You are viewing this Species as classified by:

Overview

Brief Summary

Biology

Perhaps the most unique and unusual feature of seahorse biology is the fact that it is the male and not the female who becomes pregnant. When mature, males develop a pouch on the belly, known as the brood pouch. In this species the pouch is formed after 6 months of life, but males don't breed until they are about one year of age (3). Breeding takes place in spring and summer; the female inserts her ovipositor into the male's pouch and lays her eggs. The male then fertilises them and they become embedded into the wall of the pouch. The pouch is very similar to the womb found in female mammals; a placental fluid removes waste products and supplies the eggs with oxygen and nutrients. As pregnancy progresses, this fluid gradually becomes similar to the surrounding seawater, so that when the young seahorses are 'born' the change in salinity will not be such a shock (5). After around 30 days of pregnancy the male goes into labour, typically at night when there is a full moon (2) (3). After hours of thrusting, the miniature seahorses, which look exactly like the adults, are released from the pouch (3). The most numerous brood reported numbered over 1100 offspring (10). The offspring are fully independent after birth and must fend for themselves (3) (5). They are pelagic in the first stage of life, or hold onto floating debris at the surface with their tail (2). They settle on the bottom after they reach a length of 30 mm (3). The big-belly seahorse is more active at dusk and night than in the day (3). They feed on crustaceans, such as amphipods and shrimp, which are sucked into their tube-like snouts and ingested whole (6).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Description

The big-belly seahorse is one of the largest of all seahorses, growing up to 35 cm in length (2) (4). Like other seahorses, the head is held at right angles to the body, the eyes can move independently of each other, and the tail is prehensile. Instead of having scales, as most other fish, seahorses have a layer of skin stretched over bony plates that are visible as rings passing around the trunk. Swimming is powered by the rapidly oscillating dorsal fin, and they steer using the fins on either side of the body (the pectoral fins) (9). As the common name suggests, this species has a large swollen belly (4). In common with most other species of seahorse, the big-belly seahorse is well camouflaged; individuals may be brown, yellow, grey, white, orange or mottled, with dark spots and blotches on the head and trunk, and the tail often has alternating pale and dark bands (2). Males differ from females in that they have longer tails, a shorter, more robust snout and more dark markings (4), they also typically have a yellow mark close to the top of the brood pouch (2).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Comprehensive Description

Biology

Found in large rock pools at low tide. They remain motionless amidst seaweed. Juveniles are pelagic (Ref. 30915) or attached to drifting seaweeds (Ref. 31838). Feed on minute crustaceans (e.g. copepods and amphipods). Nocturnal (Ref. 9003). Ovoviviparous (Ref. 205). The male carries the eggs in a brood pouch which is found under the tail (Ref. 205). Seen in groups at night. Also around jetties and other man-made objects; attached to sponges and colonial hydroids in deeper water (Ref. 30915). Length measurements refer to height (= TL - head length).This is the largest seahorse species in southeastern Australia, and has more dorsal fin rays and tail rings than any other seahorse (Ref. 31838). Sold locally and internationally for the aquarium trade (Ref. 31838). Dried and sold to the Oriental medicine trade as a tonic and aphrodisiac (Ref. 5316, 34026).
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Distribution

Range Description

Hippocampus abdominalis occurs in the marine waters of south-eastern Australia and all around New Zealand (Kuiter 2001, Lourie et al. 2004); populations have also been recorded from estuaries in Australia (Martin-Smith and Vincent 2005) and may also occupy similar sites in New Zealand. All populations fall within FAO Fisheries Areas 57 and 81 (Indian Ocean eastern and southwest Pacific).

Hippocampus abdominalis is known in Australia from Newcastle, New South Wales (NSW) southwards throughout Victoria (Vic), Tasmania (Tas) and westwards as far as the northern Great Australian Bight in South Australia (SA) (Kuiter 2001). It has been found to depths of at least 35 m (Kuiter 2001).

In New Zealand the species is widespread within the 200-mile Economic Exclusion Zone (EEZ), from the Three Kings Islands in the north, to the Snares Islands in the south, and at the Chatham Islands (Scrimgeour 1986, Paulin and Roberts 1992). In New Zealand, depth distribution varies considerably where sightings have been recorded from the intertidal to a maximum depth of 104 m (Amaoka et al. 1990); occurrences from the surface to 40 m are more common (Paulin and Roberts 1992, Francis 1998, Lourie et al. 1999, Stevenson and Beentjes 2001).

Museum Records (Australia)
19 specimens (height 46–250 mm), captured from depths of 0–32 m, ranging in geographical distribution from Newcastle (32°52’S, 151° 75' E) to the northern Great Australian Bight (approx. 32°24’S, 133°30’E) Specimens were collected between 1916 and 1996. There are additional specimens from NSW in various fish collections around Australia, but the identifications of these specimens have not yet been verified [Pogonoski, 2002 #3720].

Follow the link below for Figure 2: known extent of distribution in Australian waters.

The extent of occurrence for H. abdominalis includes the seawaters of south-eastern Australia and New Zealand (Lourie et al. 1999, Lourie et al., 2004). Within New Zealand waters, H. abdominalis are known from the Three Kings Islands in the north, the Snares Islands in the south, and at the Chatham Islands to the east (Scrimgeour 1986, Paulin and Roberts 1992).

Area of occupancy is generally unknown but there is assumed to be suitable habitat throughout the geographic range. Populations of H. abdominalis have been reported from Sydney Harbour, NSW; Lakes Entrance, Port Phillip Bay, Western Port, Vic; Tamar, Derwent and Huon River Estuaries, Tas; Spencer Gulf and Yorke Peninsula, SA (Kuiter 2000 & 2001, Martin-Smith and Vincent 2005, K. Martin-Smith pers. comm., J. Manna pers. comm.), Whangateau Harbour (Kuiter 2000) and Wellington Harbour North Island NZ (Woods 2002).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Southwest Pacific: Australia and New Zealand. Vulnerable (Ref. 30915). Occurrence in Thailand and the Philippines (Ref. 43081) needs verification. International trade is monitored through a licensing system (CITES II, since 5.15.04) and a minimum size of 10 cm applies.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Australia and New Zealand.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Range

This seahorse is found in the south-west Pacific around Australia and New Zealand (2). It is known in Australia from Newcastle, New South Wales southwards, throughout Victoria, Tasmania and westwards as far as the northern Great Australian Bight in South Australia (9). In New Zealand, it is widespread around both North and South Islands (3). It has been suggested that the populations that make up this species are actually two separate species. However, this taxonomic splitting is still quite contentious and there is little evidence for the existence of two species (10).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Physical Description

Morphology

Dorsal spines (total): 0; Dorsal soft rays (total): 25 - 31; Analspines: 0; Analsoft rays: 4
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Size

Maximum size: 320 mm OT
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Max. size

35.0 cm OT (male/unsexed; (Ref. 6787))
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Diagnostic Description

Description: (based on 17 specimens): Adult height: 8.0-32.0 cm; Rings: 12-13 + 47 (45-48)Snout length: 2.6 (2.2-3.2) in head length; Dorsal fin rays: 27-28 (25-29) covering 4+1 rings; Pectoral fin rays: 15-17; Caudal fin absent; Coronet: low, triangular wedge; Spines: low, rounded bumps only.Other distinctive characters: (very) prominent rounded eye spines; often with thick fronds attached to head region; very deep body with keel (especially females); mature males have extremely prominent (usually white) brood pouch.Color pattern: pale, near white to mottled yellow to variable brown; dark spots and splotches on head and trunk; tail with alternating dark and light bands; dorsal fin mottled; males have more dark blotches than females and commonly have a yellow slash near the top of the pouch 34.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Habitat and Ecology
Generally, there is little known about the in situ ecology of H. abdominalis. In Australia, there is on-going research on populations in the Derwent Estuary, Tasmania and Sydney Harbour, NSW (K. Martin-Smith, pers. comm.). Most NZ research has focused on aspects of diet and reproduction, conducted ex situ on wild individuals from Wellington Harbour (Woods 2002 and 2005, Poortenaar et al. 2004).

Habitat:
Adult Hippocampus abdominalis have been recorded from harbours, protected coastal bays and deep waters with sponges (Kuiter 1993, Kuiter 2001). Depth range varies considerably from the surface down to 104 m (Amaoka et al. 1990, Paulin and Roberts 1992, Francis 1998, Lourie et al. 1999, Stevenson and Beentjes 2001). Habitat varies from intertidal rock pools to, more commonly, amongst shallow macroalgal stands (e.g., Ecklonia, [Kuiter 2000]), submerged rocky outcrops, exposed open sea floor and artificial structures (Francis 1998, Woods 2003). In Tasmania, H. abdominalis are reported as common near the entrances of large estuaries on muddy bottoms, or near reef edges, feeding on small crustaceans (Last et al. 1983). It is not definitively known whether they occupy home ranges or are free-ranging, although some evidence suggests certain populations may exhibit site fidelity (Van Dijken 2001). Unlike most seahorse species, H. abdominalis is a relatively strong swimmer and has been known to swim over hundreds of meters in the course of a day (Vincent 1990). Adults are also known to occur in open water and to raft on macroalgal rafts (Kingsford and Choat 1985) and seagrass (J. Manna, pers. comm.): this occurs at all times of the year in at least New Zealand (Kingsford and Choat 1985, Kingsford 1986). Artificial structures appear to be important habitats for H. abdominalis: in particular, jetties, nets and salmon cages. For example, hundreds of individuals have been observed on anti-predator nets surrounding salmon aquaculture pens in the Huon Estuary, Tasmania (Marshall 2004, K. Martin-Smith, pers. comm.). Similarly, H. abdominalis have been observed in reasonably large numbers on the net of a swimming enclosure in Sydney Harbour since 2003 (K. Martin-Smith, pers. comm.).

Reproduction:
As with other members of the seahorse and pipefish family, males incubate eggs in an abdominal pouch and eventually release young that look like miniature replicas of adults (Edgar 1997). The pouch is developed at about six months of age, but first breeding occurs closer to 12 months (R. Kuiter, pers comm. in Pogonoski et al. 2002). Spawning occurs mainly from (the Austral) spring to summer, where Woods (in press) found brooding males present throughout the year, but with an apparently lower incidence of brooding in winter. Similarly, Poortenaar et al. (2004) examined the reproductive biology of female H. abdominalis, looking at ovarian morphology, reproductive condition and sex steroid levels. Using these indices, they found that females were capable of reproductive activity throughout the year, presenting the potential for a protracted spawning season (Poortenaar et al. 2004).

The number of juveniles (mean ± 1 SE) released per brood in a New Zealand population was 271.2 ± 27 (Woods, in press), whereas the maximum reported brood size for the species in aquaculture is 1,116 (R. Hawkins pers comm. in Lourie et al., 2004). Juveniles 16–19 mm in standard length, are released from the pouch after about thirty days. Larger males produce more juveniles (Woods, in press). Juvenile length and weight are not correlated with the number of juveniles per brood, parent male size or parent male pouch volume. The percentage of pouch contents that are non-viable (i.e., premature or non-viable eggs) upon juvenile release tends to be low (1.1 ± 0.2%; mean ± 1 SE of the total pouch contents) (Woods, in press). Following release from the parent male, juveniles are believed to be pelagic, at least for several weeks, Juveniles up to 8 cm in length have been collected in surface waters of the open ocean over the Chatham Rise in New Zealand (Woods, pers. obs.) and adult H. abdominalis have been captured near-shore associated with floating seaweed and debris (Kingsford and Choat 1985). The propensity for rafting presents a possible large-scale dispersal mechanism for this species.

Diet:
The diet of wild adult H. abdominalis consists largely of crustaceans, in particular amphipods, caridean shrimp, and peracarids (Woods 2002). There are no differences in diet between male and female seahorses. Smaller seahorses consume relatively more crustaceans than larger seahorses, where a greater proportion of their gut contents are comprised of amphipods when compared with adults. There is evidence for seasonal differences in diet, with amphipod consumption peaking in spring and summer, and decapod consumption lowest in autumn (Woods 2002).

Behaviour:
This species is reported to be more active at dusk and at night than during the day in New Zealand (Paulin and Roberts 1992). In Australia, H. abdominalis has been observed aggregating in groups at night (K. Martin-Smith, pers. comm.).

Systems
  • Marine
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Environment

demersal; non-migratory; brackish; marine; depth range 0 - 104 m (Ref. 52034)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Depth range based on 30 specimens in 1 taxon.
Water temperature and chemistry ranges based on 6 samples.

Environmental ranges
  Depth range (m): 1 - 130
  Temperature range (°C): 8.720 - 11.538
  Nitrate (umol/L): 6.885 - 13.334
  Salinity (PPS): 34.388 - 34.692
  Oxygen (ml/l): 5.872 - 6.334
  Phosphate (umol/l): 0.504 - 0.880
  Silicate (umol/l): 2.592 - 3.696

Graphical representation

Depth range (m): 1 - 130

Temperature range (°C): 8.720 - 11.538

Nitrate (umol/L): 6.885 - 13.334

Salinity (PPS): 34.388 - 34.692

Oxygen (ml/l): 5.872 - 6.334

Phosphate (umol/l): 0.504 - 0.880

Silicate (umol/l): 2.592 - 3.696
 
Note: this information has not been validated. Check this *note*. Your feedback is most welcome.

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Depth: 0 - 40m.
Recorded at 40 meters.

Habitat: demersal.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Inhabits harbours and sheltered coastal bays (3). They can be found amongst algae, seagrasses and around rocky reefs in fairly shallow water. In deeper water they typically attach to sponges (2). Unlike most seahorse species, the big-belly seahorse is a relatively strong swimmer and has been known to swim over hundreds of meters in the course of a day (11). Adults are also known to occur in open water and to raft on algal rafts and seagrass. Artificial structures appear to be important habitats for this species - in particular jetties, nets and salmon cages (10).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Trophic Strategy

Found among algae, seagrasses and rocky reefs in shallow water; attached to sponges and colonial hydroids in deeper water; also around jetty piles and other man-made objects (Ref. 30915). No differences in diet between male and female seahorses; smaller seahorses consumed a greater amount of crustaceans than larger seahorses; amphipod consumption peaking in spring and summer, and decapod consumption lowest in autumn (Ref. 73407). Observed hunting among the algal blades for prey as well as the surrounding substratum while hitched to the macroalgae, e.g., hunting the epibenthic swarming mysid Tenagomysis similis over sand while attached to the macroalgae fringing sand (Ref. 73407).
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Life History and Behavior

Life Cycle

Several subsequent broods are carried by the male in a brood pouch during the spawning season. Do not obviously pair, as other seahorses do (Ref. 30915). Fertilised eggs deposited by females in the pouch of males are incubated for about four weeks before hatching (Ref. 31838). Hatching occurs at night, coinciding with full moon periods during summer months (Ref. 31838). Young emerge from the pouch and immediately rise to the surface where they grasp floating debris with their tail (Ref. 31838).
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage: Hippocampus abdominalis

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 2
Specimens with Barcodes: 4
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
DD
Data Deficient

Red List Criteria

Version
3.1

Year Assessed
2006

Assessor/s
Woods, C.M.C., Morgan, S.K., Martin-Smith, K., Pogonoski, J.J., Paxton, J.R., Pollard, D.A. & Morgan, A.J.

Reviewer/s
Morgan, S.K. & Martin-Smith, K. (Syngnathid Red List Authority)

Contributor/s

Justification
Despite being a large seahorse, and reasonably widespread around both Australia and New Zealand, there is very little known about this seahorse in its natural habitat. There has also been recent taxonomic contention as to whether H. abdominalis constitutes two species: H. abdominalis and H. bleekeri. For these reasons, H. abdominalis is presently listed as Data Deficient, with the recommendation that representative populations throughout the species range be monitored (particularly in New Zealand), given significant and recent declines in the Derwent Estuary, Tasmania (Martin-Smith and Vincent 2005).

No historical data exist for in situ population structure or longevity and little information on growth rates. Only one project has assessed trends in abundance of H. abdominalis where declines of 79–98% were observed in three areas of the Derwent Estuary, Tasmania, Australia between 2001 and 2004 (Martin-Smith and Vincent 2005). Unpublished data from a study of a population of H. abdominalis in Sydney Harbour, NSW, Australia showed no clear trends in abundance between Jan’ 2003 and Jan’ 2005 (K. Martin-Smith pers. comm.). Information from research trawl collections in New Zealand, suggests generally low biomass (e.g., Stevenson and Beentjes 2001), although such trawls are usually conducted away from habitats such as macroalgal stands, where seahorse biomass is likely to be highest. Most available information relates to ex situ breeding, growth, survival and tagging in relation to aquaculture (Woods 2000, 2003a-d & 2005, Woods and Valentino 2003, Woods and Martin-Smith 2004). There is some information available on aspects of reproduction and diet in wild (in-situ and ex-situ) H. abdominalis from Wellington Harbour (North Island, New Zealand) (Woods 2002 [in press], Poortenaar et al. 2004).

The species is thought to face five main threats: 1. bycatch in commercial fisheries (pelagic finfish, benthic shellfish and invertebrate fisheries); 2. unregulated take; 3. risk through intrinsic life history traits; 4. natural predation; and 5. insufficient protection under the CITES 10 cm minimum size limit. Bycatch exploitation appears to be limited in geographical area relative to estimated extent of occurrence and is not suggestive of large-scale exploitation. Unregulated take could become a growing problem if demand in extant traditional medicine markets or in the home aquarium trade increase. In Australia, H. abdominalis would be protected under present legislation. However, the absence of catch limits in New Zealand in terms of numbers or sizes, may present the potential for exploitation to threaten wild populations. This is particularly true in light of the poor protection afforded via CITES. The species has a few life history traits that suggest vulnerability to exploitation (low density), but also other traits thought to confer resilience (rapid growth, short life span, rapid maturation and small size). The synergistic effects of natural predation in combination with exploitation need study.

A relatively conservative measure of the extent of occurrence for H. abdominalis in both Australia and New Zealand can be estimated by using GIS data to calculate the possible area in km2 down to 40 m, which is regarded as the usual depth limit for this species (Paulin and Roberts 1990). For New Zealand, this possible extent of occurrence does not take into account offshore islands (e.g., Chatham Islands, Three Kings Islands etc.) or estuarine areas. This 40 m depth extent of occurrence is calculated at 42,621 km² for New Zealand coastal waters. If the bathymetric constraint is pushed down to 100 m depth (maximum recorded depth for H. abdominalis is 104 m), then the total estimated extent of occurrence becomes 70,117 km² (see Figure 1). Similarly, for Australia, the extent of occurrence is calculated at 176,947 km² for a 0–40 m depth range and 336,696 km² for a 0–100 m distribution. Australian calculations were based on GIS ETOPO2 data with 8 km² grid cell resolution, so numbers should be treated as order of magnitude estimates.

The absence of information on population size, structure and many aspects of the species’ ecology presently precludes the ability to estimate or infer global population trends for H.abdominalis.

Follow the link below for Figure 1: known bathymetric boundaries for the species around coastal mainland New Zealand.

History
  • 1996
    Vulnerable
    (Baillie and Groombridge 1996)
  • 1996
    Vulnerable
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Status

Classified as Data Deficient (DD) on the IUCN Red List 2006 (1). In Australia, all seahorses and pipefish are subject to export controls under the Environment Protection and Biodiversity Conservation Act 1999 (3). All seahorses are listed on Appendix II of CITES (7).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Population

Population
Unknown, but see Range for known populations. At most reported locations in Australia, H. abdominalis appears to be rare or scarce. Mean peak densities in the Derwent Estuary, Tasmania were 0.12–1.11 individuals per 100 m² in 2000–2002, but subsequently declined significantly. In Tasmanian macroalgal (Ecklonia) habitats, densities of fewer than one individual per 500 m² are generally recorded (K. Martin-Smith, pers. comm.). Numbers from trawls (NZ) suggest that on soft bottoms, the species may be widespread if scarce, but further documentation is needed.

Exceptions to sparse populations are aggregations on some artificial structures and one documented report of large numbers aggregated on rafting seagrass (J. Manna, pers. comm.)

Population Trend
Unknown
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Threats

Major Threats
The main global threats to H. abdominalis include:

1. Bycatch in commercial demersal fisheries.
2. Unregulated take (recreational, domestic or for export).
3. Intrinsic life history parameters.
4. Natural predation.
5. The appearance of protection under CITES international trade legislation; a 10 cm size limit is likely to provide inadequate protection for this large species of seahorse.

1. Bycatch and Commercial Fisheries
Australia
Legislation requires that all interactions of commercial export fisheries with any syngnathid, including H. abdominalis, are recorded. However, there are few documented examples of commercial bycatch of H. abdominalis suggesting either low compliance or few interactions. Given the nature of Australian commercial fisheries operating in the geographic range of H. abdominalis (i.e., gear type, depth range, target species) it is probably unlikely that significant numbers are caught as bycatch. All of these commercial fisheries have been assessed against sustainable fishing guidelines by the Department of Environment & Heritage and certified as not having unacceptable impacts on syngnathids in either the short-term (Wildlife Trade Operation) or long-term (Exempt fishery).

However, despite mandatory reporting of syngnathid exports since 1998, Australian figures differed considerably from import statistics elsewhere. Official Australian government international trade data for the period 1998–2002 showed that declared exports of dried H. abdominalis were minimal (<10 kg) and sourced from aquaculture operations only. However recorded imports of seahorses (potentially including other Australian Hippocampus species) to China, Hong Kong and Taiwan over the same period were over 700 kg. It seems probable that other species of syngnathid (particularly pipehorses, Solegnathus spp.) from Australia were recorded as seahorses when they were imported into Hong Kong and Taiwan through misidentification, translation and data coding errors (Martin-Smith and Vincent in press). Nonetheless, species identities need to be verified in these jurisdictions.

New Zealand
In New Zealand, seahorses cannot be targeted by commercial fishing (1983 Fisheries Act). As such, they are not part of the New Zealand fisheries Quota Management System (QMS) that regulates the total amount of commercial catch in New Zealand. However, H. abdominalis caught as incidental bycatch during commercial fishing, may be legally sold to Licensed Fish Receivers (LFR) (section 67 of the 1983 Fisheries Act) limited to <10 kg wet weight per 24 hr period (section 67(2)) (Woods 2000). Bycatch has historically been solicited by New Zealand companies with strong Asian connections for domestic medicinal use and for export to countries such as Hong Kong and Taiwan for traditional medicinal (TM) usages (Vincent 1996). Seahorses caught as bycatch, but not sold for TM use, are sometimes kept as aquarium pets or dried as a curio. Seahorses are not known to be used as a food in New Zealand.

Only a short recorded catch history of H. abdominalis in New Zealand is available. Data from the Ministry of Fisheries databases (follow the link below to see Table 1.1) shows the total estimated catch (estimated actual catch by vessel skippers on day of fishing) of H. abdominalis from 1989 through 2005 was 240 kg, whereas the landed catch (recorded at factory/processing plant) for these years was 1,625 kg. It should be noted that because of the difference between the ways in which fishing year is recorded between estimated and landed catch data, estimated catch data appears one fishing year ahead of landed catch data, yet estimated catch and landed catch forms are filled out in the same calendar year. There are obvious disparities between estimated and landed catches, which may indicate either that estimated catch data is underestimated or that landed catch data is incorrect due to reasons such as species miscoding or data entry error. Miscoding of H. abdominalis (SHO) as Silver Dory (SDO – Cyttus novaezelandiae), a fish taken irregularly as bycatch has been known to occur within the fisheries database. The large pipehorse Solegnathus spinosissimus (SDR) is also sometimes misidentified by fishers as seahorses.

Detailed examination of individual Catch Effort Landing Return data (CELR, submitted by quota holders documenting total catch and fishing effort), reveal that the single largest catch of seahorses reported by one fisher was 60 kg in the Nelson/Marlborough dredge fishery. This is the exception in terms of catch size, as the majority of individual CELR’s reported seahorse catches <1 kg. Statistical areas of catch are on the Eastern side of New Zealand and central New Zealand, effectively within Fisheries Management Areas (FMA) 1 (Auckland East), 2 (Central East), 7 (Nelson Marlborough) and 20 (Kapiti Coast). The majority of seahorses were caught in statistical areas 010–011 (south of Auckland, North Island) and the Nelson Marlborough FMA (follow the link below to see Figures 3 & 4). However, the 010–011 data should be queried because of the purported catch method (see below for discussion on purported catch method of bottom long lining). Estimated catch by fishing method is summarised in Table 1.2 (follow the link below).

Seahorses were caught using a variety of methods. However, seahorses were probably not attracted to the fishing equipment through bait action. In the case of set nets, fish traps and cod traps, seahorses probably attach to the fishing equipment to use it as substratum and are then hauled onboard the fishing vessel still attached (Woods, pers. obs). In the case of dredging, seahorses are probably caught by the dredge whilst foraging over shellfish habitat following settlement on suitable near-surface substratum as juveniles (e.g., mussel spat-catching lines).

In the case of the bottom long line (BLL) data, this is probably incorrect and likely to be a species miscoding or data entry error. Bottom long lining for snapper is particularly popular around northern North Island and Bay of Plenty regions (010–011 statistical areas). Seahorses should not get hooked on long lines as the hooks used should be too large (usually size 5–15 hooks) for the seahorse’ small mouth, and seahorses are not attracted to large, non-moving bait. If the BLL data is correct, this leaves the possibility that the seahorses are rapidly colonising and attaching (using their prehensile tails) to set long lines, which in turn implies a very dense mobile surrounding population. This is unlikely given the limited information available on population densities for seahorses. From reviewing the catch data, dredging numbers appear generally feasible given the catch sizes, gear used, and observation of seahorse settlement on substratum above the dredged seafloor.

2. Unregulated take (Recreational, Domestic or for Export)
Australia
As H. abdominalis is protected by legislation throughout its geographic range, unregulated take should not pose a threat to populations. In State waters (<2 nautical miles from the coast) relevant laws in NSW, SA, Vic and Tas require that all recreational and domestic fishers hold a permit, which should ensure that the take is sustainable. Illegal take has been reported sporadically (D. Harasti, pers. comm.). However, there is little evidence of systematic IUU (illegal unregulated and unreported) fishing of H. abdominalis. Similarly, in Australian Commonwealth (federal) waters (2 nm to the edge of the EEZ), all syngnathids are protected as listed marine species by the Environment Protection and Biodiversity Conservation Act (EPBC), where under this legislation it is an offence to take, trade, injure or kill listed species except under permits issued by the Minister of the Environment. Under the former Australian Wildlife Protection Act (Regulation of Exports and Imports (WPA) (1 and the present EPBC (effective for syngnathids 2001), syngnathids have had the same level of protection since 1998.

New Zealand
As a non-QMS species, the recording of accurate export data for H. abdominalis has historically not taken place. Dried seahorses were either included in the export category 0305.59.00 (Other fish, whether or not salted but not smoked), or 0301.10.00 (Ornamental fish). Therefore, reconciliation of exports with estimated and landed catches is not historically possible. There are no catch limits for the amateur-take of seahorses in New Zealand in terms of numbers or sizes.

3. Intrinsic Life History Traits
By virtue of their life history characteristics, seahorses are generally regarded as being particularly vulnerable to direct over-exploitation, indirect fishing pressure through non-selective fishing gear or other disruptions such as habitat loss/degradation and environmental pollution around their coastal habitats (Lourie et al. 1999, Bell et al. 2003, Foster and Vincent 2004, Martin-Smith and Vincent 2005). Some of these traits apply to H. abdominalis, while other aspects of their life history may confer resilience.

Records from Australia and benthic trawls in New Zealand suggest that like other seahorses, populations are generally sparse (therefore individuals might have difficulty finding a mate in affected areas). However, mark-recapture studies in Tasmania and NSW have shown no evidence of mate fidelity as has been observed in other seahorse species (K. Martin-Smith, pers. comm.). It should be noted that trawled soft bottom may represent marginal habitat for the species, and populations may be more abundant in areas with greater rugosity or diverse benthic structure.

In fishes, a particular suite of life history traits is correlated with high recovery rate (Hutchings and Reynolds 2004); this includes rapid growth, short life span, small body size and low age at maturity (Reynolds et al. 2001). It appears that at least some of these traits may be relevant to H. abdominalis.

The age and growth rates of wild H. abdominalis are not well documented. The only in-situ data on growth for H. abdominalis (northern New Zealand) reports rates of 2.8 mm per month increases in standard length (SL) for small seahorses, and rates of up to 14.9 mm per month for 16 cm SL seahorses (Van Dijken 2001). Based on operculum ageing and length/weight relationships in wild animals, Lovett (1969) estimated that for H. abdominalis in Tasmania, seahorses from 9.1 to 11 cm in length were one year old; those 9.1–16.1 cm were 1–2 years old; those 14.4–19 cm were 2–3 years old; those 18–22 cm were 3–4 years old; and finally, those over 22 cm in length were 4+ years old. It is difficult to contextualize in situ growth rates or lifespan of H. abdominalis relative to other seahorse species because these data are generally not yet available. However, longevity is short when compared with families such as, for example, scorpaenids, serranids and lutjanids that live >25–40 years (Coleman et al. 2000).

If Lovett’s age/growth estimates are broadly applicable across the species’ range, then H. abdominalis reaches first sexual maturity at around one year of age (wild H. abdominalis 10 cm in length from Wellington Harbour were capable of brooding embryos, Woods, in press). Reproductive output of male H. abdominalis increases in terms of brood number, with size (Woods, in press). Seahorses show a relationship between maximum size and the appearance of reproductive characteristics (inferred to represent size at first reproduction) typical of other bony fishes (Foster and Vincent 2004), suggesting that they be not more vulnerable to exploitation than other teleosts.

Low fecundity is also cited as a life history trait that may confer risk to a species, although other authors point out that there is no relationship between fecundity and a population’s potential for recovery (Hutchings and Reynolds 2004). Seahorses have small brood sizes relative to other fishes with parental care (Foster and Vincent 2004). However, seahorses also mate iteratively which increases their overall reproductive output. H. abdominalis in particular appears to be reproductive year around, with the greatest proportion of juveniles occurring in the Austral summer (M. Hickford, unpublished data). Seahorses are also released from the male brood pouch fully metamorphosed, such that although numerically small relative to many other teleosts, broods of H. abdominalis may experience greater survivorship than other young.

4. Natural Predation
Natural predators of H. abdominalis include fishes such as skates (Dipturus spp.), red cod (Pseudophycis bachus), trumpeter (Latris lineata), blue cod (Parapercis colias), ling (Genypterus blacodes), sea perch (Helicolenus percoides) (Graham 1974), and banded wrasse (Notolabrus fucicola) (Denny and Schiel 2001) in NZ. In Australia, H. abdominalis is taken by flathead (Platycephalus spp.), Australian salmon (Arripsis truttacea), striped anglerfish (Antennarius striatus) and birds such as cormorants (Phalacrocorax spp.) and fairy penguins (Eudyptula minor) (Kuiter 2000, K. Martin-Smith pers. comm.). No research has yet addressed the effects of predation in any species of seahorse. Presumably H. abdominalis should have evolved to sustain natural predation rates, but the effects of predation in combination with exploitation remain unknown.

5. The Appearance of Protection Under CITES Appendix II legislation
All seahorse species are listed on CITES Appendix II, which, although still permitting trade, requires that such trade is determined to be non-detrimental to exploited populations. To issue a Non-Detriment Finding (NDF) the relevant CITES regulatory body must have a reasonable knowledge of the biology and ecology of the seahorse species concerned. In lieu of NDFs, a minimum seahorse height, such as the 10 cm minimum height (mHT) recommended by CITES may be used. The 10 cm mHT size restriction is an across-species compromise that provides one value for all species in the genus. For the majority of seahorse species that are similarly sized, such a minimum size restriction may well be applicable. However, the 10 cm mHT might not be applicable to seahorse species that are markedly different from an average seahorse size. For brooding male H. abdominalis from Wellington Harbour, when the CITES 10 cm mHT size restriction is translated to length (11.56 cm SL) and plotted against recorded brood sizes, it appears that this size restriction is not an adequate protective measure for H. abdominalis at this location (Woods, in press) as the data suggest that males appear to begin brooding just before the proposed minimum 10 cm mHT size and produce relatively low numbers of juveniles, leaving the most productive males (number of juveniles produced) open to exploitation. A larger minimum size restriction to allow sustainable exploitation of this species would appear to be required. Reproductive output should be modeled in light of in situ survivorship data in order to understand the implications of the 10 cm size limit for population persistence. Australia’s legislation should enable NDFs through appropriate management of permits at the State level and assessment of commercial export fishing operations under the EPBC.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Data deficient (DD)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

The main global threats to the big-belly seahorse are habitat loss, incidental by-catch in commercial fisheries and over-exploitation (10). Although this species is sold locally and internationally for the aquarium trade and collected and dried for use in the oriental medicine trade, typically as a tonic and as an aphrodisiac, such exploitation is strictly controlled in Australia (2). Similarly, while it has been recorded as by-catch, numbers are generally low and many core habitats are not fished with trawl gear (10).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
Globally
CITES Appendix II-listing for entire genus (Lourie et al. 2004). Australia and New Zealand are CITES parties.

Australia
1. Listed as Data Deficient by Environment Australia.
2. In Australia, all syngnathids have been subject to the export controls of the Commonwealth Wildlife Protection (Regulation of Exports and Imports) Act 1982 since 1 January 1998 (Lourie et al. 2004).
3. All syngnathids and solenostomids were gazetted as marine species under s248 of the Environment Protection and Biodiversity Conservation Act (EPBC) Act 1999 (Pogonoski et al. 2002), with implementation effective in 2001 (Lourie et al. 2001, Martin-Smith, pers. comm.).
4. Protection under the relevant fisheries laws in NSW, SA, Tas and Vic.
5. No ASFB Listing (Pogonoski et al. 2002).
6. Present in the following Australian Marine Protected Areas: Jervis Bay Marine Park, southern NSW. Suspected to be in most NSW Aquatic Reserves within its range (Pogononski et al. 2002).

New Zealand
1. Seahorses cannot be targeted by commercial fisheries, but can be sold to Licensed Fish Receivers as regulated quantities of bycatch (see Threats section).
2. Big bellied seahorses are present in the following New Zealand marine reserves, where legislation protects all wildlife from extraction or harm: Kapiti Island reserve (2,167 ha area), Kokomohua reserve, Te Angiangi reserve, Te Wharawhara (1,075 ha area) (Woods pers.obs). They may also be present in other existing marine reserves but their presence has not been documented. There are many more marine reserve areas currently under review around New Zealand, which may include seahorses in their fauna.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Conservation

A pressing requirement to assist in the conservation of this species is the need for further research on the big-belly seahorse. In order to effectively conserve a species, its biology, ecology, range and abundance must be fully understood and the threats facing it must be known (8). In addition, Marine Protected Areas need to be established to provide areas in which the species is protected (3). In November 2002 all seahorses were listed on Appendix II of the Convention on International Trade in Endangered Species (CITES); this means that the massive trade in seahorses must be regulated to ensure that the survival of wild populations is not threatened. However, Indonesia, Japan, Norway and South Korea have opted out of the listing for seahorses (7).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Wildscreen

Source: ARKive

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Importance

fisheries: of no interest; aquarium: commercial
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Wikipedia

Big-belly seahorse

The big-belly seahorse or pot bellied seahorse, Hippocampus abdominalis, is one of the largest seahorse species in the world with a length of up to 35 cm. Seahorses are members of the Syngnathidae family, and are in fact teleost fish.

Distribution[edit]

Southeast Australia and New Zealand.

Habitat[edit]

The big-belly seahorse is found among algae, seagrasses, and rocky reefs in shallow water, and attached to sponges and colonial hydroids in deeper areas. They also attach to jetty piles and other man-made objects, and can be found in estuaries. They usually inhabit waters less than 50 metres deep, but have been found as deep as 104 metres.[1] Juveniles are pelagic or attached to drifting seaweed.

Description[edit]

Potbelly Seahorses, Shedd Aquarium

The big-belly seahorse has a forward-tilted, long-snouted head, distended but narrow pot belly, and a long coiled tail. It swims using its dorsal fin with a vertical stance - when not swimming it coils its prehensile tail around any suitable growth, such as seaweed, waiting for planktonic animals to drift by when they are sucked up by the small mouth set at the tip of the snout much like a vacuum cleaner. Seahorses are voracious feeders, eating mainly crustaceans, such as shrimps, and other small animals living among the seaweed such as copepods and amphipods. They do not masticate so they can eat to excess because of their small gut tract. Each eye moves separately making it easier for them to see food and predators.

It is quite easy to distinguish males from females. The male have a smooth soft pouch-like area at the base of its abdomen between where the stomach meets the tail on the front side. Males also have a fin here but it is less obvious. The female will have more of a pointed stomach with a very obvious fin at the base of the stomach.

Reproduction[edit]

In the wild, the breeding can commence when the seahorses are about one year old and experiments show that this can be reduced to about eight months when in captivity. Breeding in big-belly seahorses is usually observed during spring/summer.

Courtship initiation involves a series of colour changes and postural displays. Dilating the opening of their brood pouch slightly, males inflate the pouch to balloon-like proportions with water by swimming forwards, or by pushing their body forwards in a pumping action, then closing the pouch opening. At the same time they lighten their pouch in colour to white or light yellow. Males also brighten their overall body coloration, typically intensifying the colour yellow. Males repeatedly approach their selected female with their head tucked down, and dorsal and pectoral fins rapidly fluttering.

A dried big-belly seahorse specimen

If the female is not receptive she ignores the male, who then looks for another potential mate. If no females are receptive the male stops displaying and deflates the pouch by dilating the pouch opening and bending forwards, expelling the water inside. If a female is receptive to a courting male, she reciprocates with her own colour changes and head tucking, typically intensifying the lighter colours such as yellow and white, highlighting the contrast between these colours and their overall darker blotching and banding patterning. A series of short bursts of swimming together in tandem then ensues, sometimes with tails entwined, or with the female tightly rolling her tail up. This has often been described as ‘dancing’. After coming to rest, the male attempts to get the female to swim towards the water surface with him by repeatedly pointing his snout upwards.

If the female responds by also pointing her snout upwards then the final stage of courtship follows. This involves both males and females swimming directly upwards towards the water surface with both their heads pointing upwards and tails pointing straight down. If they reach the water surface, one, or both seahorses, can often be seen and heard to snap their heads. To transfer her eggs to the male, the female faces the male, slightly above him. Pressing the base of her abdomen against the male's pouch she then squirts her eggs through the opening in the front of his dilated pouch.

The male seahorse can give birth to up to 490 babies at a time. Their colouring is a variable shade of brown, mottled with yellow-brown and with darker splotches. The tail is often circled with yellow bands. In deeper water where the tail is anchored to other colourful forms of life, such as sponges and hydroids, they often take on these colours.

References[edit]

  1. ^ Lourie, S. A., Foster, S. J., Cooper, E. W. T. and Vincent, A. C. J. 2004. A Guide to the Identification of Seahorses. Project Seahorse and TRAFFIC. 114 pp.
  • A. B. Wilson and K. M. Martin-Smith (2007) Genetic monogamy despite social promiscuity in the pot-bellied seahorse (Hippocampus abdominalis), Molecular Ecology, 16, 2345–2352.
  • Froese, Rainer and Pauly, Daniel, eds. (2006). "Hippocampus abdominalis" in FishBase. May 2006 version.
  • Tony Ayling & Geoffrey Cox, Collins Guide to the Sea Fishes of New Zealand, (William Collins Publishers Ltd, Auckland, New Zealand 1982) ISBN 0-00-216987-8
  • Chris M. C. Woods, National Institute of Water and Atmospheric Research, Received 16 July 2002; received in revised form 16 October 2002; accepted 14 November 2002 pp. 538. Effects of varying Artemia enrichment on growth and survival of juvenile seahorses, Hippocampus abdominalis. (Aquaculture 220 (2003)).
  • Chris M. C. WOODS, New Zealand Journal of Marine and Freshwater Research, 2000, Vol. 34 pp. 475–485. Preliminary observations on breeding and rearing the seahorse Hippocampus abdominalis (Teleostei: Syngnathidae) in captivity. (The Royal Society of New Zealand 2000).
  • Chris M. C. Woods, New Zealand Journal of Marine and Freshwater Research, 2002, Vol. 36: 655–660. Natural diet of the seahorse Hippocampus abdominalis. The Royal Society of New Zealand 2002
  • Chris M. C. Woods, New Zealand Journal of Marine and Freshwater Research, 2005, Vol. 39: 881–888 Reproductive output of male seahorses, Hippocampus abdominalis, from Wellington Harbour, New Zealand: implications for conservation. (The Royal Society of New Zealand 2005).
  • Chris M. C. Woods, National Institute of Water and Atmospheric Research, Received 17 December 1999; received in revised form 2 May 2000; accepted 9 May 2000. pp 377–388. Improving initial survival in cultured seahorses, Hippocampus abdominalis Leeson, 1827 (Teleostei: Syngnathidae) (Aquaculture 190, 2000).
  • Chris M. C. Woods & FiammaValentino, National Institute of Water and Atmospheric Research,Wellington, New Zealand. Naples Zoological Station‘A. Dohrn’,Villa Comunale1, Naples, Italy. Frozen mysids as an alternative to live Artemia in culturing seahorses Hippocampus abdominalis (Aquaculture Research, 2003 34, 757-763).
  • Gay, P. (2002, October 18). About seahorses. Southland Times, The, Retrieved March 12, 2008, from Australia/New Zealand Reference Centre database.
  • Hutchings, C. (1997, January). Secret life of seahorses. Geographical, 69(1), 31. Retrieved March 12, 2008, from Academic Search Premier database.
  • Schleichert, E. (2000, May). Seahorses. Ranger Rick, 34(5), 30. Retrieved March 12, 2008, from MAS Ultra - School Edition database.
  • Steeman, M. (2001, December 5). Plan to export seahorses to Asia. Dominion Post, The, Retrieved March 12, 2008, from Australia/New Zealand Reference Centre database.
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Average rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!