moschata), Boat-billed Heron (Cochlearius cochlearius), American White Ibis (Eudocimus albus), Amazon Kingfisher (Chloroceryle amazona), Mangrove Cuckoo (Coccyzus minor), Yellow Warbler (Setophaga petechia), and Black-necked Stilt (Himantopus mexicanus VU) among other avian taxa.

Mammals although not as numerous as birds, include species such as the Lowland Paca (Agouti paca), Mantled Howler Monkey (Alouatta palliata), White-throated Capuchin (Cebus capucinus), Silky Anteater (Cyclopes didactylus), Central American Otter (Lontra longicaudis annectens), White-tailed Deer (Odocoileus virginianus), feeds on leaves within A. bicolor and L. racemosa forests. Two raccoons: Northern Raccoon (Procyon lotor) and Crab-eating Raccoon (P. cancrivorus) can be found, both on the ground and in the canopy consuming crabs and mollusks. The Mexican Collared Anteater (Tamandua mexicana) is also found in the Moist Pacific Coast mangroves.

There are a number of amphibians in the ecoregion, including the anuran taxa: Almirante Robber Frog (Craugastor talamancae); Chiriqui Glass Frog (Cochranella pulverata); Forrer's Grass Frog (Lithobates forreri), who is found along the Pacific versant, and is at the southern limit of its range in this ecoregion. Example salamanders found in the ecoregion are the Colombian Worm Salamander (Oedipina parvipes) and the Gamboa Worm Salamander (Oedipina complex), a lowland organism that is found in the northern end of its range in the ecoregion. Reptiles including the Common Basilisk Lizard (Basiliscus basiliscus), Boa Constrictor (Boa constrictor), American Crocodile (Crocodilus acutus), Spectacled Caiman (Caiman crocodilus), Black Spiny-tailed Iguana (Ctenosaura similis) and Common Green Iguana (Iguana iguana) thrive in this mangrove ecoregion.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© World Wildlife Fund & C. Michael Hogan

Supplier: C. Michael Hogan

Trusted

Article rating from 1 person

Average rating: 5.0 of 5

Mesoamerican Gulf-Caribbean Mangroves Habitat

This taxon is found in the Mesoamerican Gulf-Caribbean mangroves ecoregion, but not necessarily exclusive to this region.The Mesoamerican Gulf-Caribbean mangroves occupy a long expanse of disjunctive coastal zone along the Caribbean Sea and Gulf of Mexico for portions of Central America and Mexico. The ecoregion has a very high biodiversity and species richness of mammals, amphibians and reptiles. As with most mangrove systmems, the Mesoamerican Gulf-Caribbean ecoregion plays an important role in shoreline erosion prevention from Atlantic hurricanes and storms; in addition these mangroves are significant in their function as a nursery for coastal fishes, turtles and other marine organisms.

This disjunctive Neotropical ecoregion is comprised of elements lying along the Gulf of Mexico coastline of Mexico south of the Tampico area, and along the Caribbean Sea exposures of Belize, Honduras, Guatemala, Nicaragua, Costa Rica and Panama.There are 507 distinct vertebrate species that have been recorded in the Mesoamerican Gulf-Caribbean mangroves ecoregion.

Chief mangrove tree species found in the central portion of the ecoregion (e.g. Belize) are White Mangrove (Laguncularia racemosa), Red Mangrove (Rhizophora mangle), and Black Mangrove (Avicennia germinans); Buttonwood (Conocarpus erectus) is a related tree associate. Red mangrove tends to occupy the more seaward niches, while Black mangrove tends to dominate the more upland niches. Other plant associates occurring in this central part of the ecoregion are Swamp Caway (Pterocarpus officinalis), Provision Tree (Pachira auatica) and Marsh Fern (Acrostichum aureum).

The Mesoamerican Gulf-Caribbean mangroves ecoregion has a number of mammalian species, including: Mexican Agouti (Dasyprocta mexicana, CR); Mexican Black Howler Monkey (Alouatta pigra, EN); Baird's Tapir (Tapirus bairdii, EN); Central American Spider Monkey (Ateles geoffroyi, EN); Giant Anteater (Myrmecophaga tridactyla); Deppe's Squirrel (Sciurus deppei), who ranges from Tamaulipas, Mexico to the Atlantic versant of Costa Rica; Jaguar (Panthera onca, NT), which requires a large home range and hence would typically move between the mangroves and more upland moist forests; Margay (Leopardus wiedii, NT); Mantled Howler Monkey (Alouatta palliata); Mexican Big-eared Bat (Plecotus mexicanus, NT), a species found in the mangroves, but who mostly roosts in higher elevation caves; Central American Cacomistle (Bassariscus sumichrasti).

A number of reptiles have been recorded within the ecoregion including the Green Turtle (Chelonia mydas, EN); Hawksbill Sea Turtle (Eretmochelys imbricata, CR); Central American River Turtle (Dermatemys mawii, CR), distributed along the Atlantic drainages of southern Mexico to Guatemala; Morelets Crocodile (Crocodylus moreletii, LR/CD), a crocodile found along the mangroves of Yucatan, Belize and the Atlantic versant of Guatemala.

Some of the other reptiles found in this ecoregion are the Adorned Graceful Brown Snake (Rhadinaea decorata); Allen's Coral Snake (Micrurus alleni); Eyelash Palm Pitviper (Bothriechis schlegelii); False Fer-de-lance (Xenodon rabdocephalus); Blood Snake (Stenorrhina freminvillei); Bridled Anole (Anolis frenatus); Chocolate Anole (Anolis chocorum), found in Panamanian and Colombian lowland and mangrove subcoastal forests; Furrowed Wood Turtle (Rhinoclemmys areolata. NT); Brown Wood Turtle (LR/NT); Belize Leaf-toed Gecko (Phyllodactylus insularis), which occurs only in this ecoregion along with the Peten-Veracruz moist forests.

Salamanders found in this ecoregion are: Cukra Climbing Salamander (Bolitoglossa striatula); Rufescent Salamander (Bolitoglossa rufescens); Alta Verapaz Salamander (Bolitoglossa dofleini, NT), the largest tropical lungless salamander, whose coastal range spans Honduras, Guatemala and the Cayo District of Belize; Colombian Worm Salamander (Oedipina parvipes), which occurs from central Panama to Colombia; La Loma Salamander (Bolitoglossa colonnea), a limited range taxon occurring only in portions of Costa Rica and Panama;.Central American Worm Salamander (Oedipina elongata), who inhabits very moist habitats; Cienega Colorado Worm Salamander (Oedipina uniformis, NT), a limited range taxon found only in parts of Costa Rica and Panama, including higher elevation forests than the mangroves; Limon Worm Salamander (Oedipina alfaroi, VU), a restricted range caecilian found only on the Atlantic versant of Costa Rica and extreme northwest Panama. Caecilians found in the ecoregion are represented by: La Loma Caecilian (Dermophis parviceps), an organism found in the Atlantic versant of Panama and Costa Rica up to elevation 1200 metres

Creative Commons Attribution 3.0 (CC BY 3.0)

© C. Michael Hogan and World Wildlife Fund

Supplier: C. Michael Hogan

Trusted

Article rating from 1 person

Average rating: 5.0 of 5

Habitat and Ecology

Habitat and Ecology
This species typically grows in the intertidal regions of sheltered tropical and subtropical coasts (Saenger 2002). It typically dominates the zone proximal to open water (McKee 1995). It grows as a shrub to small tree from 1-8 m in the Caribbean (Howard 1989) and can be reproductively mature at <1 m (Tomlinson 1986). This species is typically found from 20-35 psu. However, it can occur in brackish estuarine systems as well as in hypersaline conditions (50+ psu) where the growth form is commonly dwarf (1-2 m).

In Port Royal (17°56'N, 76°79'W), R. mangle grows in a dense monospecific stands, bordering all wetland water bodies. It is also present in a mixed zone between the R. mangle monospecific stands and monospecific stands of C. erectus, which is the border between the wetland and terrestrial zones (Alleng 1998).

Flowering occurs annually in mid-winter and spring within the wider Caribbean. Propagule size can be variable, shown to be larger in areas of higher rainfall (Tyagi 2003). Production of viviparous propagules is abundant and maintained on the parent tree for 3-6 months. Once dropped, propagules can subsist for extended periods afloat prior to rooting. Successful growth requires a canopy break or transport to open area to grow to maturity.

Fringing R. mangle (in association with seagrass beds) provide critical for Caribbean parotfish (Scarus guacamaia), a species listed as vulnerable on the Red Data List. This species is also associated with stabilization of sandy beaches critical for sea turtle nesting habitat, among countless other critical habitat functions.

Systems
  • Terrestrial
  • Marine
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comments: Occurs in mangrove swamps at the mouths of large estuarine rivers and fringing ocean coast in certain places (Record and Mell 1924).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Depth range based on 4 specimens in 1 taxon.

Environmental ranges
  Depth range (m): 1 - 2

Graphical representation

Depth range (m): 1 - 2
 
Note: this information has not been validated. Check this *note*. Your feedback is most welcome.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

In the United States, Red Mangrove (Rhizophora mangle) is found in mangrove swamps, salt marshes, and fresh marshes (near the coast) of the Florida Everglades (Tiner 1993).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Trophic Strategy

Mangrove forests typically show a wide range of productivity, depending on factors such as hydrological regimes, nutrient supply, etc., and are considered to be vital sources of organic matter for estuarine systems.Competitors: Ball (1980) suggested that competition among the 3 mangrove species may be partially responsible for the zonation observed in many mangrove areas. Direct consumers of mangrove propagules in Florida include the spotted mangrove crab (Goniosis cruentata), the mangrove land crab (Ucides cordatus), the coffee bean snail (Malampus coffeus) and the ladder horn snail (Cerithidea scalariformis). Consumers of mangrove leaves include the mangrove crab (Aratus pisonii), the spotted mangrove crab (G. cruentata), the blue land crab (Cardisoma guanhumi), and various types of insects. Wood boring isopods feed upon and damage prop roots.Habitat: Red mangrove propagules may float for upwards of a year without taking root. They generally take root upon coming to rest on a suitable substrate area consisting of sand, silt, mud or clay which offers some protection from waves. Propagules may root even while completely submerged; and mature trees, depending on type, tend not to be sensitive to hydroperiod; they may remain submerged anywhere from several hours to nearly permanently without showing adverse effects.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

Red Mangrove habitats are of great importance to a wide diversity of organisms, including fish (Thayer et al. 1987; Kaplan 1988). Animal diversity in mangrove ecosystems is generally much higher than plant diversity.

Burrowing isopods, such as Phycolimnoria clarkae and Sphaeroma peruvianum, and encrusting barnacles (Balanus spp.) reduce root growth in Red Mangrove; leaves are consumed by land crabs and caterpillars, such as the larvae of the skipper Phocides pigmalion (Perry 1988: Ellison and Farnsworth 1996 and references therein).

The intertidal air-breathing gastropod Melampus coffeus is a critical component in the breakdown of mangrove leaf litter, and it forms an important link between mangrove forest productivity and estuarine food webs. Although a number of other invertebrate species act to accelerate litter breakdown in mangrove and salt-marsh systems (e.g., shredder snails, sesarmid crabs), M. coffeus belongs to a smaller group that can directly assimilate the resources in mangrove leaves. Thus, where M. coffeus is abundant, substantial portions of mangrove leaf material are converted to snail biomass and larvae. Adult snails are preyed upon by white ibis (Eudocimus albus); juvenile snails may be preyed on by Fundulus heteroclitus killifish, which may forage in the leaf litter at high tide; and larvae are exported to the estuary. (Proffitt and Devlin 2005 and references therein)

Land crabs are very important components of mangrove ecosystems. They differentially prey on seeds, propagules, and seedlings along nutrient, chemical, and physical environmental gradients. Such abiotic factors are well known to influence plant species distributions. Lindquist et al. (2009), however, argue that in mangrove ecosystems crab predation is more important than many of these environmental factors in shaping the dynamics and organization of coastal forests. These authors also found that crabs facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows, and creation of carbon-rich soil microhabitats. Crabs influence the distribution, density and size-class structure of tree populations. Given the evident importance of crabs as among the major drivers of tree recruitment (i.e., establishment of a new generation) in tropical coastal forest ecosystems, Lundquist et al. suggest that their conservation should be included in management plans for these forests. (Lundquist et al. 2009)

The dominant members of the crab fauna in mangroves belong to the families Gecarcinidae, Grapsidae, and Ocypodidae. The grapsid crabs are the primary consumers of propagules in the Indo-West Pacific region. In the eastern Pacific, Atlantic, and Caribbean, the gecarcinids (e.g. Cardisoma spp.) and Ocypodids (e.g. Ucides spp.) are more important than the grapsids. (Lindquist et al. 2009 and refrerences therein)

Lundquist et al. (2009) found that crab predation on Red Mangrove was less severe in canopy gaps than in the understory, similar to the pattern found by Sousa et al. (2003a) for predation by the stem-boring scolytid beetle Coccotrypes rhizophorae. In the study by Sousa et al. on the Caribbean coast of Panama, the authors found that the Red Mangrove's water-borne propagules establish
wherever they strand, but long-term sampling revealed that only those that do so in or near lightning-created canopy gaps survive and grow to maturity. These microsites provide better growth conditions than the does surrounding understory and, equally important, provide refuge from predation by C. rhizophorae. Sousa et al. (2003b) found that if an infestation of C. rhizophorae did
not completely girdle a Rhizophora seedling, the seedling could survive, but grew at a reduced rate.

In a study in southwestern Puerto Rico, Wier (2004) found cankers, dead branches and trunks, and as much as 32% mortality consistently associated with the fungus Cytospora rhizophorae. The presence of this fungus, an agent of the cytospora canker disease, correlated with proximity to arboreal nests of the termite Nasutitermes costalis. High incidence of this termite (40%), was detected in injured red mangroves. Wier presents circumstantial evidence that this fungus is carried and disseminated by Nasutitermes costalis, with spores that enter branch and root wounds germinating and forming canker-weakened trees that may die prematurely.

Gilbert and Sousa (2002) studied the host-associations of wood-decaying basidiomycete polypore fungi on three mangrove species (Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa) in a Panamanian mangrove forest. They note that the pattern typically observed for these fungi in diverse tropical forests is that there are a large number of rare species, with the smaller number of common species necessarily being nonspecialists due to the challenge of host rarity. In contrast, the authors found that in the tropical mangrove forest they studied, the polypore assemblage was strongly dominated by a few host-specialized species. Three fungal species, each with a strong preference for a different mangrove host species, comprised 88 percent of all fungi collected (the authors note, however, that these fungi are all reported from other hosts outside of mangrove forests as well). At least for polypore fungi within tropical mangrove forests, where host diversity is low and the abundance of individual host species is high, the restriction against host specialization typically imposed by host rarity in tropical forests may be relaxed, resulting in a polypore community dominated by a few common host-specialist species. (Gilbert and Sousa 2002)

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Mangroves form intertidal forests in which red mangrove prop roots, black mangrove pneumatophores, and their associated peat banks serve as the dominant intertidal substrata for other members of the mangrove community. Black mangroves (Avicennia germinans) and white mangroves (Laguncularia racemosa) are usually found in association with red mangroves. Segregation of the 3 species does occur, however; with red mangroves typically occupying the lowest intertidal position. Black and white mangroves occur at slightly higher tidal elevations.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population Biology

Red mangroves are generally the dominant species of mangrove at or immediately adjacent to the water line, though they may often occur with black mangroves and white mangroves.Dispersal: Propagules of the red mangrove detach from the parent tree upon ripening and may float in salt water for approximately one year without rooting.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Ecology

Ecologically, tropical mangrove swamp forests share many similarities with salt marshes to the north (although mangroves are woody and salt marshes are generally dominated by grasses and other herbaceous vegetation). Both mangrove swamps and salt marshes occur at the interface of land and sea, protect the coast from storm damage (especially hurricanes), and serve as important nurseries for fish and invertebrates. Mangrove leaves are an important source of energy for marine food webs: fallen leaves are colonized by bacteria, fungi, and protozoans, which are in turn fed upon by zooplankton, which in turn are consumed by juvenile fish and larval invertebrates. (Kricher 1988)

Unlike most plants, Red Mangroves (like some other mangrove species) produce seeds that germinate while still attached to the parent. The Red Mangrove embryo grows into a seedling that may be 25-30 cm long before dropping off the tree into seawater. These elongated seedlings float for several days until the pointed end absorbs enough water to become too heavy to float and sinks. The waxy fruit end (from which the seedling sprouted) still floats, causing the seedling to bob along in the water with the pointed end pointed downward. While still in this state, which can last as long as a year, a few leaves may sprout from the upper end and roots may sprout from the lower end. If the young plant comes into contact with sediment, it will take root. This may occur even far from land, where ocean currents have piled up sand within a few centimeters of the water's surface.

In a year the plant may grow to a meter tall. Within three years it will produce many prop roots, which look like pendulous branches growing down into the water. If other mangoves have rooted nearby, a little forest may form in just a few years. The maze of prop roots slows the currents and tiny suspended particles sink to the bottom in a self-reinforcing process as muddy sand builds up. Mangrove leaves fall and become trapped among the roots, where they are broken down and decomposed by diverse small invertebrates, fungi, and bacteria. The resulting rich organic detritus mixes with the sand to form a rich, densely packed sediment. This is the first stage of a continuous transformation involving a succession of organisms that continue to modify the habitat in which they live. In Florida and the Caribbean, once sufficient sediment has built up, Black Mangrove (Avicennia germinans) becomes established alongside the Red Mangrove and on somewhat higher ground, several meters back from the water's edge, White Mangrove and Gray Mangrove form a mixed forest. Eventually this process of natural succession transforms what was once saltwater into dry land. (Kaplan 1988)

Ball (1980) provides a detailed historical analysis of the development and dynamics of "induced" mangrove forests that developed in response to salinization (by human-driven changes to local hydrology) of areas formerly supporting freshwater marshes along Biscayne Bay in North Miami, Florida, U.S.A.

Red Mangrove (Rhizophora mangle) flowers year-round, but, at least in the southeastern United States, especially in spring and summer (Tiner 1993).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Reproduction

The seed, while still attached to the tree, develops a radicle which, when detached, falls like a dart and sticks upright in the mud ready to put forth leaves and roots immediately; some are carried away by tides and can thus populate newly formed mudbars and islands.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Rhizophora mangle flowers are thought to be self pollinated or wind pollinated. Following fertilization, mangrove propagules undergo continuous development from flower to germinated seedling while still attached to the parent plant, with no dormant or seed phase, thus exhibiting vivipary. The seedlings, or propagules, eventually fall from the parent plant and are able, in the absence of suitable substrata, to float for extended periods (over a year) in salt water without rooting.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Evolution and Systematics

Functional Adaptations

Functional adaptation

Aerating device delivers oxygen: mangroves
 

Aerial roots of mangroves take in air through pores (lenticels) and pass it to hypoxic roots via aerating tissue (aerenchyma).

     
  "In well oxygenated soil, there is little difficulty in obtaining the oxygen needed for respiration. This is not so in waterlogged soils, and special aerating devices are required. In growing Rhizophora, roots diverge from the tree as much as 2 m above ground, elongate at up to 9 mm d-1, and penetrate the soil some distance away from the main stem (Figs I.3, 1.4 and 5.1 [sic]). As much as 24 per cent of the above-ground biomass of a tree may consist of aerial roots: the main trunk, as it reaches the ground, tapers into relative insignificance […] On reaching the soil surface, absorptive roots grow vertically downwards, and a secondary aerial root may loop off and penetrate the soil still further away from the main trunk […] The method of aerating the underground roots is understood best in the red mangrove Rhizophora mangle of Florida. Functionally, the aerial components can be divided structurally into more or less horizontal arches and vertical columns. These have no problems in achieving adequate gas exchange, at least at low tide. In contrast, the underground roots are in a permanently hypoxic, or even anoxic, environment. The columns have the role of supplying oxygen to the underground roots. Air passes into the column roots through numerous tiny pores, or lenticels, which are particularly abundant close to the point at which the column root enters the soil surface. It can then pass along roots through air spaces. Roots entering the soil are largely composed of aerenchyma tissue; honeycombed with air spaces which run longitudinally down the root axis (Fig. 1.5) […] The importance of lenticels for gas exchange has been demonstrated by measuring O2 and CO2 concentrations in the aerenchyma of Rhizophora roots. When the lenticels are occluded by smearing grease over the aerial potion of the root, O2 declines continuously and CO2 rises (Fig. 1.6). Control roots showed fluctuations related to tidal level (Scholander et al. 1955)." (Hogarth 1999:5-8)
  Learn more about this functional adaptation.
  • Hogarth, P. J. The biology of mangroves. Oxford University Press. 228 p.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Functional adaptation

Calming coastal waters: red mangrove
 

Roots of red mangrove forests protect coastal shorelines by absorbing energy from waves.

       
  Red mangroves "Protect coastal land, by absorbing the energy of storm-driven wave and wind action--creating in effect a natural breakwater that helps stop erosion, preventing a great deal of property damage and sometimes even human death." (Reef Ball Foundation 2007)

Watch video

  Learn more about this functional adaptation.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Functional adaptation

Seeds float to the best conditions: red mangrove
 

Seeds of mangroves find optimal conditions by reacting to time passage and light conditions.

         
  "All mangroves disperse their offspring by water. A distinctive feature of the majority of mangrove species is that they produce unusually large propagating structures or propagules…The long, pointed appearance of Rhizophora propagules hanging on the parent tree has led to the belief that they plummet like darts into the mud below and so immediately establish themselves…The reality is more complex. Rhizophora propagules generally float for some time before rooting themselves. Initially, floating is horizontal. Over a period of a a month or so they shift to a vertical position. This makes it more likely that the tip will drag in the mud surface and result in the propagule stranding when the tide recedes. Roots first appear after 10 days or so, and many of the propagules lose bouyancy [sic] and sink. Presumably before this has happened the propagule is not ready to establish itself as a seedling. By 40 days, virtually all propagules show root growth (Banus and Kolehmainen 1975). Most will strand in a horizontal position and erect themselves after rooting in the mud…Propagules which do not successfully root after 30 days or so may regain buoyancy and float off again in a horizontal position. They may remain viable for a year or more (Rabinowitz 1978b). Occasionally, propagules are still viable after being transported tens of kilometers inland by hurricanes…The timing of these events is affected by circumstances. In sunny conditions, virtually all floating Rhizophora propagules pivot to the vertical by 30 days and root within a further 10 days or so; about half of shaded propagules are still floating horizontally after several months. This behaviour will facilitate settling in forest clearings rather than directly under adult trees (Banus and Kolehmainen 1975)." (Hogarth 1999:24, 27-30)
  Learn more about this functional adaptation.
  • Hogarth, P. J. The biology of mangroves. Oxford University Press. 228 p.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physiology and Cell Biology

Physiology

Gilbert et al. (2002) studied the possible role of salt excretion by mangroves as a defense against pathogenic fungi in a mangrove forest in Panama. Although presumably evolved for other reasons, salt excretion by leaves of some mangrove species may serve as an important defense against fungal attack, reducing the vulnerability of typically high-density, monospecific forest stands to severe disease pressure. In their study, Gilbert et al. found that Black Mangrove (Avicennia germinans) suffered much less fungal leaf damage from than did White Mangrove (Laguncularia racemosa) or Red Mangrove (Rhizophora mangle). Black Mangrove leaves also supported the least fungal growth on the leaf surface, the least endophytic colonization, and the lowest fungal diversity, followed by White Mangrove and Red Mangrove.

Host specificity of leaf-colonizing fungi was greater than expected at random. The fungal assemblage found on Black Mangrove appears to be a subset of the fungi that can grow on the leaves of Red and White Mangrove. The authors suggested that the different salt tolerance mechanisms in the three mangrove species may differentially regulate fungal colonization. The mangroves differ in their salt tolerance mechanisms such that Black Mangrove (which excretes salt through leaf glands) has the highest salinity of residual rain water on leaves, White Mangrove (which accumulates salt in the leaves) has the greatest bulk salt concentration, and Rhizophora (which excludes salt at the roots) has little salt associated with leaves. The high salt concentrations associated with leaves of Black and White Mangrove, but not the low salinity of Red Mangrove, were sufficient to inhibit the germination of many fungi associated with mangrove forests. The authors suggest that efficient defenses against pathogens may be especially important in natural communities, such as mangrove forests, where host diversity is low and the density of individual hosts is high – ideal conditions for diseases to have strong effects on plant populations.

Mangrove forests are unusual among tropical forests for their low tree species diversity and associated high population density of
individual species. Mangrove species are unusual in their ability to grow in flooded, saline soils and for the array of mechanisms they have evolved to tolerate high salt concentrations. The work by Gilbert et al. suggests that some mangrove species may also be unusual in their escape from strong disease pressures, even when growing at high densities, through the inhibitory effects of
high foliar (leaf) salt concentration on fungal infection. (Gilbert et al. 2002)

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Genetics

Takayama et al. (2008) developed microsatellite markers useful for studying population structure of Rhizophora mangle and related species.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology

Barcode data: Rhizophora mangle

The following is a representative barcode sequence, the centroid of all available sequences for this species.


Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Rhizophora mangle

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 3
Specimens with Barcodes: 8
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
LC
Least Concern

Red List Criteria

Version
3.1

Year Assessed
2010

Assessor/s
Ellison, A., Farnsworth, E. & Moore, G.

Reviewer/s
Polidoro, B.A., Livingstone, S.R. & Carpenter, K.E. (Global Marine Species Assessment Coordinating Team)

Contributor/s

Justification
Rhizophora mangle is common in many parts of its range. It is threatened by habitat conversion, pollution, and hurricanes which have resulted in declines throughout the wider Caribbean region. While co-occurring with other species of mangrove and subject to many of the same natural and anthropogenic threats, R. mangle remains the dominant species within its range. However, given that mangrove habitats are in decline globally, and there has been an estimated 17% decline in mangrove areas within its range since 1980, it is important to monitor the future status of this critical mangrove species.This species is listed as Least Concern.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

National NatureServe Conservation Status

United States

Rounded National Status Rank: N3 - Vulnerable

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: G5 - Secure

Reasons: Found on shores of central and southern Florida including Florida Keys, Bermuda, and throughout West Indies to Trinidad and Tobago and Dutch West Indies. Also on both coasts of continental tropical America from central Mexico south to Ecuador, northwestern Peru and to Brazil (Little and Wadsworth 1964). Found in Melanesia, Polynesia, Galapagos Islands (Chudnoff 1993), Cape Verde Islands, Hawaii (Tree Talk 1994) and along the west coast of Africa (Record and Mell 1924). In parts of northern South America there are very extensive mangrove swamps at the mouths of all the great rivers and fringing the coast in certain places. The accessible stands in Venezuela have been seriously depleted and the forests around Lake Maracaibo now produce only small-sized poles. The forests of Porto Cabello have been practically destroyed and are now areas of low scrubby growth. On the deeper soils, muddy banks, and islands of the Orinoco delta, however, there are pure stands of red mangrove still in virgin condition (Record and Mell 1924).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Mangroves in general, and Red Mangrove in particular, are highly vulnerable to coastal development, pollution, and other human impacts (Kaplan 1988). In many parts of the world, mangroves are collected for firewood.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population

Population
This species can be common in at least some parts of its range. In Belize for example, it is the most common species, particularly in basin environments along river banks and the coast (Murray et al. 2003). It is expanding its range in northern Florida and is characterized as invasive on two Pacific islands.

Specific population information exists for this species in the following areas:

At the mouthouth of Lostman's River in Everglades National Park, FL, U.S., 611 individuals were counted over six transects totaling 0.26 ha (McCoy et al. 1996).

In Laguna de Celestun, Yucatan, Mexico, combined data for A. germinans, R. mangle and L. racemosa show basal area ranges from 21 square meters/ha to 36 square meters/ha (Herrera-Silveira and Ramirez-Ramirez 1998).

In Parque Nacional Morrocoy, Venezuela, data show 68% R. mangle, 29% L. racemosa, 8% A. germinans, 1% unidentified total tree density, and 348 trees/0.1 ha (Bone et al. 1998).

Population Trend
Decreasing
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Major Threats
Disease and herbivory can impact R. mangle (Farnsworth and Ellison 1991, Brooks and Bell 2002, Sousa et al. 2003) but are not likely to pose a serious conservation threat at this time. Also decreases in R. mangle have been documented due to land reclamation and clear cutting for marina development (Ellison and Farnsworth 1996, Farnsworth and Ellison 1997, Moore 2006). Although local estimates are uncertain due to differing legislative definitions of what is a 'mangrove' and to the imprecision in determining mangrove area, current consensus estimates of mangrove loss in the last quarter-century report an approximately 17% decline in mangrove areas in countries within this species range since 1980 (FAO 2007).

All mangrove ecosystems occur within mean sea level and high tidal elevations, and have distinct species zonations that are controlled by the elevation of the substrate relative to mean sea level. This is because of associated variation in frequency of elevation, salinity and wave action (Duke et al. 1998). With rise in sea-level, the habitat requirements of each species will be disrupted, and species zones will suffer mortality at their present locations and re-establish at higher elevations in areas that were previously landward zones (Ellison 2005). If sea-level rise is a continued trend over this century, then there will be continued mortality and re-establishment of species zones. However, species that are easily dispersed and fast growing/fast producing will cope better than those which are slower growing and slower to reproduce.

In addition, mangrove area is declining globally due to a number of localized threats. The main threat is habitat destruction and removal of mangrove areas. Reasons for removal include cleared for shrimp farms, agriculture, fish ponds, rice production and salt pans, and for the development of urban and industrial areas, road construction, coconut plantations, ports, airports, and tourist resorts. Other threats include pollution from sewage effluents, solid wastes, siltation, oil, and agricultural and urban runoff. Climate change is also thought to be a threat, particularly at the edges of a species range. Natural threats include cyclones, hurricane and tsunamis.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comments: Has been heavily exploited for timber (Record and Mell 1924).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Collectively, considering Red Mangrove together with other mangrove species, at least 35% of the world’s mangrove forests have been lost in the past few decades as a consequence of human activities. This loss directly affects ecosystem services such as providing habitat for fishes, prawns, and crabs. Additionally, degradation of the remaining mangrove habitats results in loss of ecological functionality, putting millions of coastal people in jeopardy. Among the threats to mangroves are aquaculture and coastal development, altered hydrology, sea level rise, and nutrient overenrichment. (Feller et. al 2010 and references therein)

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
There are no conservation measures specific to this species, but its range may include some marine and coastal protected areas. Continued monitoring and research is recommended, as well as the inclusion of mangrove areas in marine and coastal protected areas.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Economic Uses

Uses: Building materials/timber, Fuelwood

Comments: The timber is (has been) employed for rafters, scantling, beams, joists, braces, knees and ribs of boats, and miscellaneous construction, and also for posts, piling, railway ties, charcoal and fuel. The chief use is (has been) for tannin extracted from the bark which is also used for dyeing and medicine (Record and Mell 1924). The tree serves as a timber species in Costa Rica (Alvarez 1991). Other general timber applications of this species are cooperage, railroad crossties, rafters, fencing, tannery, charcoal (Santos 1987), turnery, life boats and mining timbers (Tree Talk 1994).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Mangrove forest ecosystems are vital as sources of energy and provide nursery habitat for juvenile fish, and invertebrates. They also provide roosting and nesting habitat for wading birds. Additionally, they are a source for timber production and are important as buffers in decreasing storm impacts along coastlines.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Smithsonian Marine Station at Fort Pierce

Source: Indian River Lagoon Species Inventory

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Uses

Extracting tannic acid (which stains the water in a mangrove habitat a transparent brown) from Red Mangrove bark for use in tanning was at one time a major industry in the Florida Keys (Kaplan 1988).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Rhizophora mangle

Rhizophora mangle, known as the red mangrove, is distributed in estuarine ecosystems throughout the tropics. Its viviparous "seeds," in actuality called propagules, become fully mature plants before dropping off the parent tree. These are dispersed by water until eventually embedding in the shallows.

Rhizophora mangle grows on aerial prop roots, which arch above the water level, giving stands of this tree the characteristic "mangrove" appearance. It is a valuable plant in Florida, Louisiana, and Texas coastal ecosystems. In its native habitat it is threatened by invasive species such as the Brazilian pepper tree, (Schinus terebinthifolius). The red mangrove itself is considered an invasive species in some locations, such as Hawaii, where it forms dense, monospecific thickets.[1] R. mangle thickets, however, are known to provide nesting and hunting habitat for a diverse array of organisms, including fish, birds, and crocodiles.

Habitat[edit]

Red mangroves are found in subtropical and tropical areas in both hemispheres, extending to approximately 28°N to S latitude. They thrive on coastlines in brackish water and in swampy salt marshes. Because they are well adapted to salt water, they thrive where many other plants fail and create their own ecosystems, the mangals. Red mangroves are often found near white mangroves (Laguncularia racemosa), black mangroves (Avicennia germinans), and buttonwood (Conocarpus erectus). Through stabilisation of their surroundings, mangroves create a community for other plants and animals (such as the mangrove crab) to survive. Though rooted in soil, mangrove roots are often submerged in water for several hours or on a permanent basis. The roots are usually sunk in a sand or clay base, which allows for some protection from the waves.

Description[edit]

Red mangroves are easily distinguishable through their unique prop roots system and viviparous seeds. The prop roots of a red mangrove suspend it over the water, thereby giving it extra support and protection. They also help the tree to combat hypoxia by allowing it a direct intake of oxygen through its root structure.

A mangrove can reach up to 80 feet (24 m) in height in ideal conditions; however, it is commonly found at a more modest 20 feet (6.1 m). Its bark is thick and a grey-brown color. Mangrove leaves are 1–2 inches (2.5–5.1 cm) wide and 3–5 inches (7.6–12.7 cm) broad, with smooth margins and an ellipse shape. They are a darker shade of green on the tops than on the bottoms. The tree produces pale pink flowers in the spring.

Reproduction[edit]

As a viviparous plant, R. mangle creates a propagule that is in reality a living tree. Though resembling an elongated seed pod, the fully-grown propagule on the mangrove is capable of rooting and producing a new tree. The trees are hermaphrodites, capable of self pollination or wind pollination. The tree undergoes no dormant stage as a seed, but rather progresses to a live plant before leaving its parent tree. A mangrove propagule may float in brackish water for over a year before rooting.

Common names[edit]

As well as the English name "red mangrove", R. mangle is known in Tonga as tongo.[2]

Gallery[edit]

See also[edit]

References[edit]

  1. ^ Allen, J.A., 1998. Mangroves as Alien Species: The Case of Hawaii. Global Ecology and Biogeographical Letters 7:61-71
  2. ^ "Rhizophora". Encyclopedia of Life. Retrieved 28 November 2012. 
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!