Articles on this page are available in 1 other language: Dutch (1) (learn more)

Overview

Brief Summary

Bivalves are shellfish protected by two shell halves. Each half is more or less equivalent in size. Well known bivalve species include the mussel, the cockle and the oyster.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© Copyright Ecomare

Source: Ecomare

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Sexual Dimorphism

Usually none, but Sexual Dimorphism in shell shape, gonad size and gonad color in some species; females sometimes larger than males; dwarf males in commensal species are parasitic on females.
Creative Commons — CC0 1.0 Universal

Source: Fairbairn, 2013

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Associations

Animal / parasite
adult of Capulus ungaricus parasitises mucus of Bivalvia

Animal / predator
adult of Muricidae is predator of Bivalvia

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Known predators

Bivalvia (Pelicypod sp.) is prey of:
Tetraodontidae
Laridae
Aves
Rajiformes
Homo sapiens
demersal species
Echinodermata
Pleuronectiformes
Asteroidea
Decapoda
Gomphus
Aythya affinis
Actinopterygii
Erynnis japonica
Chaeturichthys hexanema
Ambystoma maculatum
Ambystoma laterale
Ambystoma tremblayi
Ambystoma tigrinum
Notophthalmus viridescens
Thais triangularis
Muricanthus
Acanthina
Thais biserialis
Opeatostoma
Leucozonia
Thais melones
Heliaster
Concholepas concholepas
Acanthocyclus
Sicyases sanguineus
Heliaster helianthus
Larus dominicanus
Nematoda
Gambusia
Heterandria formosa
Floridichthys carpio
Lophogobius cyprinoides
high carnivores
Copepoda
Callinectes sapidus
Chondrichthyes
Scombridae
Carangidae
phytoplankton
organic stuff
Cheloniidae
Octopus
Cephalopoda
Stomatopoda
Anomura
Echinoidea
Gastropoda
Priapula
Polychaeta
Ophiuroidea
Cancer
Brachyura
Pollachius pollachius
Merluccius bilinearis
Urophycis regia
Urophycis tenuis
Urophycis chuss
Gadidae
Melanogrammus aeglefinus
Hemitripterus americanus
Myoxocephalus octodecemspinosus
Leucoraja erinacea
Leucoraja ocellata
Amblyraja radiata
Macrozoarces americanus
Brosme brosme
Anarhichas
Triglidae
Sebastes marinus
Pleuronectes ferrugineus
Paralichthys dentatus
Pleuronectes americanus
Hippoglossoides platessoides
Hippoglossus hippoglossus
Mustelus canis
Squalus acanthias
Lophius americanus
Pomatomus saltatrix
Nemertines
Nereidae
Hesionidae
Glyceridae
Onuphidae
Odostomia seminuda
Acanthocitona pygmaea
Hylina veliei
Spirals
Nudibranchia
Polinices
Terebra
Seila adamsi
Epitonium albidum
Opalia hotessieriana
Natica pusilla
Urosalpinx perrugata
Busycon spiratum
Marginella aureocincta
Marginella apicina
Marginella bella
Turbonilla dalli
Turbonilla hemphilli
Gobiosoma robustum
Microgobius gulosus
Anas discors
Bucephala albeaola
Rallus longirostris
Charadrius semipalmatus
sediment POC
Processa bermudiensis
Penaeus duoarum
Palaemonetes floridanus

Based on studies in:
USA: New York, Long Island (Marine)
USA: California (Estuarine, Intertidal, Littoral)
USA: Florida (Estuarine)
USA: Florida, Everglades (Estuarine)
Puerto Rico, Puerto Rico-Virgin Islands shelf (Reef)
USA, Northeastern US contintental shelf (Coastal)
USA: Rhode Island (Coastal)
USA: Alaska, Aleutian Islands (Coastal)
Pacific: Bay of Panama (Littoral, Rocky shore)
Chile, central Chile (Littoral, Rocky shore)
USA: Iowa, Mississippi River (River)
Japan (Coastal, mesopelagic zone)
USA: Michigan (Lake or pond)

This list may not be complete but is based on published studies.
  • G. M. Woodwell, Toxic substances and ecological cycles, Sci. Am. 216(3):24-31, from pp. 26-27 (March 1967).
  • G. E. MacGinitie, Ecological aspects of a California marine estuary, Am. Midland Nat. 16(5):629-765, from p. 652 (1935).
  • J. N. Kremer and S. W. Nixon, A Coastal Marine Ecosystem: Simulation and Analysis, Vol. 24 of Ecol. Studies (Springer-Verlag, Berlin, 1978), from p. 12.
  • C. A. Simenstad, J. A. Estes, K. W. Kenyon, Aleuts, sea otters, and alternate stable-state communities, Science 200:403-411, from p. 404 (1978).
  • C. A. Carlson, Summer bottom fauna of the Mississippi River, above Dam 19, Keokuk, Iowa, Ecology 49(1):162-168, from p. 167 (1968).
  • H. M. Wilbur, Competition, predation, and the structure of the Ambystoma-Rana sylvatica community, Ecology 53:3-21, from p. 14 (1972).
  • B. A. Menge, J. Lubchenco, S. D. Gaines and L. R. Ashkenas, A test of the Menge-Sutherland model of community organization in a tropical rocky intertidal food web, Oecologia (Berlin) 71:75-89, from p. 85 (1986).
  • J. C. Castilla, Perspectivas de investigacion en estructura y dinamica de communidades intermareales rocosas de Chile Central. II. Depredadores de alto nivel trofico, Medio Ambiente 5(1-2):190-215, from p. 203 (1981).
  • W. E. Odum and E. J. Heald, The detritus-based food web of an estuarine mangrove community, In Estuarine Research, Vol. 1, Chemistry, Biology and the Estuarine System, Academic Press, New York, pp. 265-286, from p. 281 (1975).
  • M. A. Hatanaka, Sendai Bay. In: Productivity of Biocenoses in Coastal Regions of Japan, K. Hogetsu, M. Horanaka, T. Hatanaka, T. Kawamura, Eds. (Japanese Committee for the International Biological Program Synthesis, Tokyo, 1977), 14:173-221, from p. 190.
  • Link J (2002) Does food web theory work for marine ecosystems? Mar Ecol Prog Ser 230:1–9
  • Opitz S (1996) Trophic interactions in Caribbean coral reefs. ICLARM Tech Rep 43, Manila, Philippines
  • Christian RR, Luczkovich JJ (1999) Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol Model 117:99–124
Creative Commons Attribution 3.0 (CC BY 3.0)

© SPIRE project

Source: SPIRE

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Known prey organisms

Bivalvia (Pelicypod sp.) preys on:
plankton
primary producers
detritus
flagellates
Bacillariophyceae
phytoplankton
zooplankton
suspended or deposited organic matter
periphyton
algae
fungi
bacteria
fine organic matter
bacterioplankton
Microprotozoa
Achnanthes linearis
Stephanodiscus
Pinnularia
Rhoicosphenia curvata

Based on studies in:
USA: New York, Long Island (Marine)
Pacific: Bay of Panama (Littoral, Rocky shore)
Chile, central Chile (Littoral, Rocky shore)
USA: California (Estuarine, Intertidal, Littoral)
USA: Rhode Island (Coastal)
USA: Alaska, Aleutian Islands (Coastal)
USA: Iowa, Mississippi River (River)
USA: Michigan (Lake or pond)
USA: Florida, Everglades (Estuarine)
USA, Northeastern US contintental shelf (Coastal)
New Zealand: Otago, Blackrock, Lee catchment (River)
USA: Florida (Estuarine)
Japan (Coastal, mesopelagic zone)
USA: Wisconsin, Little Rock Lake (Lake or pond)

This list may not be complete but is based on published studies.
  • G. M. Woodwell, Toxic substances and ecological cycles, Sci. Am. 216(3):24-31, from pp. 26-27 (March 1967).
  • G. E. MacGinitie, Ecological aspects of a California marine estuary, Am. Midland Nat. 16(5):629-765, from p. 652 (1935).
  • J. N. Kremer and S. W. Nixon, A Coastal Marine Ecosystem: Simulation and Analysis, Vol. 24 of Ecol. Studies (Springer-Verlag, Berlin, 1978), from p. 12.
  • C. A. Simenstad, J. A. Estes, K. W. Kenyon, Aleuts, sea otters, and alternate stable-state communities, Science 200:403-411, from p. 404 (1978).
  • C. A. Carlson, Summer bottom fauna of the Mississippi River, above Dam 19, Keokuk, Iowa, Ecology 49(1):162-168, from p. 167 (1968).
  • H. M. Wilbur, Competition, predation, and the structure of the Ambystoma-Rana sylvatica community, Ecology 53:3-21, from p. 14 (1972).
  • B. A. Menge, J. Lubchenco, S. D. Gaines and L. R. Ashkenas, A test of the Menge-Sutherland model of community organization in a tropical rocky intertidal food web, Oecologia (Berlin) 71:75-89, from p. 85 (1986).
  • J. C. Castilla, Perspectivas de investigacion en estructura y dinamica de communidades intermareales rocosas de Chile Central. II. Depredadores de alto nivel trofico, Medio Ambiente 5(1-2):190-215, from p. 203 (1981).
  • W. E. Odum and E. J. Heald, The detritus-based food web of an estuarine mangrove community, In Estuarine Research, Vol. 1, Chemistry, Biology and the Estuarine System, Academic Press, New York, pp. 265-286, from p. 281 (1975).
  • Townsend, CR, Thompson, RM, McIntosh, AR, Kilroy, C, Edwards, ED, Scarsbrook, MR. 1998. Disturbance, resource supply and food-web architecture in streams. Ecology Letters 1:200-209.
  • M. A. Hatanaka, Sendai Bay. In: Productivity of Biocenoses in Coastal Regions of Japan, K. Hogetsu, M. Horanaka, T. Hatanaka, T. Kawamura, Eds. (Japanese Committee for the International Biological Program Synthesis, Tokyo, 1977), 14:173-221, from p. 190.
  • Link J (2002) Does food web theory work for marine ecosystems? Mar Ecol Prog Ser 230:1–9
  • Christian RR, Luczkovich JJ (1999) Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol Model 117:99–124
  • Martinez ND (1991) Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol Monogr 61:367–392
Creative Commons Attribution 3.0 (CC BY 3.0)

© SPIRE project

Source: SPIRE

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Evolution and Systematics

Evolution

Classification

Current results in bivalve phylogeny indicate that Anomalodesmata are probably a monophyletic group (Dreyer et al., 2003; Taylor et al., 2007) but nested within Euheterodonta. This provides support to what is proposed by Giribet & Wheeler (2003) to merely merge Anomalodesmata into Heterodonta s.l. (note that Tree of Life still uses Anomalodsmata with equal rank to Pteriomorpha, Paleoheterodonta, Heterodonta...). It is helpful to reflect that these superfamilies go together and therefore keep the name Anomalodesmata as an order of the Euheterodonta.
Creative Commons Attribution 3.0 (CC BY 3.0)

© WoRMS for SMEBD

Source: World Register of Marine Species

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Functional Adaptations

Functional adaptation

Flexible cylinders siphon water: clams
 

Siphons used by clams to inhale and exhale water are effective due to their flexibility and extensibility.

   
  "Cylinders may also act as pipelines carrying one material through another, like underground pipes. Man's oil or drainage pipelines are usually rigid, but in nature flexibility is more valuable for this purpose. Some bivalve molluscs, such as clams, can live quite deep under the sandy sea bed by virtue of their extensible cylindrical siphons, one for inhaling water and the other for exhaling it after the gills have extracted food and oxygen." (Foy and Oxford Scientific Films 1982:23)
  Learn more about this functional adaptation.
  • Foy, Sally; Oxford Scientific Films. 1982. The Grand Design: Form and Colour in Animals. Lingfield, Surrey, U.K.: BLA Publishing Limited for J.M.Dent & Sons Ltd, Aldine House, London. 238 p.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Functional adaptation

Ligament used to reopen shells: bivalve mollusks
 

A ligament in bivalve mollusks can reopen closed shells due to the presence of abductin, an elastic protein.

     
  "Another protein rubber is abductin found in the shell-opening ligaments of bivalve mollusks. One or two adductor muscles hold the two halfshells or valves of a bivalve closed (the edible part of a scallop is one of these muscles). Closing compresses the ligament, so its elastic resiliency can reopen the shell if the muscles relax. Interestingly, scallops, which swim by repeatedly clapping their valves together, recover a greater fraction of the work done on their abductin than do clams and other more sedentary forms." (Vogel 2003:304)
  Learn more about this functional adaptation.
  • Steven Vogel. 2003. Comparative Biomechanics: Life's Physical World. Princeton: Princeton University Press. 580 p.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage

Barcode of Life Data Systems (BOLD) Stats
                                        
Specimen Records:21,631Public Records:14,160
Specimens with Sequences:16,361Public Species:995
Specimens with Barcodes:14,632Public BINs:1,219
Species:1,535         
Species With Barcodes:1,159         
          
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Barcode data

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Locations of barcode samples

Collection Sites: world map showing specimen collection locations for Bivalvia

Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Genomic DNA is available from 8 specimens with morphological vouchers housed at National Institute of Water and Atmospheric Research, Auckland
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© Ocean Genome Legacy

Source: Ocean Genome Resource

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Genomic DNA is available from 2 specimens with morphological vouchers housed at British Antarctic Survey
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© Ocean Genome Legacy

Source: Ocean Genome Resource

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Genomic DNA is available from 3 specimens with morphological vouchers housed at British Antarctic Survey
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© Ocean Genome Legacy

Source: Ocean Genome Resource

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!