Articles on this page are available in 1 other language: Spanish (11) (learn more)

Overview

Brief Summary

Biology

zooxanthellate
  • UNESCO-IOC Register of Marine Organisms
Creative Commons Attribution 3.0 (CC BY 3.0)

© WoRMS for SMEBD

Source: World Register of Marine Species

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comprehensive Description

Biology: Skeleton

More info
AuthorSkeleton?Mineral or Organic?MineralPercent Magnesium
Cairns, Hoeksema, and van der Land, 1999 YES MINERAL ARAGONITE
Veron, 2000 YES MINERAL ARAGONITE
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Hexacorallians of the World

Source: Hexacorallians of the World

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

Range Description

Siderastrea glynni is an endemic species of Panama; only known from a single locality, Uraba Island, Panama Bay, near the Pacific opening of the Panama Canal (Budd and Guzmán 1994, Forsman et al. 2005). S. glynni was discovered in September 1992 (Budd and Guzmán 1994).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Type Information

Holotype for Siderastrea glynni Budd & Guzman, 1994
Catalog Number: USNM 93956
Collection: Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology
Preparation: Dry
Collector(s): H. Guzman
Year Collected: 1992
Locality: Panama Bay, Urava Island, Panama, Gulf of Panama, North Pacific Ocean
Depth (m): 7 to 8.5
  • Holotype: Budd & Guzman. 1994. Proc. Biol. Soc. Wash. 107(4): 591-599, figs.2,3,5,6.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology

Source: National Museum of Natural History Collections

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Habitat and Ecology
The known colonies of S. glynni were reported to be unattached and occur along the upper sand-coral rubble reef slope at a depth of 7 to 8.5 m (Budd and Guzmán 1994). Its current habitat is restricted to the aquarium of the Smithsonian Tropical Research Institute (Fenner 2001, Glynn 2001, Maté 2003).

The genus Siderastrea contains only five extant species (Van-Oppen et al. 2006). Budd and Guzmán (1994) hypothesized that S. glynni originated from a rare dispersal event from the central Pacific. However, new studies conducted by Forsman et al. (2005) have revealed that it is more likely that S. glynni originated by a breach of the Panama Isthmus, or by a contemporary introduction by ship.

Glynn (1997) suggested that S. glynni could be an ENSO immigrant, and that colonies perhaps settled and started growing sometime between 1982 and 1985. Glynn (1994) agued that this could be possible if there is a source population located in the Gulf of Panama or elsewhere in the equatorial eastern Pacific (Glynn 1997).

Systems
  • Marine
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
CR
Critically Endangered

Red List Criteria
B2ab(iii,iv,v)

Version
3.1

Year Assessed
2008

Assessor/s
Guzmán, H. & Edgar, G.

Reviewer/s
Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)

Contributor/s

Justification
This species has an area of occupancy of less than 10 km², is severely fragmented, and is known from only one location. After extensive but not exhaustive surveys, this species is known from only one place in the wild, and currently exists only in a captive cultivated state. This species is Critically Endangered, rather than extinct in the wild, as there is a possibility that it exists elsewhere in the wild and is yet undiscovered. In addition, there are current plans to reintroduce captive individuals into the wild.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population

Population
Siderastrea glynni is an extremely rare endemic species in Panama; only five individual colonies have ever been discovered, and only four currently survive (Budd and Guzmán 1994, Maté 2003, Forsman et al. 2005). Following the discovery of this species (i.e., September 1992), extensive surveys in presumably suitable habitats have failed to reveal additional populations (Glynn 2001). Additionally, since the four living colonies were moved to the Smithsonian Tropical Research Institute (STRI) aquaria due to a bleached and unhealthy state of the corals, no living colonies are presently known in the wild (Maté 2003, Fenner 2001, Glynn 2001).

After the removal of S. glynni from the wild, signs of bleaching stopped with temperature control; moreover the colonies are now in good health (Guzmán pers. comm.). Attempts made by H. Guzmán to propagate this corals in the STRI aquaria have produced 11 propagules (Guzmán pers. comm., Fenner 2001).

Population Trend
Stable
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Major Threats
During the 1997-98 El Niño event, the four S. glynni colonies started to deteriorate, displaying bleaching and tissue loss (Fenner 2001, Glynn 2001). Due to the unhealthy state of the corals, the four colonies were moved to the Smithsonian Tropical Research Institute aquaria (Maté 2003). However, the original rareness of this species has been related to unknown causes, and not to the ENSO event (Glynn 1997). Nevertheless, such small populations typically display low genetic variability, thus lowering their capacity to survive environmental perturbations (Glynn 1997).

Other threats to this species include coastal development and oil production and transport in the Gulf of Panama (Guzmán pers comm.).

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by disease and a number of localized threats. The severity of these combined threats to the global population of each individual species is not known.

Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
All corals are listed on CITES Appendix II.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!