Articles on this page are available in 1 other language: Spanish (11) (learn more)

Overview

Brief Summary

Introduction

A widespread neotropical species, ranging from the southern U. S. to subtropical southern South America and throughout the Antilles.

Etymology: The Charites, or Graces, are the personifications of charm and beauty in nature and in human life. They love all things beautiful and bestow talent upon mortals. Together with the Muses they serve as sources of inspiration in poetry and the arts. Originally, they were goddesses of fertility and nature, closely associated with the underworld and the Eleusinian mysteries (Charites).

Trusted

Article rating from 1 person

Average rating: 4.0 of 5

Taxonomy

Nomenclature explanation:

Papilio charitonia L. is an objective junior synonym of Papilio charithonia L.  The latter is on the Official List of Generic and Specific Names in Zoology (see Holthuis and Hemming 1956).  See also Brower (1994).  (NB:  Linnaeus placed all butterflies he described in the genus Papilio.  Thus the original name as described in 1767 is Papilio charithonia Linnaeus.  Since 1802, this species has been assigned to the genus Heliconius Kluk.

There should not be a separate page for "Heliconius charitonia" in EOL.

  • Brower, A.V.Z. 1994. The case of the missing H: Heliconius charithonia (L., 1767), not "Heliconius charitonia (L. 1767)". J. Lepid. Soc. 48: 166-168.
  • Holthuis, L. B. and F. Hemming. 1956. Opinion 382: validation under the Plenary Powers of the generic name "Sicyonia" Milne Edwards (H.) 1830 (Class Crustacea, Order Decapoda) and action consequential thereon. pp. 43-58 in: Hemming, F. (ed.). Opinions and Declarations Rendered by the International Commission on Zoological Nomenclature 12(3).)
Creative Commons Attribution 3.0 (CC BY 3.0)

© Andrew Brower

Supplier: Andrew Brower

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

North American Ecology (US and Canada)

Heliconius charithonia is resident only in the southern tips of Texas and Florida, and is migratory northward rarely as far as Nebraska (Scott 1986), but ranges south to Peru and throughout the Antilles and Bahamas. Habitats are subtropical woods edges and scrub. Host plants are vine Passifloraceae, restricted to genus Passiflora. Eggs are laid on the host plant singly, or occasionally in clusters of 2-5. There are multiple flights all year in s. Fla, and Apr.1-Nov. 30 in s. Tex. (Scott 1986).
  • Scott, J. A. 1986. The butterflies of North America. Stanford University Press.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Leslie Ries

Partner Web Site: North American Butterfly Knowledge Network

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Introduction

Introduction:

A widespread neotropical species, ranging from the southern U. S. to subtropical southern South America and throughout the Antilles.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Leptree.net

Source: LepTree

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comprehensive Description

General comments

This information is based an ongoing project dedicated to the inventory and dissemination of information on lepidopteran larvae, their host plants, and their parasitoids in a Costa Rican tropical wet forest and an Ecuadorian montane cloud forest.


N=10 rearings as of 2012, 9 eclosed and 1 died.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

The Zebra Longwing (Heliconius charithonia) is a primarily neotropical butterfly with a distribution that extends north through the Florida peninsula in the U.S. (it is Florida's official state butterfly), sometimes ranging farther north as well. It has long, rounded wings and a slender body. It is pitch black with bold, yellow stripes and small red dots close to the body (Cech and Tudor 2005).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habits

H. charithonia occurs from sea level to 1,800 m in edges and scrubs. Usually individuals fly erraticly and in the lowerstory. The males sit on female pupae a day before emergence, and mating occurs the next morning, before the female has completely eclosed. Adults roost at night in large groups lower than 2 m above ground in twigs or tendrils (Brown, 1981).

Host plant: H. charithonia larvae feed primarily on plants from the genus Passiflora, subgenus Granadilla, Tryphostemmatoides, and Plectostemma (Brown, 1981). In Costa Rica H. charithonia feeds on Tetrastylis lobata (Passifloraceae) (DeVries, 1997).


Heliconius charithonia on passion-vine in Mexico City, Mexico. © Maria Franco

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Geographical distribution and named races

Heliconius charithonia is distributed from North America (Texas and Florida) to Venezuela and Peru, and also occurs on the Greater and Lesser Antilles. Although the species does not exhibit the dramatic geographical variation in wing patterns of some of its congeners, a number of names have been applied to various island populations.

  H. charithonia charithonia (L., 1767)"America"(St. Thomas, Virgin Is., according to Comstock and Brown, 1950).
 H. charithonia antiquus Lamas, 1988 (replacement name for H. charithonia punctata A. Hall, 1936 (preoccupied by h. cydno f. punctata Neustetter, 1907) (Antigua and St. Kitts)
 H. charithonia bassleri Comstock & Brown, 1950 (Colombia)
 H. charithonia churchi Comstock & Brown, 1950 (Haiti)
 H. charithonia ramsdeni Comstock & Brown, 1950 (Cuba)
 H. charithonia simulator Comstock & Brown, 1950 (Jamaica)
 H. charithonia tuckeri Comstock Brown, 1950 (USA: Florida)
 H. charithonia vasquezae Comstock & Brown, 1950 (Mexico: Campeche) 

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Characteristics

Early stages: Eggs are yellow or white and approximately 1.2 x 0.8 mm (h x w). Females usually place 1 to 5 eggs on growing shoots of the host plant. Mature larvae have a white body, with black spots or bands, black scoli and yellow and black or black and white head; length is around 1.2 cm. Caterpillars are gregarious in small numbers (Brown, 1981).

From left to right: Heliconius charithonia female laying eggs on her hostplant in Mexico City. © Maria Franco. Eggs, second, and third instar larva on hostplant in Gainesville, Florida. In Florida, H. charithonia larvae often completely defoliate their Passiflora hostplants. © Andrew V. Z. Brower. Last instar larva feeding on host plant and getting ready to pupate in Mexico City. © Maria Franco.

From left to right: Heliconius charithonia early pupa, pupa with butterfly ready to eclose, eclosing butterfly, and eclosed butterfly expanding and drying its wings. Mexico City, Mexico, November 2005 © Maria Franco.

Adult: Distinguished immediately by the zebra pattern, which gives it the common name of the "zebra" (DeVries, 1997).

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

occurs (regularly, as a native taxon) in multiple nations

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

National Distribution

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Type of Residency: Year-round

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Global Range: (>2,500,000 square km (greater than 1,000,000 square miles)) Texas to Florida and south to the Keys. Wanders as far as California, Great Basin, and the Great Plains; sometimes colonizes as far north as South Carolina. Also occurs in Mexico, the West Indies, and South America.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Collected in Heredia Province, Costa Rica.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Heliconius charitonius is found from the extreme southeastern United States and southernmost Texas south through the West Indies and Central America to Venezuela and Peru (Opler and Krizek 1984).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Look Alikes

Lookalikes

In the United States, the Heliconius charitonius is unmistakable. Over much of its Neotropical distribution, there are a dazzling array of other Heliconius species with which it might be confused, although the lack of any conspicuous colors other than black and yellow sets it apart from several otherwise similar species (Cook et al. 1976).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Comments: Tropical lowland forests edges or openings; scrub. Larval hosts are in the genus Passiflora. Sometimes suburban habitats.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

In Florida, the Zebra Longwing is found in subtropical hammocks (closed canopy forests, typically slightly higher in elevation than the surrounding area, that are dominated by a diverse assemblage of broad-leaved evergreen trees and shrubs, mostly of West Indian origin) and pine-oak woods, as well as in suburbs, parks, and even open fields if preferred flowers are available (Cech and Tudor 2005). Over must of its range to the south, this species is found in moist subtropical and tropical forests with sunlit openings (Opler and Krizek 1984).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Migration

Non-Migrant: No. All populations of this species make significant seasonal migrations.

Locally Migrant: No. No populations of this species make local extended movements (generally less than 200 km) at particular times of the year (e.g., to breeding or wintering grounds, to hibernation sites).

Locally Migrant: No. No populations of this species make annual migrations of over 200 km.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Trophic Strategy

Like many other Heliconius butterflies, H. charithonia feeds extensively on pollen, using its specially modified proboscis, as a source of amino acids and other nutrients (Gilbert 1972; Opler and Krizek 1984; Cech and Tudor 2005).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

Foodplant Associations

Passifloraceae: Passiflora lobata

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Hostplants

Heliconius charithonia caterpillars feed on plants in the genus Passiflora (passion vines/passionflower/passionfruit). In the U.S., hosts include P. incarnata, P. lutea, P. suberosa, and P. multiflora (Cech and Tudor 2005).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Zebra Longwings are poisonous and distasteful to vertebrate predators (Opler and Krizek 1984; Cech and Tudor 2005).

A favorite source of pollen in Florida and elsewhere in the Zebra Longwing's range is lantana (Lantana spp.); Shepherd's needle (Bidens pilosa) is also visited in Florida (Opler and Krizek 1984).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population Biology

Number of Occurrences

Note: For many non-migratory species, occurrences are roughly equivalent to populations.

Estimated Number of Occurrences: 81 to >300

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Global Abundance

10,000 to >1,000,000 individuals

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Behavior

Adults sip flower nectar (esp. white or bluish flowers) and pollen. Adults roost in groups of 70 or more. Males patrol for females (Scott, 1986).
  • Scott, J. A. 1986. The butterflies of North America. Stanford University Press.
Creative Commons Attribution 3.0 (CC BY 3.0)

© Leslie Ries

Partner Web Site: North American Butterfly Knowledge Network

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Behaviour

Male Zebra Longwings patrol for females and are attracted to female chrysalids, with whom they seek to mate at or near the time of emergence; after mating, the male deposits an "antiaphrodisiac" chemical onto the female's abdomen to deter matings with additional males (Cech and Tudor 2005). The typical flight pattern of the Zebra Longwing is slow and direct with very shallow, rapid wingbeats (Opler and Krizek 1984), although these butterflies are capable of faster flight when alarmed (Cech and Tudor 2005).

Each evening, Zebra Longwings gather to form communal sleeping roosts consisting of a few to several dozen individuals (Young and Thomason 1975; Cook et al. 1976).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Expectancy

In a study of the Zebra Longwing in Costa Rica, Cook et al. (1976) observed a maximum lifespan of 133 days, but estimated the typical adult lifespan to be around 40-50 days, with evidence of senescence (declining survival rate) after about 25 days.

In a study in south Florida, Fleming et al. (2005) estimated the maximum adult lifespan to be 13-14 weeks (91-98 days). Most adults, however, lived less than one month, so average lifespan was estimated to be less than eight weeks (<56 days).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reproduction

Females lay eggs on young host leaves at branch tips, depositing just a few eggs each day over a period of several months (Opler and Krizek 1984).

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Shapiro, Leo

Source: EOL Rapid Response Team

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Statistics of barcoding coverage: Heliconius charithonia

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 18
Specimens with Barcodes: 45
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Barcode data: Heliconius charithonia

The following is a representative barcode sequence, the centroid of all available sequences for this species.


There are 14 barcode sequences available from BOLD and GenBank.  Below is a sequence of the barcode region Cytochrome oxidase subunit 1 (COI or COX1) from a member of the species.  See the BOLD taxonomy browser for more complete information about this specimen and other sequences.

AAGAAT---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------TATATTTTAATTCTTCCAGGATTTGGGATAATTTCTCATATTATTTCACAAGAAAGTGGAAAAAAA---GAAACCTTTGGTTGTCTAGGAATAATTTATGCTATAATAGCAATTGGTTTATTAGGATTTATTGTATGAGCTCATCATATATTTACAGTAGGAATAGATATTGATACTCGAGCTTACTTTACATCAGCAACTATAATTATTGCAGTTCCTACAGGTATTAAAATTTTTAGTTGATTA---GCAACTTTACATGGTACA---CAAATTAATTATAGTCCTTCAATATTATGAAGATTAGGATTCATTTTCCTTTTTACAGTAGGAGGATTAACAGGAGTAGTTTTAGCTAATTCTTCTATTGATATTACTTTACATGATACTTATTATGTAGTAGCTCATTTTCATTATGTT---TTATCTATAGGAGCTGTATTTGCTATTTTAGGAGGATTTGTACATTGATATTCATTATTTACAGGATTAATATTAAATCCTTATTTATTAAAAATTCAATTTATTTCAATATTTATTGGAGTTAACTTAACATTTTTCCCTCAACATTTTTTAGGGTTAGCTGGGATACCCCGA---CGATACTCAGATTACCCAGATAACTTCATA---TCTTGAAATATTATTTCATCCTTTGGATCTTATATTTCATTATTTTCAATAATTTTAATTATTATTATTATTTGAGAGTCAATAATTAACCAACGAATAATT---TTATTTTCATTAAATATACCATCTTCA
-- end --

Download FASTA File
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

United States

Rounded National Status Rank: N5 - Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: G5 - Secure

Reasons: Widespread and common in neotropics, apparently secure in southern Florida.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Degree of Threat: D : Unthreatened throughout its range, communities may be threatened in minor portions of the range or degree of variation falls within natural variation

Comments: Tolerates disturbance short of complete clearing.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Global Protection: Unknown whether any occurrences are appropriately protected and managed

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Heliconius charithonia

The Zebra Longwing or Zebra Heliconian (Heliconius charithonia) is a species of butterfly belonging to the subfamily Heliconiinae of the Nymphalidae.[1][2] The boldly striped black and white wing pattern is aposematic, warning off predators.

The species is distributed across South and Central America and as far north as southern Texas and peninsular Florida; there are migrations north into other American states in the warmer months.

Zebra longwing adults roost communally at night in groups of up to 60 adults for safety from predators. The adult butterflies are unusual in feeding on pollen as well as on nectar; the pollen enables them to synthesize cyanogenic glycosides that make their bodies toxic to potential predators. Caterpillars feed on various species of Passionflower, evading the plants' defensive trichomes by biting them off or laying silk mats over them.

Description[edit]

A Zebra Longwing caterpillar

The caterpillars are white with black spots and have numerous black spikes along their body. Adult butterflies are monomorphic of medium size with long wings. On the dorsal side, the wings are black with narrow white and yellow stripes, with a similar pattern on the ventral side, but paler and with red spots. The wingspan ranges from 72 to 100 mm.[3]

Distribution and habitat[edit]

H. charithonia is found in South America, Central America, the West Indies, Mexico, south Texas and peninsular Florida. Adults sometimes migrate north to New Mexico, South Carolina, and Nebraska during the warmer months. It was declared the official butterfly for the state of Florida in the United States in 1996.[1][2] The species frequents tropical hammocks, moist forests, edges, or fields.[2]

Behavior[edit]

Migration[edit]

Although H. charithonia is to some extent static, maintaining a home range, adults do move between territories.[4] Butterflies with Mexican origins migrate north into Texas, following the retracting temperature gradient. Rainfall has no effect on migration patterns. Arrival dates and duration of stay depend on the distance travelled: the longer the distance travelled, the shorter the duration of stay.[5]

Roosting to deter predators[edit]

Adults roost in groups of up to 60 individuals on a nightly basis, returning to the same roost every night. These roosts provide protection to adults, the large groups deterring predators and retaining warmth.[6] Solitary individuals, or very small roosts, avoid exhibiting proper warning signals so as not to attract predators.[7] Pre-roosting interactions, which consist of sitting near one another, chasing each other briefly while fluttering, or basking,[8] occur between butterflies from separate roosts, indicating that the butterflies are aware of other roosts in their home range. Despite this, the Zebra Longwing chooses to form smaller aggregations. The optimal roost size for predator deterrence is 5 individuals; roost size is also influenced by resource availability and foraging. H. charithonia roosts to display collective aposematism, deterring predators by conspicuously advertising their unpalatable taste.[7]

Conspecific recognition[edit]

Zebra longwing adult

H. charithonia adults form communal roosts nightly. Communal roosting occurs when individuals aggregate at a particular site for more than a few hours. Roosting begins as early as 3 hours before sunset and usually ends within two hours after sunrise.[7] Since roosting is at night, adults need to be able to see at low light levels to locate roost sites, either when looking for twigs, tendrils, and dry leaves to land on to start a roost, or when searching for conspecifics that are already roosting.[9] Their eyes also help them to recognize color patterns in conspecifics. UV rhodopsins in the eye help them to distinguish between 3-OHK yellow pigments, or ultraviolet colors, and other yellow pigments, which to the human eye is undistinguishable.[10] At shorter distances, the butterflies recognize conspecifics via chemical cues.[9] These chemical cues include volatile and nonvolatile substances. The significance of this chemical communication remains largely unknown for Heliconius in general. However, in H. melpomene, (E)-?-ocimene was found to attract males and females in diurnal situations.[11]

Pollen Feeding[edit]

The behavior of pollen-feeding facilitated the evolution of aposematism and mimicry. Butterflies that feed on pollen are more distasteful to predators, more brightly colored, and show superior mimetic diversity to those that do not.[12]

Adult butterflies choose their home ranges based on collections of pollen plants. They collect pollen by inserting their proboscis into the flower while making particular movements to secure adhesion to the pollen grains. Digestion occurs immediately after ingestion when the pollen makes contact with saliva, and amino acids are dissolved.[13] Optimal amino acid intake occurs through abundant saliva production and gentle and slow mastication.[14] During the night, the butterflies digest pollen since optimal nutritional resources are obtained while resting or sleeping.[13]

H. charithonia egg: the number of eggs produced depends on the supply of pollen.

Pollen feeding is correlated with higher overall fitness. Individuals that feed on pollen live longer than those that feed only on nectar or sugar water. Females carry more pollen than males since nutrients such as amino acids from pollen are needed for egg production. Oogenesis is greatly affected by pollen intake. When pollen is absent in the diet, oviposition rates decrease and lifetime fecundity, or the number of eggs produced, drops significantly.[13]

Pollen feeding also correlates with the unpalatibility of the butterflies to predators. Amino acids from pollen are used as precursors to synthesize cyanogenic glycosides that are stored in larval and adult tissues, accounting for their toxicity.[12] When pollen availability is low, adult butterflies recycle cyanogenic glycosides they synthesized previously. With less expectation of pollen quality, females reallocate their cyanogens to reproductive input, as larvae benefit the most from cyanogenesis; a lack of amino acids in adult diet does not necessarily correlate with reduced cyanogenic defense.[15]

Passiflora Feeding[edit]

The caterpillar feeds on Yellow Passionflower (Passiflora lutea), Corky-stemmed Passionflower (Passiflora suberosa), and Two-flower Passionflower (Passiflora biflora). The adults are unusual among butterflies in that they eat pollen as well as sip nectar. This ability contributes to their longevity—they can live up to 6 months as adults.[16]

Larvae regulate their nutritional input to an equal protein-carbohydrate ratio.[17] They feed on the Passiflora plants on which their mother laid their eggs. Passiflora plants have trichomes, structures that reduce herbivore attack physically or chemically. H. charithonia larvae can avoid the effects of trichomes, being able to free themselves from the entrapment of a trichome by pulling their legs from the hold of the trichome hook, and laying silk mats on the trichomes, providing a surface to walk on more easily, and they remove the tips of the trichomes by biting them. Trichome tips are found in the faeces of these individuals. Larvae often try to avoid areas where trichome density is highest by staying on the under surface of the leaves.[18]

Mating System[edit]

Mating cues[edit]

Male butterflies seek visual, olfactory, tactile, and auditory cues from females during mating.[19] In H. charithonia, certain host plants provide these cues to males, thereby influencing the time and location of reproduction. This happens because as larvae damage the plant upon eating it, green-leaf volatiles, six carbon alcohols, aldehydes, and acetates, are released. They give olfactory cues to the male, thereby indicating the location of the pupae (mate). Since these pupae are camouflaged and lack strong sexual pheromones, males rely on the olfactory cue from the damaged plant to find mates. The odors also trigger the males to learn the location of the plant for future copulations. The butterfly's spatial memory is good enough to enable them to return regularly to roosts and mating sites.[20]

A common problem amongst all butterflies is to avoid mating with other butterfly species.[21] Mistakes are rare as males can distinguish between the emissions produced when the larvae and other herbivores eat the plant. The larvae release volatiles similar chemically to those emitted by the plant.[20] H. charithonia mating cues are controlled by multiple genes (they are pleiotropic), particularly in regards to Müllerian mimicry.[22]

Pupal mating[edit]

Adults exhibit pupal mating in which males wait for a female to emerge from her pupa. Upon emergence, two or more males may fight to win a copulation. The winner mates with the females and prevents other males from doing so through a chemical transfer,[2][6] passing a nutrient-rich spermatophore to the female that reduces her attractiveness to other potential mates.[23]

Pupal mating arose exactly once during the evolution of Heliconius, and these species form a clade on the evolutionary tree. Although pupal mating is observed quite frequently in insectaries, it is rarely seen in nature.[24] Males perform precopulatory mate guarding behavior, in which males find and perch on pupae, followed by copulation with the female.[20]

Upon reaching the pupae, males often have to compete to copulate with the female, who is teneral (freshly emerged). Typically, a male visits the same pupa for at least a week, during which time he periodically swarms it, fighting with other males over positioning. Fights consist of males fending off other males that attempt to land on the same pupa by opening their wings. If this does not work, the male tries to throw the intruder off with the pressure of his head and antennae. If more males attempt to swarm the pupa, the two original males work together to fend off the others by simultaneously opening their wings, momentarily forgetting that they were originally competitors. Fights usually last one or two hours, but continue throughout the pupa’s development.

The act of pupal mating consists of the male inserting his abdomen into the pupa. If a second male appears, he fends off other males by opening his wings while he copulates, rather than attempting to mate with the female himself by inserting his abdomen. After two or three hours of mating, the female comes out, and copulation continues for another hour. During the process, females remain relatively still, except for spreading their wings and discharging meconium. As copulation proceeds, fewer males attempt to approach the female. However, if this does occur, the copulating male continues to fend them off by opening his wings. After copulation is done, the male and female sit side-by-side for some time. During this brief period, no other males attempt to mate with the female.[24]

Nuptial gifts in the form of the spermatophore[edit]

Males transfer a protein-rich spermatophore to females upon mating. Spermatophores are nuptial gifts which serve different functions, one of which is to provide chemicals (cyanogens) that protect the mother and future offspring from predators. For females, this is beneficial because egg-laying depletes her defensive chemicals. Among nine Heliconius species studied, Heliconius chartihonia had the highest average cyanide concentration in its spermatophores.[25]

In most species of butterflies, pheromones play a role in courtship and mate recognition,[19] and can play a role in deterring mates. Spermatophores contain anaphrodisiacs, pheromones that reduce the attractiveness of the females to subsequent males, indicating evolution driven by intrasexual selection between males. These reduce male harassment of mated females. Spermatophores contain nonfertile sperm (apyrene) to increase the anaphrodisiac effect. The transfer of anaphrodisiacs thus reduces female mating choice.[23]

Complete spermatophore degradation to an orange or yellow substance occurs in a 2-week period. Pupal-mating butterflies like Heliconius charatonia are thought to be monandrous; females rarely participate in more than one mating per lifetime.[26]

Sex ratio and distribution[edit]

At eclosion, the ratio is highly female-biased, but the rest of the year the sex ratio is overall male-biased (68% males). This is because males typically stay near their natal sites to find a mate, while females move around to find oviposition or feeding sites on Passiflora plants. Because females are very mobile, males rarely mate with relatives, and inbreeding rates are very low.[27]

See also[edit]

References[edit]

  1. ^ a b Card for charithonia in LepIndex. Accessed 3 August 2007.
  2. ^ a b c d "Attributes of Heliconius charithonia". Retrieved November 14, 2013. 
  3. ^ "Zebra Longwing". Retrieved November 14, 2013. 
  4. ^ Kronforst, Marcus R., and Theodore H. Fleming. "Lack of Genetic Differentiation among Widely Spaced Subpopulations of a Butterfly with Home Range Behaviour." Heredity 86 (2001): 243-50.
  5. ^ Cardoso, Márcio Z. "Reconstructing Seasonal Range Expansion of the Tropical Butterfly, Heliconius Charithonia, into Texas Using Historical Records." Journal of Insect Science 10.69 (2008): 1-8.
  6. ^ a b "Zebra Heliconian-Florida's State Butterfly!". Retrieved November 14, 2013. 
  7. ^ a b c Finkbeiner, Susan D., Adriana D. Briscoe, and Robert D. Reed. "The Benefit of Being a Social Butterfly: Communal Roosting Deters Predation." Royal Society Publishing 279.1739 (2012): 2769-776. Print.
  8. ^ Sacledo, Christian. "Behavioral Traits Expressed During Heliconius Butterflies Roost-Assembly". Trop. Lepid. Res 21.2 (2011): 80-83.
  9. ^ a b Salcledo, Christian. "Environmental Elements Involved in Communal Roosting in Heliconius Butterflies (Lepidoptera:Nymphalidae)." Entomological Society of America 39.3 (2010): 907-11. Web.
  10. ^ Bybee, Seth M.; Monica D. Furong Yuan; Jorge Llorente-Bousquets; Robert D. Reed; Daniel Osorio; Adriana D. Briscoe (2012). "UV Photoreceptors and UV-Yellow Wing Pigments in Heliconius Butterflies Allow a Color Signal to Serve Both Mimicry and Intraspecific Communication". The American Naturalist. 1 179: 38–51. doi:10.1086/663192. 
  11. ^ Sacledo, Christian. The Biology of Heliconius Night Roosting A Foundation. Thesis. UFDC, 2010. Gainesville, Fl: University of Florida, 2010. Print.
  12. ^ a b Estrada, Catalina, and Chris D. Jiggins. "Patterns of Pollen Feeding and Habitat Preference among Heliconius Species." Ecological Entomology 27 (2002): 448-56.
  13. ^ a b c Salcledo, Christian. "Evidence of Pollen Digestion at Nocturnal Aggregations of Heliconius Sara in Costa Rica (Lepidoptera: Nymphalidae)." Trop. Lepid. Res. 20.1 (2010): 35-37. Web.
  14. ^ Belatrán, Margarita, Chris D. Jiggins, Andrew V. Z. Brower, Eldredge Bermingham, and James Mallet. "Do Pollen Feeding, Pupal-mating, and Larval Gregariousness Have a Single Origin in Heliconius Butterflies? Inferences from Multilocus DNA Sequence Data." Biological Journal of the Linnean Society 92 (2007): 221-39.
  15. ^ Cardoso, M. Z. "Pollen Feeding, Resource Allocation and the Evolution of Chemical Defence in Passion Vine Butterflies." Journal of Evolutionary Biology 26 (2013): 1254-260.
  16. ^ Scott, JA. (1986). The Butterflies of North America: A Natural History and Field Guide. Stanford University Press.
  17. ^ VanOverbeke, Dustin R. "Nutritional Ecology of a Generalist Herbivore Vanessa Cardui Linnaeus Lepidotera: Nymphalidae on Variable Larval and Adult Diets." Diss. UC Riverside, 2011.
  18. ^ Cardoso, Márcio Z. "Ecology, Behavior and Binomics: Herbivore Handling of a Plant's Trichome: The Case of Heliconius Charithonia (L.) (Lepidoptera:Nymphalidae) and Passiflora Lobata (Kilip) Hutch. (Passifloraceae)." Neotropical Entomology 37.3 (2008): 247-52.
  19. ^ a b Douglas, Matthew M. (1986). The Lives of Butterflies. Ann Arbor: University of Michigan. 
  20. ^ a b c Estrada, Catalina; Gilbert, Lawrence E. (2010). "Host Plants and Immatures as Mate-searching Cues in Heliconius Butterflies". Animal Behaviour 80: 231–239. doi:10.1016/j.anbehav.2010.04.023. 
  21. ^ Boggs, Carol L., Ward B. Watt, and Paul R. Ehrlich. (2003). Butterflies: Ecology and Evolution Taking Flight. Chicago: University of Chicago.
  22. ^ Scoble, M. J. (1995). The Lepidoptera: Form, Function and Diversity. [London]: Natural History Museum
  23. ^ a b Estrada, Catalina, Stefan Schulz, Selma Yildizhan, and Lawrence E. Gilbert. (2011). Sexual Selection Drives The Evolution Of Antiaphrodisiac Pheromones In Butterflies. Evolution 65(10):2843-854.
  24. ^ a b Sourakov, Andrei. (2008). Pupal Mating in Zebra Longwing (Heliconius Charithonia): Photographic Evidence. News of the Lepidopterists' Society 50(1):26-32.
  25. ^ Cardoso, Márcio Zikán, and Lawrence E. Gilbert. (2006). A Male Gift to Its Partner? Cyanogenic Glycosides in the Spermatophore of Longwing Butterflies (Heliconius). Naturwissenschaften 94(1):39-42.
  26. ^ Walters, James R., Christine Stafford, Thomas J. Hardcastle, and Chris D. Jiggins. (2012). Evaluating Female Remating Rates in Light of Spermatophore Degradation in Heliconius Butterflies: Pupal-mating Monandry versus Adult-mating Polyandry. Ecological Entomology 37:257-68.
  27. ^ Fleming, Theodore H., David Serrano, and Jafet Nassar. (2005). Dynamics Of A Subtropical Population Of The Zebra Longwing Butterfly Heliconius Charithonia (Nymphalidae). Florida Entomologist 88(2):169-79.
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy

Comments: Spelling corrected to original orthography following Opler and Warren (2002). Several spelling variations exist for this species.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!