Overview

Distribution

Range Description

This species is widespread and occurs in the Red Sea and the Gulf of Aden, the south-west and northern Indian Ocean, the central Indo-Pacific, Australia, Southeast Asia, Japan and the East China Sea, the oceanic west Pacific, and the central Pacific.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Type Information

Holotype for Acropora mangarevensis Vaughan, 1906
Catalog Number: USNM 68308
Collection: Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology
Preparation: Dry
Collector(s): United States Fish Commission
Year Collected: 1905
Locality: Gambier Islands, Mangareva Island, French Polynesia, South Pacific Ocean
Vessel: Albatross R/V
  • Holotype: Vaughan. 1906. Bull. Mus. Comp. Zool. 50(3): 68-69, pl.6, fig.2, pl.8, fig.1.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology

Source: National Museum of Natural History Collections

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Habitat and Ecology
This species is found in shallow reef environments, especially reef margins and reef crests exposed to strong wave action. It is commonly found in subtidal reef flats. The maximum depth it is found is to 10-15 m. Often occurs in sympatry with Acropora robusta, which is its sister species (Richards pers. comm.).

Systems
  • Marine
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Depth range based on 72 specimens in 1 taxon.
Water temperature and chemistry ranges based on 36 samples.

Environmental ranges
  Depth range (m): 0 - 48
  Temperature range (°C): 25.605 - 28.540
  Nitrate (umol/L): 0.054 - 4.021
  Salinity (PPS): 34.400 - 35.457
  Oxygen (ml/l): 4.467 - 4.622
  Phosphate (umol/l): 0.081 - 0.566
  Silicate (umol/l): 0.900 - 2.603

Graphical representation

Depth range (m): 0 - 48

Temperature range (°C): 25.605 - 28.540

Nitrate (umol/L): 0.054 - 4.021

Salinity (PPS): 34.400 - 35.457

Oxygen (ml/l): 4.467 - 4.622

Phosphate (umol/l): 0.081 - 0.566

Silicate (umol/l): 0.900 - 2.603
 
Note: this information has not been validated. Check this *note*. Your feedback is most welcome.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
LC
Least Concern

Red List Criteria

Version
3.1

Year Assessed
2008

Assessor/s
Richards, Z., Delbeek, J.C., Lovell, E., Bass, D., Aeby, G. & Reboton, C.

Reviewer/s
Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)

Contributor/s

Justification
The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Specific population trends are unknown but population reduction can be inferred from estimated habitat loss (Wilkinson 2004). This species is widespread and locally abundant throughout its range and therefore is likely to be more resilient to habitat loss and reef degradation because of an assumed large effective population size that is highly connected and/or stable with enhanced genetic variability. It is more robust than most members of the genus and therefore resistant to bleaching and disease and likely to survive on reefs heavily impacted by bleaching events. Therefore, the estimated habitat loss of 20% from reefs already destroyed within its range is the best inference of population reduction since it may survive in coral reefs already at the critical stage of degradation (Wilkinson 2004). This inference of population reduction over three generation lengths (30 years) does not meet the threshold of a threat category and this species is Least Concern. However, because of predicted threats from climate change and ocean acidification it will be important to reassess this species in 10 years or sooner, particularly if the species is also observed to disappear from reefs currently at the critical stage of reef degradation.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population

Population
This species is uncommon. It occurs in 9 out of 87 sites in the Marshall Islands (Richards pers. comm.). Occurs in five out of six regions in Indonesia (Wallace et al. 2001).

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is more resilient to some of the threats faced by corals and therefore population decline is estimated using the percentage of destroyed reefs only (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage of destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on population decline and generation length estimates.

Population Trend
Decreasing
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Major Threats
Acropora species are generally vulnerable to bleaching, disease and crown-of-thorns outbreaks. Sedimentation and eutrophication is a local threat. This species occurs in high wave action habitats and is generally robust. No specific cases of bleaching are known for this species and it is probably more resistant to bleaching than other species. It is also resistant to predation because of its well-developed radial corallite lips.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
All corals are listed on CITES Appendix II. Parts of the species’ range fall within Marine Protected Areas.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Acropora abrotanoides

Acropora abrotanoides is a species of acroporid coral found in Indo-Pacific waters from the Red Sea and the Gulf of Aden east to the East China Sea and the central Pacific Ocean. It is found in shallow coral reefs to a maximum depth of 10–15 m. It is vulnerable to coral bleaching, disease and crown-of-thorns starfish. It is resistant to predation as it has well-developed radial corallite lips.

References[edit]

  1. ^ Richards, Z.T., Delbeek, J.T., Lovell, E.R., Bass, D., Aeby, G. & Reboton, C. (2014). "Acropora abrotanoides". IUCN Red List of Threatened Species. Version 2014.2. International Union for Conservation of Nature. Retrieved 28 August 2014. 
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!