Overview

Comprehensive Description

Biology

Usually found near vegetation around lake margin. Spawning occurs in lake tributaries.
  • Page, L.M. and B.M. Burr 1991 A field guide to freshwater fishes of North America north of Mexico. Houghton Mifflin Company, Boston. 432 p. (Ref. 5723)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

North America: endemic to the upper Klamath River Basin, including the Lost River in Oregon and Lower Klamath Lake sub-basins and Clear Lake Reservoir in California, USA.
  • U.S. Fish and Wildlife Service 2012 Revised recovery plan for the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris). U.S. Fish and Wildlife Service, Pacific Southwest Region, Sacramento, California. xviii + 122 pp. (Ref. 94077)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

endemic to a single nation

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

National Distribution

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Type of Residency: Year-round

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Global Range: (5000-20,000 square km (about 2000-8000 square miles)) Historical range included the upper Klamath River and Lost River basins in Oregon and California (Moyle 2002; USFWS 1994, 2007). Current range in the Lost River drainage includes Clear Lake Reservoir, the main river below the reservoir, the Boles Creek and Willow Creek drainage above the reservoir, Gerber Reservoir, and small reservoirs scattered along the creeks, plus a small population in Tule Lake at the terminus of the Lost River (USFWS 1993, Moyle 2002). Genetic data suggest that the populations in Gerber Reservoir and Clear Lake may not be C. brevirostris (see USFWS 2007); further study is needed. Current range in the Klamath River basin includes Upper Klamath Lake (Oregon) and its major tributaries, (Williamson, Sprague, and Wood rivers) and possibly the lower reaches of smaller tributaries as well (Moyle 2002). Small populations occur in Iron Gate and Copco reservoirs on the Klamath River (USFWS 1993, Moyle 2002).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Historic Range:
U.S.A. (CA, OR)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Oregon and California, U.S.A.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Size

Max. size

64.0 cm TL (male/unsexed; (Ref. 5723)); max. reported age: 33 years (Ref. 94077)
  • Page, L.M. and B.M. Burr 1991 A field guide to freshwater fishes of North America north of Mexico. Houghton Mifflin Company, Boston. 432 p. (Ref. 5723)
  • U.S. Fish and Wildlife Service 2012 Revised recovery plan for the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris). U.S. Fish and Wildlife Service, Pacific Southwest Region, Sacramento, California. xviii + 122 pp. (Ref. 94077)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Length: 50 cm

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Maximum size: 640 mm TL
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© FishWise Professional

Source: FishWise Professional

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Habitat and Ecology
Adults and juveniles prefer shallow, turbid, and highly productive lakes that are cool, but not cold, in summer (generally 15 to 25°C), have adequate dissolved oxygen, (above 4 mg/l), and are moderately alkaline (Moyle 2002).

Spawning occurs in lake tributaries, in riffles or runs with gravel or cobble substrate, moderate flows, and depths of 11-130 cm (USFWS 2007). Historically, spawning occurred also along the margins of Upper Klamath Lake, but that now appears to be rare (Barry et al. 2007b). Fry move into lakes soon after hatching. Shoreline river and lake habitats are important for larvae and young (especially emergent vegetation for larvae) (USFWS 2007).

Systems
  • Freshwater
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Environment

demersal; potamodromous (Ref. 94077); freshwater
  • U.S. Fish and Wildlife Service 2012 Revised recovery plan for the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris). U.S. Fish and Wildlife Service, Pacific Southwest Region, Sacramento, California. xviii + 122 pp. (Ref. 94077)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat Type: Freshwater

Comments: Adults and juveniles prefer shallow, turbid, and highly productive lakes that are cool, but not cold, in summer (generally 15 to 25°C), have adequate dissolved oxygen, (above 4 mg/l), and are moderately alkaline (Moyle 2002).

Spawning occurs in lake tributaries, in riffles or runs with gravel or cobble substrate, moderate flows, and depths of 11-130 cm (USFWS 2007). Historically, spawning occurred also along the margins of Upper Klamath Lake, but that now appears to be rare (Barry et al. 2007). Fry move into lakes soon after hatching. Shoreline river and lake habitats are important for larvae and young (especially emergent vegetation for larvae) (USFWS 2007).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Migration

Potamodromous. Migrating within streams, migratory in rivers, e.g. Saliminus, Moxostoma, Labeo. Migrations should be cyclical and predictable and cover more than 100 km.
  • U.S. Fish and Wildlife Service 2012 Revised recovery plan for the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris). U.S. Fish and Wildlife Service, Pacific Southwest Region, Sacramento, California. xviii + 122 pp. (Ref. 94077)
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Non-Migrant: No. All populations of this species make significant seasonal migrations.

Locally Migrant: Yes. At least some populations of this species make local extended movements (generally less than 200 km) at particular times of the year (e.g., to breeding or wintering grounds, to hibernation sites).

Locally Migrant: No. No populations of this species make annual migrations of over 200 km.

In Upper Klamath Lake, migrations begin as water temperatures warm in April and May; peak was in May in 1988 (Scoppettone and Vinyard 1991). Migrations into the Klamath River from Copco Reservoir occurred in late April in 1987 (Scoppettone and Vinyard 1991).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Trophic Strategy

Comments: Limited data from Upper Klamath Lake suggest a diet dominated by cladocerans (Scoppettone and Vinyard 1991).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population Biology

Number of Occurrences

Note: For many non-migratory species, occurrences are roughly equivalent to populations.

Estimated Number of Occurrences: 1 - 5

Comments: This species is represented by only two primary populations. Other populations, such as those in the Klamath River reservoirs, are apparently sustaining themselves with the input of larvae or older suckers from other areas (i.e., those in Upper Klamath Lake and Clear Lake) (USFWS 2007).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Global Abundance

10,000 - 100,000 individuals

Comments: Total adult population size is unknown but likely exceeds 10,000..

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Reproduction

Spawning occurs mainly from early April to early May (USFWS 2007). Sexual maturity is attained between years four and six (USFWS 2007). This species is long-lived, but apparently it has the shortest life span among the lakesuckers; a 33-year-old hybrid was captured in Copco Reservoir in 1987 (Scoppettone and Vinyard 1991).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
EN
Endangered

Red List Criteria
A2bc; B1ab(iii,v)+2ab(iii,v)

Version
3.1

Year Assessed
2013

Assessor/s
NatureServe

Reviewer/s
Smith, K. & Darwall, W.R.T.

Contributor/s

Justification
Listed as Endangered because the extent of occurrence is less than 5,000 sq km, area of occupancy may be less than 500 sq km, the species is represented by not more than five locations, and the population has experienced a decline in the number of mature individuals over the past three generations (probably at least 25 years). Habitat is subject to extreme fluctuations in water availability. Also, adult population size may have declined by at least 50% over the past three generations.

History
  • 1996
    Endangered
  • 1994
    Endangered
    (Groombridge 1994)
  • 1990
    Endangered
    (IUCN 1990)
  • 1988
    Endangered
    (IUCN Conservation Monitoring Centre 1988)
  • 1986
    Endangered
    (IUCN Conservation Monitoring Centre 1986)
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

National NatureServe Conservation Status

United States

Rounded National Status Rank: N1 - Critically Imperiled

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: G1 - Critically Imperiled

Reasons: Restricted to a small area in Oregon and California, where extensive habitat alteration has resulted in poor recruitment and ongoing declines.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Current Listing Status Summary

Status: Endangered
Date Listed: 07/18/1988
Lead Region:   California/Nevada Region (Region 8) 
Where Listed: Entire


Population detail:

Population location: Entire
Listing status: E

For most current information and documents related to the conservation status and management of Chasmistes brevirostris , see its USFWS Species Profile

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population

Population
This species is represented by only two primary populations. Other populations, such as those in the Klamath River reservoirs, are apparently sustaining themselves with the input of larvae or older suckers from other areas (i.e., those in Upper Klamath Lake and Clear Lake) (USFWS 2007).

Total adult population size is unknown but likely exceeds 10,000.

Formerly the species was very abundant in Upper Klamath Lake, Oregon. Population size and habitat quality clearly have declined greatly over the long term; degree of decline is uncertain but probably quite large.

Available information for the 1980s indicates that the population was declining as a result of little or no recruitment coupled with mortality from the sport fishery and fish die-offs (USFWS 2007).

Spawning migrations have declined significantly in recent years. Recent data indicate that the population has not recovered from the substantial declines in the 1990s (USFWS 2007). A major decline in an abundance index for the Williamson River occurred in the mid to late 1990s, and the index remained low through at least 2003 (USFWS 2007). Survivorship in Upper Klamath Lake appears to have been relatively low in the early 2000s (see USFWS 2007). Recruitment in Upper Klamath Lake was essentially nil from 1997-2004 (Janney and Shively 2007). Populations in Gerber Reservoir and Clear Lake show evidence of frequent recent recruitment and declines in the number of large adults (Barry et al. 2007a, USFWS 2007). The small population in the Tule Lake sumps appears to be isolated from suitable spawning habitat and likely is not self-sustaining (USFWS 2007).

The time frame for short-term trend (10 years or three generations, whichever is longer) is probably at least 25 years.

Population Trend
Decreasing
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Global Short Term Trend: Decline of 50 to >90%

Comments: Spawning migrations have declined significantly in recent years. Recent data indicate that the population has not recovered from the substantial declines in the 1990s (USFWS 2007). A major decline in an abundance index for the Williamson River occurred in the mid- to late 1990s, and the index remained low through at least 2003 (USFWS 2007). Survivorship in Upper Klamath Lake appears to have been relatively low in the early 2000s (see USFWS 2007). Recruitment in Upper Klamath Lake was essentially nil from 1997-2004 (Janney and Shively 2007). Populations in Gerber Reservoir and Clear Lake show evidence of frequent recent recruitment and declines in the number of large adults (Barry et al. 2007, USFWS 2007). The small population in the Tule Lake sumps appears to be isolated from suitable spawning habitat and likely is not self-sustaining (USFWS 2007).

The time frame for short-term trend (10 years or three generations, whichever is longer) likely is at least 25 years.

Global Long Term Trend: Decline of 50 to >90%

Comments: Formerly the species was very abundant in Upper Klamath Lake, Oregon. Population size and habitat quality clearly have declined greatly over the long term; degree of decline is uncertain but likely quite large.

Available information for the 1980s indicates that the population was declining as a result of little or no recruitment coupled with mortality from the sport fishery and fish die-offs (USFWS 2007).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Major Threats
Spawning migrations have declined significantly in recent years, due in part to alteration of habitat (especially damming). Chiloquin Dam, constructed in 1928 on the Sprague River, Oregon, cut off 85% of spawning range; recruitment has been essentially nonexistent in recent decades (Scoppettone and Vinyard 1991).

Human-caused increases in nutrient inputs to Upper Klamath Lake have resulted in massive summer and fall blooms of cyanobacteria and elevated lake pH levels of 9.5-10.5, which in turn have led to mass mortalities and curtailed reproduction of the Shortnose and Lost River Suckers (Falter and Cech 1991, G. Scoppettone pers. comm. 1995). Fish kills also may result from low dissolved oxygen levels (G. Scoppettone pers. comm. 1995).

Extensive modification of the watersheds and wetlands of the Lost River - Tule Lake system, the Lower Klamath Lake system, and the Upper Klamath Lake system resulted in substantial loss of habitat. The rate of habitat change has slowed markedly, but only a small fraction of the original habitat remains, and much of the remaining habitat is in a degraded condition. Restoration efforts are beginning to reverse the trend, but will probably require many years to produce a substantially increased and stable habitat base. Adverse water quality is the most critical threat, and substantial improvement is not expected in the near future. Based on the record of the past two decades and the expected future summer water quality of Upper Klamath Lake, it is reasonable to conclude that within the foreseeable future, there is a high probability of multiple mortality events that would greatly reduce population sizes. It is possible that infrequent recruitment would be unable to offset declines from such die-offs. [Source: USFWS 2007]

Fish entrainment and restricted passage are threats. Entrainment at Link River Dam and associated hydropower diversions probably poses a high risk to the species. The threat there could be reduced if the hydropower diversions are screened or eliminated, and if discharges at the dam could be modified to reduce entrainment. Passage to spawning habitat in the Sprague River is still impeded by Chiloquin Dam, but that structure is planned for removal in the near future. Elsewhere in the upper basin, some entrainment of suckers is occurring, but mostly larvae are entrained, and we do not consider this a substantial threat at the population level. [Source: USFWS 2007]

Disease, parasites, and predation/competition by exotic fishes pose some risk, although the degree to which they affect the shortnose sucker is not quantified. Disease and parasites alone may not pose a significant risk, but paired with the impacts of adverse water quality, they can substantially affect sucker survival (USFWS 2007).

Low water levels continue to affect sucker habitats, especially in drought years (USFWS 2007). Drought is a threat because of its potential to cut off spawning habitat, to reduce rearing habitat and to increase disease, parasitism, and predation. However, historically the species has endured periods of prolonged drought and persisted, indicating that drought is not a major threat to the species (USFWS 2007).

Since the listing, protections under the Endangered Species Act have limited take of suckers and stimulated restoration actions. Water quality regulations have begun to lead toward improved water quality, but have not yet resulted in substantial improvement, and significant questions remain regarding the potential for improvement in Upper Klamath Lake. With the exception of management of water quantity under the Act, regulation of water quantity is not focused on improvement of sucker habitat, and relationships between water quantity and sucker performance remain incompletely demonstrated. Thus, while application of federal and state regulations has apparently helped stabilize sucker habitat and has initiated progress toward improvement of water quality, existing regulations cannot be expected to substantially reduce the primary threat to the species for many years. [Source: USFWS 2007]

Hybridization with other sucker species has resulted in part from the high degree of habitat alteration that has occurred in recent decades (Moyle 2002). The impact of hybridization on species' conservation is currently unclear (USFWS 2007).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Endangered (EN) (A2bc; B1ab(iii,v)+2ab(iii,v))
  • IUCN 2006 2006 IUCN red list of threatened species. www.iucnredlist.org. Downloaded July 2006.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Degree of Threat: Very high - high

Comments: Spawning migrations have declined significantly in recent years, due in part to alteration of habitat (especially damming). Chiloquin Dam, constructed in 1928 on the Sprague River, Oregon, cut off 85% of spawning range; recruitment has been essentially nonexistent in recent decades (Scoppettone and Vinyard 1991).

Human-caused increases in nutrient inputs to Upper Klamath Lake have resulted in massive summer and fall blooms of cyanobacteria and elevated lake pH levels of 9.5-10.5, which in turn have led to mass mortalities and curtailed reproduction of the shortnose and Lost River suckers (Falter and Cech 1991; G. Scoppettone, pers. comm., 1995). Fish kills also may result from low dissolved oxygen levels (G. Scoppettone, pers. comm., 1995).

Extensive modification of the watersheds and wetlands of the Lost River - Tule Lake system, the Lower Klamath Lake system, and the Upper Klamath Lake system resulted in substantial loss of habitat. The rate of habitat change has slowed markedly, but only a small fraction of the original habitat remains, and much of the remaining habitat is in a degraded condition. Restoration efforts are beginning to reverse the trend, but will probably require many years to produce a substantially increased and stable habitat base. Adverse water quality is the most critical threat, and substantial improvement is not expected in the near future. Based on the record of the past two decades and the expected future summer water quality of Upper Klamath Lake, it is reasonable to conclude that within the foreseeable future, there is a high probability of multiple mortality events that would greatly reduce population sizes. It is possible that infrequent recruitment would be unable to offset declines from such die-offs. [Source: USFWS 2007]

Fish entrainment and restricted passage are threats. Entrainment at Link River Dam and associated hydropower diversions likely poses a high risk to the species. The threat there could be reduced if the hydropower diversions are screened or eliminated, and if discharges at the dam could be modified to reduce entrainment. Passage to spawning habitat in the Sprague River is still impeded by Chiloquin Dam, but that structure is planned for removal in the near future. Elsewhere in the upper basin, some entrainment of suckers is occurring, but mostly larvae are entrained, and we do not consider this a substantial threat at the population level. [Source: USFWS 2007]

Disease, parasites, and predation/competition by exotic fishes pose some risk, although the degree to which they affect the shortnose sucker is not quantified. Disease and parasites alone may not pose a significant risk, but paired with the impacts of adverse water quality, they can substantially affect sucker survival (USFWS 2007).

Low water levels continue to affect sucker habitats, especially in drought years (USFWS 2007). Drought is a threat because of its potential to cut off spawning habitat, to reduce rearing habitat and to increase disease, parasitism, and predation. However, historically the species has endured periods of prolonged drought and persisted, indicating that drought is not a major threat to the species (USFWS 2007).

Since the listing, protections under the Endangered Species Act have limited take of suckers and stimulated restoration actions. Water quality regulations have begun to lead toward improved water quality, but have not yet resulted in substantial improvement, and significant questions remain regarding the potential for improvement in Upper Klamath Lake. With the exception of management of water quantity under the Act, regulation of water quantity is not focused on improvement of sucker habitat, and relationships between water quantity and sucker performance remain incompletely demonstrated. Thus, while application of federal and state regulations has apparently helped stabilize sucker habitat and has initiated progress toward improvement of water quality, existing regulations cannot be expected to substantially reduce the primary threat to the species for many years. [Source: USFWS 2007]

Hybridization with other sucker species has resulted in part from the high degree of habitat alteration that has occurred in recent decades (Moyle 2002). The impact of hybridization on species' conservation is currently unclear (USFWS 2007).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
A number of landowners and agencies are directly or indirectly focused on sucker recovery. The high rates of participation in federal and state conservation programs by ranchers and farmers in the Sprague and Wood river valleys suggests that essential elements of habitat recovery on private land (i.e., voluntary participation and funding) are now in place. This should make it more efficient to conduct restoration in the future. Furthermore, the USFWS and its partners are committed to developing and implementing a rigorous monitoring program to evaluate the effectiveness of recovery actions and to providing a feedback loop for adaptive-management. These efforts, if successful and sustained, should help recover the Shortnose Sucker. [Source: USFWS 2007, which see for further information on restoration efforts]
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Importance

fisheries:
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© FishBase

Source: FishBase

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Risks

Stewardship Overview: A number of landowners and agencies are directly or indirectly focused on sucker recovery. The high rates of participation in federal and state conservation programs by ranchers and farmers in the Sprague and Wood river valleys suggests that essential elements of habitat recovery on private land (i.e., voluntary participation and funding) are now in place. This should make it more efficient to conduct restoration in the future. Furthermore, the USFWS and its partners are committed to developing and implementing a rigorous monitoring program to evaluate the effectiveness of recovery actions and to providing a feedback loop for adaptive-management. These efforts, if successful and sustained, should help recover the shortnose sucker. [Source: USFWS 2007, which see for further information on restoration efforts]

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Shortnose sucker

The shortnose sucker, Chasmistes brevirostris, is a rare species of fish in the family Catostomidae, the suckers. This fish is native to southern Oregon and northern California in the United States. This is a federally listed endangered species of the United States.

This fish can grow up to half a meter long. It has a large head and thin, fleshy lips, the lower of which is notched. It has been observed to reach 33 years of age. It becomes sexually mature between four and six years of age.[1]

The preferable habitat for the fish is a turbid, shallow, somewhat alkaline, well-oxygenated lake that is cool, but not cold, in the summer season.[1]

The fish usually spawns in flowing river habitat, such as riffles, with gravelly or rocky substrates. It was at one time observed to spawn at lakeshores, but it apparently does this rarely today. The eggs incubate for two weeks and the juveniles hatch between April and June. The juveniles generally stay along the shoreline in vegetated or unvegetated habitat.[1]

Today this fish can be found in Upper Klamath Lake and its tributaries, the Lost River, Clear Lake, the Klamath River, and Gerber Reservoir of the Klamath Project.[1]

Threats to this species include the reduction of its spawning habitat, much of which was eliminated by the construction of dams in local waterways. Upper Klamath Lake experiences periodic blooms of cyanobacteria and reduction of dissolved oxygen in the water. Land alteration along the waterways has caused loss and degradation of the habitat.[2]

References[edit]

  1. ^ a b c d USFWS. Chasmistes brevirostris Five-year Review. July 2007.
  2. ^ Chasmistes brevirostris. The Nature Conservancy.
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy

Comments: Genetic introgression with Catostomus snyderi has occurred in the Lost River system and with C. rimiculus in Copco Reservoir (but gene pool relatively intact). Hybrids with Deltistes luxatus or Catostomus snyderi are common in Upper Klamath Lake (Scoppettone and Vinyard 1991).

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!