Overview

Distribution

Range Description

This species is located in the eastern Pacific, from San Francisco (California, USA) to San Antonio (central Chile) (Wisner and McMillan 1995).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Eastern Pacific: off southern California, USA. Also Peru (Ref. 5530) and Chile (Ref. 27540).
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Eastern Pacific.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Physical Description

Size

Maximum size: 650 mm TL
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Max. size

65.0 cm TL (male/unsexed; (Ref. 31276))
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Habitat and Ecology
This species is found on the continental slopes at depths from 700-1,860 m (Wisner and McMillan 1995). The syntypes were collected in the Gulf of Panama at 1,334 m depth in water of 3.6°C on rocky bottom (Garman 1899). The sex ratio in the material analyzed by Wisner and McMillan (1995) was equal off southern California (n=220) but unequal near the mouth of the Gulf of California (n=136), 66% females and 34% males, and Costa Rica to northern Chile (n=54), 59% female to 41% male; no hermaphroditism was found in 320 specimens examined.

The copulatory organ is absent in this species. The gonads of hagfishes are situated in the peritoneal cavity. The ovary is found in the anterior portion of the gonad, and the testis is found in the posterior part. The animal becomes female if the cranial part of the gonad develops or male if the caudal part undergoes differentiation. If none develops, then the animal becomes sterile. If both anterior and posterior parts develop, then the animal becomes a functional hermaphrodite. However, hermaphroditism being characterised as functional needs to be validated by more reproduction studies (Patzner 1998).

Systems
  • Marine
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Environment

bathydemersal; non-migratory; marine; depth range 700 - 1860 m (Ref. 31276)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Depth range based on 2 specimens in 1 taxon.

Environmental ranges
  Depth range (m): 651 - 797.5

Graphical representation

Depth range (m): 651 - 797.5
 
Note: this information has not been validated. Check this *note*. Your feedback is most welcome.

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Depth: 700 - 1860m.
From 700 to 1860 meters.

Habitat: bathydemersal.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Whale-Fall Communities

 The species associated with this article are major components of the successionary communities arising around bathyal whale carcasses (though by no means the only whale-fall associated species).

A whale carcass arriving on the bathyal sea-floor (roughly 700-1000m depth) represents a massive influx of nutrients to an otherwise nutrient-poor ecosystem (Lundsten et al 2010a; Lundsten et al 2010b; Smith and Baco 2003). The background rate of carbon deposition to the deep-sea floor is on the order of tens of kilograms per hectare per year (Smith and Baco 2003); an adult whale can weigh up to 160 tons. Consequently, it has long been thought that whale carcasses must represent a significant source of nutrients for sea-bed communities. Additionally, since the discovery of deep-sea hydrothermal vents and cold seeps, it has been hypothesized that whale-falls may serve as stepping stones for the dispersal of organisms between chemosynthesis-dominated bottom communities (Smith and Baco 2003). 

The community observed to spring up around whale carcasses has been characterized as having three major successionary stages (Danise et al 2012):

-Mobile scavenger stage: large, mobile detritivores consume the flesh of the whale. 

-Enrichment opportunist stage: slow-moving or sessile organisms colonize the nutrient-enriched area in and around the carcass.

-Sulphophilic stage: a chemosynthesis-dominated system based on the sulfides released by anaerobic decomposition of bone lipids.

The duration of the first stage depends largely on the mass of the whale, ranging from a few months to up to one and a half years. Initially the community is dominated by large detritivores such as sleeper sharks and hagfish, but as the amount of flesh available decreases, smaller scavengers such as rattails, amphipods, and and lithodid crabs begin to replace them. Once the bulk of the tissue is removed from the skeleton, the community begins to shift to phase two. At this point, extremely dense populations of dorvilleid worms and other polychaetes, as well as crustaceans and gastropods colonize the area around the carcass, exploiting the rich organic material in the surrounding sediments. The rapid recruitment of these organisms suggests they may be opportunistic whale-fall specialists. Over time, without a discrete boundary, sulphide emission from anaerobic decay of bone lipids in the whale skeleton begins to support a chemosynthetic fauna similar to that found around cold seeps and hydrothermal vents, including bacteria, organisms with endosymbiotic bacteria, bacterial grazers, and small predators. This community may linger for up to several decades (Smith and Baco 2003). Fossil evidence suggests that a similar pattern of succession has been evolving since the late Miocene, and may even have operated on the carcasses of Cretaceous plesiosaurs (Danise et al 2012). 

As always in ecology, this picture is somewhat oversimplified. In two 2010 articles, Lundsten et al observe that in addition to chemosynthetic fauna and whale-fall specialists, whale carcasses are often characterized by increased density of the background sea-floor organisms, particularly as time passes since the fall of the whale. Lundsten et al and Glover (2010) additionally found that there is a notable depth gradient in community structure, with fully sulphophilic ecosystems only developing on large, deep carcasses.

The function of whale-falls as stepping stones between cold seeps and hydrothermal vents remains unproven, but there is evidence for relatively large numbers of whale-fall specialist species, especially in the enrichment opportunist and sulphophilic stages (Smith and Baco 2003). Nearest-neighbor analyses of whale falls based on whale populations and the probability of a carcass sinking suggest that carcasses are distributed such that most organisms found in the latter two stages could easily disperse larvae between whale-fall sites. Unfortunately, this ecosystem may be endangered by declining whale populations and may even have already lost a great deal of diversity, as 19th century whale-fall density was likely up to six times higher than that in the present day (Smith and Baco 2003). 

  • Danise S, Cavalazzi B, Dominici S, Westall F, Monechi S, Guioli S. 2012. Evidence of microbial activity from a shallow water whale fall (Voghera, northern Italy). Paleogeography, Paleoclimatology, Paleoecology. 317-318: 13-26.
  • Glover AG, Higgs ND, Bagley PM, Carlsson R, Davies AJ, Kemp KM, Last KS, Norling K, Rosenberg R, Wallin KA, Kallstrom B, Dahlgren TG. 2010. A live video observatory reveals temporal processes at a shelf-depth whale-fall. Cahiers de Biologie Marine. 51:375-381.
  • Lundsten L, Paull CK, Schlining KL, McGann M, Ussler III W. 2010. Biological characterization of a whale-fall near Vancouver Island, British Columbia, Canada. Deep-Sea Research I, 57:918-922.
  • Lundsten L, Schlining KL, Frasier K, Johnson SB, Kuhnz LA, Harvey JBJ, Clague G, Vrijenhoek RC. 2010. Deep-Sea Research I, 57:1573-1584.
  • Smith CR and Baco AR. 2003. Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology: an Annual Review. 41:311-354.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Peter Everill

Supplier: Peter Everill

Unreviewed

Article rating from 0 people

Average rating: 2.5 of 5

Life History and Behavior

Life Cycle

Copulatory organ absent. The gonads of hagfishes are situated in the peritoneal cavity. The ovary is found in the anterior portion of the gonad, and the testis is found in the posterior part. The animal becomes female if the cranial part of the gonad develops or male if the caudal part undergoes differentiation. If none develops, then the animal becomes sterile. If both anterior and posterior parts develop, then the animal becomes a functional hermaphrodite. However, hermaphroditism being characterised as functional needs to be validated by more reproduction studies (Ref. 51361 ).
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
LC
Least Concern

Red List Criteria

Version
3.1

Year Assessed
2011

Assessor/s
Mincarone, M.M.

Reviewer/s
Polidoro, B., Knapp, L. & Carpenter, K.E.

Contributor/s

Justification
This species is widespread in the Eastern Pacific, and is considered common. Although there may be some deep-sea trawl fisheries operating within at least part of the depth and distributional range of this species, there is no current indication of widespread population decline. It is listed as Least Concern.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Population

Population
The population for this species is known from many specimens collected from Southern California, Gulf of California, Costa Rica and Chile. There are also numerous records housed in museums. This species is known to be common, particularly along the northern part of its range but this is likely a sampling bias as this part of the distribution range has been heavily surveyed. Records are unreported along the western coast of South America.

Population Trend
Unknown
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Threats

Major Threats
There are no known direct threats to this species but it is exposed to deep-sea bottom trawling throughout its distribution range.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Least Concern (LC)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
Marine Protected Areas in Southern California, Gulf of California and along the coast of Central America protect only very small parts of the species' range (<10%). More research needed on species' biology, population size and impact of deep-sea fishery.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Importance

fisheries: of no interest
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Average rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!