Overview

Distribution

The Pacific Sea Nettle is common off the coasts of Oregon and northern California, especially in late summer, fall, and winter. It is often encountered in aggregations just offshore and stranded on beaches.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

The Pacific Sea Nettle (C. fuscescens) is a large jellyfish with a bell of up to about 30 cm. in diameter. It has four long, spiraling tentacles surrounding its mouth that are known as “oral arms”. Around the perimeter of the bell are 24 marginal tentacles, organized in eight groups of three, which may trail several meters behind the bell. The exumbrella (upper, convex surface of the bell) is amber-colored and darkest near the margin (Carlton 2007).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Look Alikes

Lookalikes

A related species, the Northern Sea Nettle (C. melanaster) is also found in the eastern Pacific, but usually occurs significantly farther north in the Bering Sea and Gulf of Alaska, although it may drift south at least as far as Oregon. It is similar to the Pacific Sea Nettle and has often been confused with it, but, among other differences, the Northern Sea Nettle has an exumbrella (upper, convex surface of the bell) that is pale white and the pale subumbrella (lower, concave surface of the bell) has 16 radiating dark streaks that are absent in the Pacific Sea Nettle (Carlton 2007). Martin et al. (1997) provide comparative descriptions of the Chrysaora species recognized as of 1997. Additional information on some of these species can be found in Larson (1990).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Depth range based on 1 specimen in 1 taxon.

Environmental ranges
  Depth range (m): 10.92 - 10.92
 
Note: this information has not been validated. Check this *note*. Your feedback is most welcome.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

A variety of hyperiid amphipod crustaceans may be closely associated (especially early in their development) with various types of gelatinous zooplankton, including medusae, ctenophores, siphonophores, and salps. The degree to which each hyperiid species is host-specific (i.e., restricted to just one or a few particular host species) remains unclear. Similarly, the question of the degree to which these associations are obligate (i.e., required for the hyperiid to complete its life cycle) remains controversial. The question of how much the hyperiids harm their hosts also remains controversial and presumably varies depending on the species involved (Gasca and Haddock 2004 and references therein). Hyperia medusarum and Lestrigonus shoemakeri are two parasites that may heavily infest the Pacific Sea Nettle in both the wild and in captivity (Crossley et al. 2009).

Larvae of Cancer gracilis crabs may be found hitchiking rides on Pacific Sea Nettles (Wrobel and Mills 1998 cited in Widmer 2008).

Suchman et al. (2008) analyzed the diet of the Pacific Sea Nettle off northern California and found that the eggs of euphausiid crustaceans (krill) were consumed at a disproportionately high rate relative to their abundance in the plankton. When euphausiid eggs were absent, gelatinous zooplankton were the preferred food. Only where both krill eggs and gelatinous zooplankton were scarce did the widely abundant calanoid copepods become the primary prey of the Pacific Sea Nettle. These differences in prey "preferences" may largely be a function of the relative difficulty of catching different prey (e.g., eggs that can't escape versus fast-moving copepods).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Ecology

Prey consumption by large medusae such as the Pacific Sea Nettle can have a major impact in structuring ecological communities (Brodeur et al. 2002; Brodeur et al. 2008). For example, in a a study in the Bering Sea, Brodeur et al. (2002) estimated that the Northern Sea Nettle (a close relative of the Pacific Sea Nettle) consumed a third of the standing stock of zooplankton during the summer season. Based on research focused on biologically rich coastal upwelling regions off the coast of Oregon and northern California, Suchman et al. (2008) and Brodeur et al. (2008) concluded that when the Pacific Sea Nettle and other medusae are seasonally abundant they have the potential to significantly deplete the standing stock of vulnerable prey and to compete with predatory fish feeding on similar prey items in the northern California Current.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Behavior

Behaviour

Sea nettles can swim against a current with the oral arms and tentacles extended. They move by means of jet propulsion: squeezing the bell, the sea nettle pushes water behind it, enabling it to move through the water column. Most of the time, however, they float largely passively.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Cycle

As is the case for many jellyfish, reproduction includes a complex cycle of asexual and sexual phases.The complete life cycle of the Pacific Sea Nettle has been studied in detail at The Monterey Aquarium (California, USA), where these jellyfish have been maintained in captivity since the 1990s, and is described by Widmer (2008).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Risks

Risk Statement

Pacific Sea Nettle stings rarely require medical attention, despite causing considerable pain and discomfort. However, at least one case of severe reaction has been attributed to multiple stings from this species (Burnett 2006). In recent years, laboratory and field trials of a commercially developed sting inhibitor have shown excellent promise in reducing both the frequency and severity of stings from Pacific Sea Nettlles, as well as some more dangerous jellyfish (Kimball et al. 2004; Boulware 2006). This product is reportedly based at least in part on the chemical properties of the mucus coating of clownfish (Boulware 2006), which protects the clownfish from the stings of the sea anemones with which they are closely associated.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Chrysaora fuscescens

Chrysaora fuscescens is a common free-floating scyphozoa that lives in the Pacific Ocean, and is commonly known as the Pacific Sea Nettle or West Coast Sea Nettle.

Sea nettles have a distinctive golden-brown bell with a reddish tint. The bell can grow to be larger than one meter (three feet) in diameter in the wild, though most are less than 50 cm across. The long, spiraling, white oral arms and the 24 undulating maroon tentacles may trail behind as far as 3.6 to 4.6m (12 to 15 feet). For humans, its sting is often irritating, but rarely dangerous.

Chrysaora fuscescens has proven to be very popular for display at public aquariums due to their bright colors and relatively easy maintenance. It is possible to establish polyps and culture Chrysaora in captivity. When provided appropriate aquarium conditions, the medusae do well under captive conditions.[1]

Contents

Distribution and habitat

Chrysaora fuscescens is commonly found along the coasts of California and Oregon, though some reside in the waters north to the Gulf of Alaska, west to the seas around Japan and south to the Baja Peninsula. The populations reach their peak during the late summer. In recent years, C. fuscescens has become overly abundant off the coast of Oregon, which is thought to be an indicator of climate change. However, others suspect that the population is increasing because of human influences to coastal regions, but little to no historical population data from which to compare current abundances exist.[1][2]

Feeding and Predators

In common with other cnidaria, Chrysaora fuscescens are carnivorous animals. They catch their prey by means of cnidocyst (or nematocyst) -laden tentacles that hang down in the water. The toxins in their nematocysts are effective against both their prey and humans, though it is typically nonlethal to the latter. Because C. fuscescens cannot chase after their prey, they must eat as they drift. By spreading out their tentacles like a large net, the sea nettle is able to catch food as it passes by. When prey brushes up against the tentacles, thousands of nematocysts are released, launching barbed stingers which release a paralyzing toxin into the quarry. The oral arms begin digestion as they transport the prey into the sea nettle’s mouth.[3]

C. fuscescens feeds on a wide variety of zooplankton, crustaceans, salps, pelagic snails, small fish as well as their eggs and larvae, and other jellyfish. Due to their growing numbers, they seem to be reducing fish populations and have become nuisances to the fisherman of Oregon by clogging up fishing nets. Their dense swarms have also become problematic for scientific trawls and water intake.

Despite having a potent sting, Chrysaora fuscescens is prey to many marine birds and large fish.[1]

Body Systems

Chrysaora fuscescens swim using jet propulsion by squeezing their bell and pushing water behind them, allowing them to swim against currents, although most of the time they prefer to simply float. Sometimes they pick up hitchhikers, including small fish and crabs, which hide inside the sea nettle’s bell and may feed on it.[4]

Although they cannot see distinct shapes or colors, C. fuscescens have rhopalia located around the rim of the bell to help detect changes in light.[3]

Reproduction

Chrysaora fuscescens is capable of both sexual reproduction in the medusa stage and asexual reproduction in the polyp stage. The life cycle of C. fuscescens begins when females catch sperm released by the males to fertilize the eggs she has produced and is holding in her mouth. These fertilized eggs remain attached to her oral arms, and there they grow into flat bean-shaped planula. Once they grow into flower-shaped polyps, they are released into the ocean where they attach themselves to a solid surface and undergo asexual reproduction. The polyp makes identical copies of itself this by means of budding, where the new polyp grows from its side. After the new polyp is fully formed, it too is released into the ocean and undergoes metamorphosis as it grows, developing a bell, arms, and tentacles until it is a fully formed medusa.[3]

Etymology

The origin of the genus name Chrysaora lies in Greek mythology with Chrysaor, brother of Pegasus and son of Poseidon and Medusa. Translated, Chrysaor means “he who has a golden armament.”[5]

Sea Nettle ("Chrysaora Fuscescens"), Monterey Bay Aquarium.ogv

Gallery

References

Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!