Overview

Comprehensive Description

Taxonomy

Currently there are six subspecies of Artemisia tridentata recognized by the National Plant Data Center: basin (ssp. tridentata), Wyoming (ssp. wyomingensis Beetle & Young), mountain (ssp. vaseyana [Rydb.] Beetle), subalpine (ssp. spiciformis [Ousterhout] Kartesz & Gandhi), xeric (ssp. xericensis Winward ex R. Rosentreter & R. Kelsey) and Parish’s (ssp. parishii [Gray] Hall & Clements). Each is highly variable with multiple ecotypes, but can generally be separated using a number of morphological, geographical and topographical characters.

All chromosome number information was obtained from McArthur and Sanderson (1999) as updated in McArthur (2005). Appendix 1 contains a general summary of characteristics useful to separate subspecies. See McArthur and Stevens (2004) for a detailed review of the characters for the subspecies occurring in the Intermountain West.

Figure 2. Leafy stem of basin big sagebrush. Photo courtesy of the PLANTS database.

Basin big sagebrush usually occurs at the lowest elevational range of the species, being most abundant in the valley bottoms to mountain foothills. Plants typically have a single main trunk and may grow to a height of 4 m (13 ft) under proper conditions, making basin the largest subspecies. Basin big sagebrush plants are generally uneven-topped with loosely branching flowering stems distributed throughout the crown (see figure 1). Floral heads typically contain 3 to 6 small flowers per head. Leaves of the vegetative stems are narrowly cuneate averaging 2 cm (0.8 in) or more and can be as long as 5 cm (2 in) being many times longer than wide (see figure 2). Ultraviolet visible coumarins in leaf extracts are minimal; leaf UV color is none to light blue in water and a rusty red-brown color in alcohol. 2n = 18 or sometimes 36.

Figure 3. Wyoming big sagebrush.

Derek Tilley, USDA NRCS Idaho PMC

Wyoming big sagebrush overlaps in range and elevation with basin big sagebrush. Plants are considerably smaller than those of basin big sagebrush, usually less than 0.9 m (3 ft) tall, and have main stems branching from the ground (see figure 3). Flowering stems are not as widely branching as those of basin, but otherwise closely resemble that subspecies. Leaves are typically shorter, from 1 to 1.5 cm (0.4 to 0.6 in) long, and flabelliform. UV extract color in water is none to light blue and rusty in alcohol. 2n = 36.

The vegetative stems of mountain big sagebrush create a characteristic even topped crown with the panicles rising distinctly and relatively uniformly above the foliage (see figure 3). Plants are normally smaller than those of basin big sagebrush, averaging about 0.9 m (3 ft) tall. Inflorescences are narrow and spicate bearing flower heads containing 4 to 8 flowers per head. Leaves are characteristically wider than those of basin or Wyoming big sagebrush. In extracts, ultraviolet visible coumarins are abundant. Leaf extracts fluoresce blue in water and blue-cream in alcohol. 2n = 18 or sometimes 36.

Figure 4. Even topped mountain big sagebrush.

Derek Tilley, USDA NRCS Idaho PMC

Originally considered a xeric form of mountain big sagebrush, xeric big sagebrush shares similarities with both basin and mountain big sagebrush and may be the result of hybridization between the two subspecies. Xeric big sagebrush plants are large and have an uneven topped crown like those of basin big sagebrush, but in leaf UV color and cytological characters it resembles mountain big sagebrush. Ultraviolet visible coumarins are blue in water, blue-cream in alcohol. 2n = 36.

A new variation of big sagebrush being recognized by some is Bonneville big sagebrush. This as yet undescribed taxon may represent hybridization between Wyoming and mountain big sagebrush. It is reported to have the general growth form of Wyoming plants but bears the leaves and fluorescing characteristics of the mountain subspecies. It has been reported from the bench areas of Lake Bonneville and other ancient lakes of the Intermountain West in Utah and Nevada. Reports of Bonneville big sagebrush have also come from western Wyoming and western Colorado. Of particular importance is this sagebrush’s reported high palatability to wild ungulates and sage grouse.

Subalpine, or spicate big sagebrush, is believed to be a stabilized hybrid between mountain big sagebrush and silver sagebrush (Artemisia cana Pursh ssp. viscidula [Osterhout] Beetle). Plants are similar to those of mountain big sagebrush except that leaves and floral heads are larger, the floral heads having 10 to 18 flowers per head. Ultraviolet visible coumarins in leaf extracts fluoresce blue in water and blue-cream in alcohol. 2n = 18 or 36.

Parish’s big sagebrush is an uncommon taxon restricted to dry, sandy soils in the hills of southern California. It is nearest in appearance and relationship to basin big sagebrush, but differs from basin in having drooping flowering branches and the achenes are hairy. 2n = 36.

One additional taxon that should be mentioned is Lahontan sagebrush (Artemisia arbuscula ssp. longicaulis Winward and McArthur). It is thought to be a stable hybrid between low sagebrush (A. arbuscula) and Wyoming big sagebrush. It bears the flowers of low sagebrush but has the vegetative characteristics of its big sagebrush parent. This subspecies forms dominant communities in northwestern Nevada and adjacent portions of California and Oregon in shallow or clayey soils above and around the shoreline of the Pleistocene Lake Lahontan.

The following key should provide some assistance in separating the subspecies of big sagebrush.

1. plants larger, usually >0.9 m (3 ft) tall, with a

single main trunk; crown uneven with floral stems

throughout

2. achenes hairy; floral stems drooping; plants

endemic to sandy soils in southern

California……………………......ssp. parishii

2. achenes glabrous; floral stems erect; plants

widely distributed throughout western U.S,

including southern California

3. plants occurring in valley bottoms and low

foothills, occupying deep fertile soils; leaves

narrowly cuneate, 2-5 cm (0.8-2.0 in) long,

UV leaf color in water=none, in alcohol=red

to brown ……...................…...ssp. tridentata

3. UV in water=blue, in alcohol=blue-cream;

plants restricted to well-drained basaltic soils in western Idaho….........ssp. xericensis

1. plants smaller, averaging 0.9 m (3 ft) or less, with

trunks branching at or near ground level; crowns

various

4. crowns uneven-topped, plants of low

valleys and foothills;

5. UV color in water=none, in alcohol=rust

…………………………..ssp. wyomingensis

5. UV color in water=blue, in alcohol=blue-

cream…………………………..(Bonneville)

4. crowns even-topped, floral stems rising

uniformly above the vegetative stems; plants of

higher elevations

6. flowers 4 to 8; leaf tips lobed

………………………………….ssp. vaseyana

6. flowers 10 to 18; leaf tips often pointed

……….…………...…………..ssp. spiciformis

Additional taxonomic information can be found in the Flora of North America, Volume 19 (FNA Editorial Committee 2006) and the Intermountain Flora, Volume 5 (Cronquist et al. 1994).

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description

General: Although big sagebrush plants generally have a similar growth form, the species does have considerable morphological variation with several subspecies and ecotypes. Big sagebrush are evergreen shrubs ranging in size from less than 0.6 m (2 ft) tall to as large as 4 m (13 ft) tall. Branches are spreading, arising from numerous main stems in the lower growing subspecies or from one main trunk in the larger forms. Leaves are blue-gray to blue-green in color due to dense gray hairs. They are typically cuneate (wedge-shaped, triangular and gradually tapering to the base) or flabelliform (bell shaped) depending on subspecies, and have three lobes at the apex on the majority of the persistent foliage. Leaves vary in length from 0.5 to 5 cm (0.2 to 2.0 in), and can be 0.2 to 2.0 cm (0.08 to 0.8 in) wide. Leaves are spirally arranged with internodes short in young vegetative stems making the leaves very dense. Panicles overtop plants of mountain and spicate big sagebrush, or can grow throughout the crown in basin and Wyoming big sagebrush. Floral heads contain from three to 18 perfect (both male and female parts present) flowers per head. Achenes are typically glabrous but are hairy in the California endemic Parish’s big sagebrush. Big sagebrush plants are very aromatic with the smell being described as bitter pungent to pleasant, the odor varying by subspecies. Ploidy levels often differ among subspecies and may differ among populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Alternative names

A. tridentata ssp. parishii = Parish’s big sagebrush

A. tridentata ssp. spiciformis = subalpine or spicate big sagebrush

A. tridentata ssp. tridentata = basin big sagebrush

A. tridentata ssp. vaseyana = mountain big sagebrush

A. tridentata ssp. wyomingensis = Wyoming big sagebrush

A. tridentata ssp. xericensis = xeric or foothills big sagebrush

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Taxonomy

Currently there are six subspecies of Artemisia tridentata recognized by the National Plant Data Center: basin (ssp. tridentata), Wyoming (ssp. wyomingensis Beetle & Young), mountain (ssp. vaseyana [Rydb.] Beetle), subalpine (ssp. spiciformis [Ousterhout] Kartesz & Gandhi), xeric (ssp. xericensis Winward ex R. Rosentreter & R. Kelsey) and Parish’s (ssp. parishii [Gray] Hall & Clements). Each is highly variable with multiple ecotypes, but can generally be separated using a number of morphological, geographical and topographical characters.

All chromosome number information was obtained from McArthur and Sanderson (1999) as updated in McArthur (2005). Appendix 1 contains a general summary of characteristics useful to separate subspecies. See McArthur and Stevens (2004) for a detailed review of the characters for the subspecies occurring in the Intermountain West.

Figure 2. Leafy stem of basin big sagebrush. Photo courtesy of the PLANTS database.

Basin big sagebrush usually occurs at the lowest elevational range of the species, being most abundant in the valley bottoms to mountain foothills. Plants typically have a single main trunk and may grow to a height of 4 m (13 ft) under proper conditions, making basin the largest subspecies. Basin big sagebrush plants are generally uneven-topped with loosely branching flowering stems distributed throughout the crown (see figure 1). Floral heads typically contain 3 to 6 small flowers per head. Leaves of the vegetative stems are narrowly cuneate averaging 2 cm (0.8 in) or more and can be as long as 5 cm (2 in) being many times longer than wide (see figure 2). Ultraviolet visible coumarins in leaf extracts are minimal; leaf UV color is none to light blue in water and a rusty red-brown color in alcohol. 2n = 18 or sometimes 36.

Figure 3. Wyoming big sagebrush.

Derek Tilley, USDA NRCS Idaho PMC

Wyoming big sagebrush overlaps in range and elevation with basin big sagebrush. Plants are considerably smaller than those of basin big sagebrush, usually less than 0.9 m (3 ft) tall, and have main stems branching from the ground (see figure 3). Flowering stems are not as widely branching as those of basin, but otherwise closely resemble that subspecies. Leaves are typically shorter, from 1 to 1.5 cm (0.4 to 0.6 in) long, and flabelliform. UV extract color in water is none to light blue and rusty in alcohol. 2n = 36.

The vegetative stems of mountain big sagebrush create a characteristic even topped crown with the panicles rising distinctly and relatively uniformly above the foliage (see figure 3). Plants are normally smaller than those of basin big sagebrush, averaging about 0.9 m (3 ft) tall. Inflorescences are narrow and spicate bearing flower heads containing 4 to 8 flowers per head. Leaves are characteristically wider than those of basin or Wyoming big sagebrush. In extracts, ultraviolet visible coumarins are abundant. Leaf extracts fluoresce blue in water and blue-cream in alcohol. 2n = 18 or sometimes 36.

Figure 4. Even topped mountain big sagebrush.

Derek Tilley, USDA NRCS Idaho PMC

Originally considered a xeric form of mountain big sagebrush, xeric big sagebrush shares similarities with both basin and mountain big sagebrush and may be the result of hybridization between the two subspecies. Xeric big sagebrush plants are large and have an uneven topped crown like those of basin big sagebrush, but in leaf UV color and cytological characters it resembles mountain big sagebrush. Ultraviolet visible coumarins are blue in water, blue-cream in alcohol. 2n = 36.

A new variation of big sagebrush being recognized by some is Bonneville big sagebrush. This as yet undescribed taxon may represent hybridization between Wyoming and mountain big sagebrush. It is reported to have the general growth form of Wyoming plants but bears the leaves and fluorescing characteristics of the mountain subspecies. It has been reported from the bench areas of Lake Bonneville and other ancient lakes of the Intermountain West in Utah and Nevada. Reports of Bonneville big sagebrush have also come from western Wyoming and western Colorado. Of particular importance is this sagebrush’s reported high palatability to wild ungulates and sage grouse.

Subalpine, or spicate big sagebrush, is believed to be a stabilized hybrid between mountain big sagebrush and silver sagebrush (Artemisia cana Pursh ssp. viscidula [Osterhout] Beetle). Plants are similar to those of mountain big sagebrush except that leaves and floral heads are larger, the floral heads having 10 to 18 flowers per head. Ultraviolet visible coumarins in leaf extracts fluoresce blue in water and blue-cream in alcohol. 2n = 18 or 36.

Parish’s big sagebrush is an uncommon taxon restricted to dry, sandy soils in the hills of southern California. It is nearest in appearance and relationship to basin big sagebrush, but differs from basin in having drooping flowering branches and the achenes are hairy. 2n = 36.

One additional taxon that should be mentioned is Lahontan sagebrush (Artemisia arbuscula ssp. longicaulis Winward and McArthur). It is thought to be a stable hybrid between low sagebrush (A. arbuscula) and Wyoming big sagebrush. It bears the flowers of low sagebrush but has the vegetative characteristics of its big sagebrush parent. This subspecies forms dominant communities in northwestern Nevada and adjacent portions of California and Oregon in shallow or clayey soils above and around the shoreline of the Pleistocene Lake Lahontan.

The following key should provide some assistance in separating the subspecies of big sagebrush.

1. plants larger, usually >0.9 m (3 ft) tall, with a

single main trunk; crown uneven with floral stems

throughout

2. achenes hairy; floral stems drooping; plants

endemic to sandy soils in southern

California……………………......ssp. parishii

2. achenes glabrous; floral stems erect; plants

widely distributed throughout western U.S,

including southern California

3. plants occurring in valley bottoms and low

foothills, occupying deep fertile soils; leaves

narrowly cuneate, 2-5 cm (0.8-2.0 in) long,

UV leaf color in water=none, in alcohol=red

to brown ……...................…...ssp. tridentata

3. UV in water=blue, in alcohol=blue-cream;

plants restricted to well-drained basaltic soils in western Idaho….........ssp. xericensis

1. plants smaller, averaging 0.9 m (3 ft) or less, with

trunks branching at or near ground level; crowns

various

4. crowns uneven-topped, plants of low

valleys and foothills;

5. UV color in water=none, in alcohol=rust

…………………………..ssp. wyomingensis

5. UV color in water=blue, in alcohol=blue-

cream…………………………..(Bonneville)

4. crowns even-topped, floral stems rising

uniformly above the vegetative stems; plants of

higher elevations

6. flowers 4 to 8; leaf tips lobed

………………………………….ssp. vaseyana

6. flowers 10 to 18; leaf tips often pointed

……….…………...…………..ssp. spiciformis

Additional taxonomic information can be found in the Flora of North America, Volume 19 (FNA Editorial Committee 2006) and the Intermountain Flora, Volume 5 (Cronquist et al. 1994).

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description

General: Although big sagebrush plants generally have a similar growth form, the species does have considerable morphological variation with several subspecies and ecotypes. Big sagebrush are evergreen shrubs ranging in size from less than 0.6 m (2 ft) tall to as large as 4 m (13 ft) tall. Branches are spreading, arising from numerous main stems in the lower growing subspecies or from one main trunk in the larger forms. Leaves are blue-gray to blue-green in color due to dense gray hairs. They are typically cuneate (wedge-shaped, triangular and gradually tapering to the base) or flabelliform (bell shaped) depending on subspecies, and have three lobes at the apex on the majority of the persistent foliage. Leaves vary in length from 0.5 to 5 cm (0.2 to 2.0 in), and can be 0.2 to 2.0 cm (0.08 to 0.8 in) wide. Leaves are spirally arranged with internodes short in young vegetative stems making the leaves very dense. Panicles overtop plants of mountain and spicate big sagebrush, or can grow throughout the crown in basin and Wyoming big sagebrush. Floral heads contain from three to 18 perfect (both male and female parts present) flowers per head. Achenes are typically glabrous but are hairy in the California endemic Parish’s big sagebrush. Big sagebrush plants are very aromatic with the smell being described as bitter pungent to pleasant, the odor varying by subspecies. Ploidy levels often differ among subspecies and may differ among populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Alternative names

A. tridentata ssp. parishii = Parish’s big sagebrush

A. tridentata ssp. spiciformis = subalpine or spicate big sagebrush

A. tridentata ssp. tridentata = basin big sagebrush

A. tridentata ssp. vaseyana = mountain big sagebrush

A. tridentata ssp. wyomingensis = Wyoming big sagebrush

A. tridentata ssp. xericensis = xeric or foothills big sagebrush

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

National Distribution

Canada

Origin: Unknown/Undetermined

Regularity: Regularly occurring

Currently: Unknown/Undetermined

Confidence: Confident

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

More info for the term: shrubs

Big sagebrush is one of the most widespread and economically important shrubs in western North America [39]. Basin big sagebrush is the most extensive in distribution and range of variation in the Great Basin and Columbia Plateau [108]. It is distributed from Washington east to the Dakotas and south to California, Arizona, and New Mexico [114]. Basin big sagebrush is found from the floor of the Great Basin to upper timberline, although it is not abundant in all zones [108]. It occurs in relatively small stands east of the Cascades in Oregon [117].

  • 108. Ward, George H. 1953. Artemisia, section Seriphidium, in North America: a cytotaxonomic study. Contributions from the Dudley Herberium. 4(6): 155-205. [2454]
  • 114. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 117. Winward, Alma H. 1980. Taxonomy and ecology of sagebrush in Oregon. Station Bulletin 642. Corvallis, OR: Oregon State University, Agricultural Experiment Station. 15 p. [2585]
  • 39. Freeman, D. C.; Turner, W. A.; McArthur, E. D.; Graham, J. H. 1991. Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). American Journal of Botany. 78(6): 805-815. [15470]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regional Distribution in the Western United States

More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):



5 Columbia Plateau

6 Upper Basin and Range

7 Lower Basin and Range

8 Northern Rocky Mountains

9 Middle Rocky Mountains

10 Wyoming Basin

11 Southern Rocky Mountains

12 Colorado Plateau

16 Upper Missouri Basin and Broken Lands

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Occurrence in North America

AZ CA CO ID MT NV ND NM OR SD UT WA WY

AB BC

MEXICO

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fossil records and records from early pioneers indicate that sagebrush was widespread and existed in nearly the same general distribution for the past several thousand years as it does in the present day. Densities of sagebrush communities, however, have been reduced historically due to range management practices. Big sagebrush presently covers a vast ecological range from British Columbia to Baja California eastward to the Dakotas. Mahalovich and McArthur (2004) provide distribution as well as seed and plant transfer guidelines for Artemisia subgenus Tridentatae. For current distribution for each subspecies, please consult the Plant Profile page for this species on the PLANTS Web site.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fossil records and records from early pioneers indicate that sagebrush was widespread and existed in nearly the same general distribution for the past several thousand years as it does in the present day. Densities of sagebrush communities, however, have been reduced historically due to range management practices. Big sagebrush presently covers a vast ecological range from British Columbia to Baja California eastward to the Dakotas. Mahalovich and McArthur (2004) provide distribution as well as seed and plant transfer guidelines for Artemisia subgenus Tridentatae. For current distribution for each subspecies, please consult the Plant Profile page for this species on the PLANTS Web site.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Description

More info for the terms: cover, forbs, mesic, shrub

Basin big sagebrush is an erect, rounded or somewhat spreading evergreen shrub which normally grows 3 to 10 feet (1-2 m) in height [110]. It occasionally occurs as a dwarf shrub or can be treelike in appearance, reaching a height of 16 feet (5 m). Maximum stature is reached on deep, well-drained soils in sheltered areas. Variability in plant height occurs along a moisture gradient, with larger plants occurring on more mesic sites [6].

Basin big sagebrush has a multistemmed form with a relatively thick trunk and an irregular crown. It is often characterized by a discernible main trunk [44]. It commonly reaches 40 to 50 years of age, and some plants may exceed 100 years. Slow-growing individuals on unfavorable sites attain the greatest age.

The root systems of all subspecies of big sagebrush are well adapted to extract moisture from both shallow and deep portions of the soil profile. This makes them highly competitive with associated grasses and forbs [19,101].

Basin big sagebrush exhibits greater plant height, crown cover, production, and annual leader growth than Wyoming big sagebrush

  • 101. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 110. Weiss, Nondor T.; Verts, B. J. 1984. Habitat and distribution of pygmy rabbits (Sylvilagus idahoensis) in Oregon. The Great Basin Naturalist. 44(4): 563-571. [23635]
  • 19. Britton, Carlton M.; Clark, Robert G.; Sneva, Forrest A. 1981. Will your sagebrush range burn? Rangelands. 3(5): 207-208. [517]
  • 44. Graham, John H.; Freeman, D. Carl; McArthur, E. Durant. 1995. Narrow hybrid zone between two subspecies of big sagebursh (Artemisia tridentata: Asteraceae). II. Selection gradients and hybrid fitness. American Journal of Botany. 82(6): 709-716. [26072]
  • 6. Beetle, A. A. 1960. A study of sagebrush: The section Tridentatae of Artemisia. Bulletin 368. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 83 p. [416]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Comments: Deep, well-drained (usually sandy) soils in valley bottoms, lower montane slopes, along drainages; 1300-2200 m. Subspecies tridentata is the common sagebrush of deep, well-drained soils in the Great Basin of western North America, where it is often the dominant shrub of valleys and open grasslands. On drier sites and on high plateaus, it is replaced by subsp. wyomingensis, a taxon that appears to be increasing with prolonged droughts and disturbance from grazing.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat characteristics

More info for the terms: association, mesic

Basin big sagebrush grows in relatively more mesic habitats than other subspecies of big sagebrush [6,72]. It commonly grows on well-drained soils in valley bottoms, lower foothill areas or in areas adjacent to drainages. Basin big sagebrush is associated with deep, seasonally dry, well-drained soils on plains, valleys, and foothills [5]. It frequently coincides with high water tables or deep moisture accumulations [96].

Basin big sagebrush occurs on stratified sandy loam soils on floodplains or on low stream terraces [53]. In southeastern Idaho, basin big sagebrush is most abundant on sandy soils or at the sandy end of a soil texture gradient [96].

Because it tends to grow in deep, fertile soils, basin big sagebrush is an indicator of productive sites. Many sites once dominated by basin big sagebrush are now farmland [84,118]. In farmlands, it is now restricted primarily to field edges, swales, and along drainage ways [24].

Precipitation on basin big sagebrush sites ranges from 10 to 18 inches (250-460 mm) per year [24]. Basin big sagebrush is considered intolerant of alkaline conditions, but some ecotypes do grow in association with salt-tolerant plants such as shadscale (Atriplex confertifolia), black greasewood (Sarcobatus vermiculatus), and saltgrass (Distichlis spp.) [9,52]. In Utah sites occupied by basin big sagebrush tend to be slightly alkaline whereas those occupied by mountain big sagebrush tend to be slightly acidic [108].

Elevational ranges are as follows [5,53,118]:

4,800-5,800 feet (1463-1768 m) in Arizona
100-7,000 feet (30-2134 m) in Oregon
2,001-7,019 feet (610-2140 m) in northeastern Utah

  • 108. Ward, George H. 1953. Artemisia, section Seriphidium, in North America: a cytotaxonomic study. Contributions from the Dudley Herberium. 4(6): 155-205. [2454]
  • 118. Young, James A.; Evans, Raymond A. 1981. Demography and fire history of a western juniper stand. Journal of Range Management. 34(6): 501-505. [2659]
  • 24. Collins, Ellen I. 1984. Preliminary classification of Wyoming plant communities. Cheyenne, WY: Wyoming Natural Heritage Program/The Nature Conservancy. 42 p. [661]
  • 5. Beardall, Louis E.; Sylvester, Vern E. 1976. Spring burning for removal of sagebrush competition in Nevada. In: Proceedings, Tall Timbers fire ecology conference and fire and land management symposium; 1974 October 8-10; Missoula, MT. No. 14. Tallahassee, FL: Tall Timbers Research Station: 539-547. [406]
  • 52. Hopkins, William E.; Kovalchik, Bernard L. 1983. Plant associations of the Crooked River National Grassland. R6 Ecol 133-1983. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 98 p. [1193]
  • 53. Hull, A. C., Jr.; Kissinger, N. A., Jr.; Vaughn, W. T. 1952. Chemical control of big sagebrush in Wyoming. Journal of Range Management. 5: 398-402. [1210]
  • 6. Beetle, A. A. 1960. A study of sagebrush: The section Tridentatae of Artemisia. Bulletin 368. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 83 p. [416]
  • 72. Meyer, Susan E. 1994. Germination and establishment ecology of big sagebrush: implications for community restoration. In: Monsen, Stephen B.; Kitchen, Stanley G, compilers. Proceedings--ecology and management of annual rangelands; 1992 May 18-22; Boise, ID. Gen. Tech. Rep. INT-GTR-313. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 244-251. [24290]
  • 84. Pechanec, Joseph F.; Stewart, George; Blaisdell, James P. 1954. Sagebrush burning good and bad. Farmers' Bulletin No. 1948. Washington, DC: U.S. Department of Agriculture. 34 p. [1859]
  • 9. Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals, reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's associations for the eleven western states. Tech. Note 301. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 169 p. [434]
  • 96. Striby, Karl D.; Wambolt, Carl L.; Kelsey, Rick G.; Havstad, Kris M. 1987. Crude terpenoid influence on in vitro digestibility of sagebrush. Journal of Range Management. 40(3): 244-248. [2265]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Key Plant Community Associations

More info for the terms: association, climax, natural, shrub

 
Basin big sagebrush community in sandy soil, Washoe County, Nevada. An understory is mostly lacking.
Photo courtesy of the PRBO Conservation Science Shrubsteppe Monitoring Program.


Basin big sagebrush commonly grows in association with cheatgrass (Bromus
tectorum), bluebunch wheatgrass (Pseudoroegneria spicata),
Thurber needlegrass (Achnatherum thurberianum), needle-and-thread
grass (Hesperostipa comata), Idaho fescue (Festuca
idahoensis), and Sandberg bluegrass (Poa secunda)
[51,117].



Common shrub associates include broom snakeweed (Gutierrezia sarothrae)
and green
rabbitbrush (Chrysothamnus viscidiflorus) [51].
Basin big sagebrush is a climax dominant on semiarid sites in
the Pacific Northwest, Great Basin, and the Southwest.
Publications describing community types dominated by
basin big sagebrush are listed below.

A preliminary classification of the natural vegetation of
Colorado [2]

Steppe vegetation of Washington [29]

Sagebrush-grass habitat types of southern Idaho [50]

Plant associations of the Crooked River National Grassland [52]

A sagebrush community type classification for mountainous northeastern
Nevada rangeland [57]

Correlation between soils and sagebrush-dominated plant communities
of northeastern Nevada [58]

Soil characteristics of mountainous northeastern Nevada sagebrush
community types [59]

Grassland and shrubland habitat types of western Montana [76]

Shrub-steppe habitat types of Middle Park, Colorado [98]

Grassland and shrubland habitat types of the Shoshone National Forest [101]

A management-oriented classification of pinyon-juniper woodlands
of the Great Basin [116]

  • 101. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 116. West, Neil E.; Tausch, Robin J.; Tueller, Paul T. 1998. A management-oriented classification of pinyon-juniper woodlands of the Great Basin. Gen. Tech. Rep. RMRS-GTR-12. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 42 p. [29131]
  • 117. Winward, Alma H. 1980. Taxonomy and ecology of sagebrush in Oregon. Station Bulletin 642. Corvallis, OR: Oregon State University, Agricultural Experiment Station. 15 p. [2585]
  • 2. Baker, William L. 1984. A preliminary classification of the natural vegetation of Colorado. The Great Basin Naturalist. 44(4): 647-676. [380]
  • 29. Daubenmire, R. 1970. Steppe vegetation of Washington. Technical Bulletin 62. Pullman, WA: Washington State University, College of Agriculture, Washington Agricultural Experiment Station. 131 p. [733]
  • 50. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 51. Hodgkinson, Harmon S. 1989. Big sagebrush subspecies and management implications. Rangelands. 11(1): 20-22. [6265]
  • 52. Hopkins, William E.; Kovalchik, Bernard L. 1983. Plant associations of the Crooked River National Grassland. R6 Ecol 133-1983. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 98 p. [1193]
  • 57. Jensen, M. E.; Peck, L. S.; Wilson, M. V. 1988. A sagebrush community type classification for mountainous northeastern Nevada rangelands. The Great Basin Naturalist. 48: 422-433. [27717]
  • 58. Jensen, M. E.; Simonson, G. H.; Dosskey, M. 1990. Correlation between soils and sagebrush-dominated plant communities of northeastern Nevada. Soil Science Society of America Journal. 54: 902-910. [15502]
  • 59. Jensen, Mark E. 1989. Soil characteristics of mountainous northeastern Nevada sagebrush community types. The Great Basin Naturalist. 49(4): 469-481. [9903]
  • 76. Mueggler, W. F.; Stewart, W. L. 1980. Grassland and shrubland habitat types of western Montana. Gen. Tech. Rep. INT-66. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 154 p. [1717]
  • 98. Tiedeman, James A.; Francis, Richard E.; Terwilliger, Charles, Jr.; Carpenter, Len H. 1987. Shrub-steppe habitat types of Middle Park, Colorado. Res. Pap. RM-273. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 20 p. [2329]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Plant Associations

More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):



K022 Great Basin pine forest

K023 Juniper-pinyon woodland

K024 Juniper steppe woodland

K037 Mountain mahogany-oak scrub

K038 Great Basin sagebrush

K039 Blackbrush

K040 Saltbush-greasewood

K041 Creosotebush

K051 Wheatgrass-bluegrass

K055 Sagebrush steppe

K056 Wheatgrass-needlegrass shrubsteppe

K057 Galleta-three-awn shrubsteppe

K064 Grama-needlegrass-wheatgrass

K066 Wheatgrass-needlegrass

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Ecosystem

More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):



FRES21 Ponderosa pine

FRES29 Sagebrush

FRES30 Desert shrub

FRES34 Chaparral-mountain shrub

FRES35 Pinyon-juniper

FRES36 Mountain grasslands

FRES38 Plains grasslands

FRES40 Desert grasslands

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Rangeland Cover Types

More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):



104 Antelope bitterbrush-bluebunch wheatgrass

107 Western juniper-big sagebrush-bluebunch wheatgrass

210 Bitterbrush

212 Blackbrush

302 Bluebunch wheatgrass-Sandberg bluegrass

303 Bunchgrass wheatgrass-western wheatgrass

304 Idaho fescue-bluebunch wheatgrass

314 Big sagebrush-bluebunch wheatgrass

316 Big sagebrush-rough fescue

320 Black sagebrush-bluebunch wheatgrass

321 Black sagebrush-Idaho fescue

322 Curlleaf mountain mahogany-bluebunch wheatgrass

324 Threetip sagebrush-Idaho fescue

401 Basin sagebrush

412 Juniper-pinyon woodland

415 Curlleaf mountain-mahogany

416 True mountain-mahogany

504 Juniper-pinyon woodlands

607 Wheatgrass-needlegrass

608 Wheatgrass-grama-needlegrass

611 Blue grama-buffalograss

612 Sagebrush-grass

615 Wheatgrass-saltgrass-grama

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Cover Types

More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):



220 Rocky Mountain juniper

237 Interior ponderosa pine

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

The big sagebrush complex is adapted to a wide range of precipitation zones and soil conditions. Plants are well adapted to the arid plains, valleys, foothills and mountains of the West where annual precipitation ranges from as little as 200 to as much as 750 or more mm (8 to 30 in). It is often found growing in loamy to sandy loam soils, but plants are found on all 12 soil textural classes in five soil orders: Alfisols, Aridisols, Entisols, Inceptisols and Mollisols. Tolerance to alkalinity or acidity varies by subspecies. In general big sagebrush will grow in soils with a pH of 5.9 to 10.0 and with organic matter content of 0.62 to 4.14 percent.

Basin big sagebrush is commonly found at low to mid elevations from 600 to 2,100 m (1,900 to 6,900 ft) in valleys and mountain foothills, occupying sites with deep fertile loamy to sandy soil, 0.9 m (3 ft) or deeper. It is often the dominant shrub species of the plant community, but is also found in association with juniper, piñon pine and rabbitbrush communities. Basin big sagebrush has a deep penetrating root system that allows it to occupy deeper soils in areas receiving little precipitation. Plants are often found growing in valleys, plains, alluvial fans and in seasonal or perennial stream channels. Basin big sagebrush prefers soils which are non-alkaline, non-saline and non-calcareous. The deep root system does not allow plants to grow in soils with a soil depth limiting hardpan or caliche layer. Depending on soil infiltration and water storage capacity, plants will grow in areas receiving less than 200 to more than 400 mm (8 to 16 in) annual precipitation. This subspecies also does not tolerate soils saturated for more than a few weeks in a season.

Wyoming big sagebrush grows at low to intermediate elevations between basin and mountain big sagebrush, but also commonly overlaps in range with the other two subspecies. When found in proximity with basin big sagebrush, Wyoming sagebrush will occupy the shallower, better-drained soils. Like basin big sagebrush, Wyoming is typically found in large stands covering many acres. Plants are also found in juniper, rabbitbrush, bitterbrush and mountain mahogany communities. At lower precipitation areas it is sometimes intermixed with shadscale and other Atriplex species. Wyoming big sagebrush commonly occurs from 800 to 2,200 m (2600 to 7,200 ft) in elevation. Wyoming big sagebrush is the most drought tolerant of the big sagebrush subspecies and is commonly found growing on low valley slopes and foothills receiving between 200 and 300 mm (8 to 12 in) annual precipitation. It occupies loamy soils with high clay content and a depth of 25 to 75 cm (10 to 30 in). Soils may be quite rocky or gravelly, but in these cases plants will be smaller. Wyoming big sagebrush will be found growing in soils underlain by a caliche or silica layer if the available soil is deep enough. Plants are typically found in soils with a low water holding capacity where excess water may run off into channels more suitable to basin big sagebrush.

Mountain big sagebrush grows in mountain and mountain foothill plant communities such as rabbitbrush, piñon pine, juniper, mountain shrub, aspen, Douglas fir, ponderosa pine and spruce-fir habitats from 800 to 3,100 m (2,600 to 10,000 ft). Plants prefer moderately deep to deep, well-drained soils providing summer moisture. Mountain big sagebrush occurs at higher elevations and in higher annual precipitation zones than either Wyoming big sagebrush or basin big sagebrush. Soils are typically 45 to 90 centimeters (18 to 36 in) deep or more, and are most often loamy to gravelly but can contain greater amounts of clay. Plants commonly grow in areas receiving over 350 mm (14 in) annual precipitation, but may be found in lower elevations and precipitation zones under certain conditions such as snow drift accumulation areas and shaded north facing slopes.

Xeric big sagebrush is limited to basaltic and granitic soils of western and west central Idaho and is often associated with bluebunch wheatgrass. Plants grow in the foothills from 800 to 1,500 meters (2,600 to 4,900 ft). Precipitation ranges from 300 to 400 mm (12 to 16 in) annually.

Spicate big sagebrush grows at high elevation ridge lines and snow accumulation areas from 2,000 to 3,300 m (6,500 to 10,800 ft) in annual precipitation zones of over 750 mm (30 in). It is normally found near Douglas fir, spruce-fir, and aspen communities.

Figure 5. Adaptation of Intermountain big sagebrush subspecies based on elevational and moisture gradients (Mahalovich and McArthur, 2004).

Parish’s big sagebrush is adapted to the dry sandy soils of California’s Inner South Coast Ranges, South Coast, Western Transverse Ranges, White and Inyo Mountains and the desert mountains of the Mojave Desert.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

The big sagebrush complex is adapted to a wide range of precipitation zones and soil conditions. Plants are well adapted to the arid plains, valleys, foothills and mountains of the West where annual precipitation ranges from as little as 200 to as much as 750 or more mm (8 to 30 in). It is often found growing in loamy to sandy loam soils, but plants are found on all 12 soil textural classes in five soil orders: Alfisols, Aridisols, Entisols, Inceptisols and Mollisols. Tolerance to alkalinity or acidity varies by subspecies. In general big sagebrush will grow in soils with a pH of 5.9 to 10.0 and with organic matter content of 0.62 to 4.14 percent.

Basin big sagebrush is commonly found at low to mid elevations from 600 to 2,100 m (1,900 to 6,900 ft) in valleys and mountain foothills, occupying sites with deep fertile loamy to sandy soil, 0.9 m (3 ft) or deeper. It is often the dominant shrub species of the plant community, but is also found in association with juniper, piñon pine and rabbitbrush communities. Basin big sagebrush has a deep penetrating root system that allows it to occupy deeper soils in areas receiving little precipitation. Plants are often found growing in valleys, plains, alluvial fans and in seasonal or perennial stream channels. Basin big sagebrush prefers soils which are non-alkaline, non-saline and non-calcareous. The deep root system does not allow plants to grow in soils with a soil depth limiting hardpan or caliche layer. Depending on soil infiltration and water storage capacity, plants will grow in areas receiving less than 200 to more than 400 mm (8 to 16 in) annual precipitation. This subspecies also does not tolerate soils saturated for more than a few weeks in a season.

Wyoming big sagebrush grows at low to intermediate elevations between basin and mountain big sagebrush, but also commonly overlaps in range with the other two subspecies. When found in proximity with basin big sagebrush, Wyoming sagebrush will occupy the shallower, better-drained soils. Like basin big sagebrush, Wyoming is typically found in large stands covering many acres. Plants are also found in juniper, rabbitbrush, bitterbrush and mountain mahogany communities. At lower precipitation areas it is sometimes intermixed with shadscale and other Atriplex species. Wyoming big sagebrush commonly occurs from 800 to 2,200 m (2600 to 7,200 ft) in elevation. Wyoming big sagebrush is the most drought tolerant of the big sagebrush subspecies and is commonly found growing on low valley slopes and foothills receiving between 200 and 300 mm (8 to 12 in) annual precipitation. It occupies loamy soils with high clay content and a depth of 25 to 75 cm (10 to 30 in). Soils may be quite rocky or gravelly, but in these cases plants will be smaller. Wyoming big sagebrush will be found growing in soils underlain by a caliche or silica layer if the available soil is deep enough. Plants are typically found in soils with a low water holding capacity where excess water may run off into channels more suitable to basin big sagebrush.

Mountain big sagebrush grows in mountain and mountain foothill plant communities such as rabbitbrush, piñon pine, juniper, mountain shrub, aspen, Douglas fir, ponderosa pine and spruce-fir habitats from 800 to 3,100 m (2,600 to 10,000 ft). Plants prefer moderately deep to deep, well-drained soils providing summer moisture. Mountain big sagebrush occurs at higher elevations and in higher annual precipitation zones than either Wyoming big sagebrush or basin big sagebrush. Soils are typically 45 to 90 centimeters (18 to 36 in) deep or more, and are most often loamy to gravelly but can contain greater amounts of clay. Plants commonly grow in areas receiving over 350 mm (14 in) annual precipitation, but may be found in lower elevations and precipitation zones under certain conditions such as snow drift accumulation areas and shaded north facing slopes.

Xeric big sagebrush is limited to basaltic and granitic soils of western and west central Idaho and is often associated with bluebunch wheatgrass. Plants grow in the foothills from 800 to 1,500 meters (2,600 to 4,900 ft). Precipitation ranges from 300 to 400 mm (12 to 16 in) annually.

Spicate big sagebrush grows at high elevation ridge lines and snow accumulation areas from 2,000 to 3,300 m (6,500 to 10,800 ft) in annual precipitation zones of over 750 mm (30 in). It is normally found near Douglas fir, spruce-fir, and aspen communities.

Figure 5. Adaptation of Intermountain big sagebrush subspecies based on elevational and moisture gradients (Mahalovich and McArthur, 2004).

Parish’s big sagebrush is adapted to the dry sandy soils of California’s Inner South Coast Ranges, South Coast, Western Transverse Ranges, White and Inyo Mountains and the desert mountains of the Mojave Desert.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Dispersal

Establishment

Seed of big sagebrush are best adapted to germinate in habitats with ecological conditions approximating those of the seed collection site. Seed source and subspecies should always be seriously considered prior to seeding. It may be necessary to use seed from more than one subspecies in a given revegetation project to ensure adequate establishment in all habitats.

Seed should be sown in the late fall or early winter and allowed to naturally stratify. It should be noted that big sagebrush seed has special seed storage requirements (See “Seed and Plant Production” section). If stored in conditions with relative humidity above 30 percent, seeds lose vigor and germinability after two or three years. To ensure a greater chance of establishment success, check the viability of seed lots before planting.

Seed should be planted into a firm, weed-free seedbed at a depth of no more than 1/8 inch. Seed covered too deeply with soil will generally fail to establish. Best results come from surface broadcast seed that has been pressed into the soil to provide for good seed-soil contact. Seed can also be broadcast directly onto snow with good results. Pressing broadcast seed into the soil surface with a land imprinter has provided very good establishment success. Land imprinters create good contact between the seed and soil as well as provide microhabitats that optimize temperature and water requirements. Broadcast seeding has also yielded good results when followed by a cultipacker or drag chain.

Drill seeding can be successful, but strict attention must be paid to seeding depth. Optimal drilling depth is 0 to 1/8 inch.

Sagebrush seed lots range in purity from approximately 8 to 30 percent or greater pure seed. Seed lots with high purity levels (20 percent or greater) can be difficult to seed due to limitations of the seeding equipment. Because sagebrush seed is very small and is metered through seeding equipment with difficulty, seed can be diluted with rice hulls or another inert carrier to improve flow.

Post-fire aerial seeding of big sagebrush has been done with limited success. Studies suggest that best results come from aerial seeding followed by land imprinting, cultipacking or chaining, or after allowing native perennial grasses to establish for a season following fire. It is believed that native grasses would suppress exotic annual grass species while allowing the establishment of sagebrush. Further study of this option is indicated.

Big sagebrush is not recommended for pure seedings. Seed should be a small component of a seed mix. Drill seeding 0.025 lbs PLS per acre (approximately 1 viable seed/ft²) provides approximately 400 plants per acre for optimal wildlife habitat. For broadcast seeding increase to 0.05 to 0.075 lbs PLS (approximately 2-3 viable seeds/ft²). With adequate soil moisture seedlings develop quickly and compete well with other shrubs and most herbaceous plants. However, to enhance establishment, sagebrush should not be sown in the same drill row with more aggressive forbs and grasses.

Sagebrush seedlings require sufficient soil moisture to germinate and survive. Young plants do not do well in open, unprotected locations. Best establishment results occur in sites where soil moisture is at or near field capacity, or in areas where snow accumulates. Existing shrubs, downed trees and litter can create microhabitats which also provide very good germination conditions.

Containerized stock or bareroot seedlings can also be used with high establishment success (50% or greater). This method, however, is quite costly, and is rarely used except in small critical area plantings. Plants can be taken from nursery stock or field harvested wildings. Wildings should be collected and transplanted during dormancy in fall or very early spring when soil moisture conditions are best. For best cost efficiency, “mother plants” should be placed in key locations throughout the revegetation site to allow for natural seed dispersal and recruitment over time.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Establishment

Seed of big sagebrush are best adapted to germinate in habitats with ecological conditions approximating those of the seed collection site. Seed source and subspecies should always be seriously considered prior to seeding. It may be necessary to use seed from more than one subspecies in a given revegetation project to ensure adequate establishment in all habitats.

Seed should be sown in the late fall or early winter and allowed to naturally stratify. It should be noted that big sagebrush seed has special seed storage requirements (See “Seed and Plant Production” section). If stored in conditions with relative humidity above 30 percent, seeds lose vigor and germinability after two or three years. To ensure a greater chance of establishment success, check the viability of seed lots before planting.

Seed should be planted into a firm, weed-free seedbed at a depth of no more than 1/8 inch. Seed covered too deeply with soil will generally fail to establish. Best results come from surface broadcast seed that has been pressed into the soil to provide for good seed-soil contact. Seed can also be broadcast directly onto snow with good results. Pressing broadcast seed into the soil surface with a land imprinter has provided very good establishment success. Land imprinters create good contact between the seed and soil as well as provide microhabitats that optimize temperature and water requirements. Broadcast seeding has also yielded good results when followed by a cultipacker or drag chain.

Drill seeding can be successful, but strict attention must be paid to seeding depth. Optimal drilling depth is 0 to 1/8 inch.

Sagebrush seed lots range in purity from approximately 8 to 30 percent or greater pure seed. Seed lots with high purity levels (20 percent or greater) can be difficult to seed due to limitations of the seeding equipment. Because sagebrush seed is very small and is metered through seeding equipment with difficulty, seed can be diluted with rice hulls or another inert carrier to improve flow.

Post-fire aerial seeding of big sagebrush has been done with limited success. Studies suggest that best results come from aerial seeding followed by land imprinting, cultipacking or chaining, or after allowing native perennial grasses to establish for a season following fire. It is believed that native grasses would suppress exotic annual grass species while allowing the establishment of sagebrush. Further study of this option is indicated.

Big sagebrush is not recommended for pure seedings. Seed should be a small component of a seed mix. Drill seeding 0.025 lbs PLS per acre (approximately 1 viable seed/ft²) provides approximately 400 plants per acre for optimal wildlife habitat. For broadcast seeding increase to 0.05 to 0.075 lbs PLS (approximately 2-3 viable seeds/ft²). With adequate soil moisture seedlings develop quickly and compete well with other shrubs and most herbaceous plants. However, to enhance establishment, sagebrush should not be sown in the same drill row with more aggressive forbs and grasses.

Sagebrush seedlings require sufficient soil moisture to germinate and survive. Young plants do not do well in open, unprotected locations. Best establishment results occur in sites where soil moisture is at or near field capacity, or in areas where snow accumulates. Existing shrubs, downed trees and litter can create microhabitats which also provide very good germination conditions.

Containerized stock or bareroot seedlings can also be used with high establishment success (50% or greater). This method, however, is quite costly, and is rarely used except in small critical area plantings. Plants can be taken from nursery stock or field harvested wildings. Wildings should be collected and transplanted during dormancy in fall or very early spring when soil moisture conditions are best. For best cost efficiency, “mother plants” should be placed in key locations throughout the revegetation site to allow for natural seed dispersal and recruitment over time.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Fire Management Considerations

More info for the terms: cover, density, fire-resistant species, fuel, fuel moisture, prescribed burn, prescribed fire, presence, shrub

Sapsis [90] reports "investigations of prescribed burning as an ecological agent in basin big sagebrush dominated systems are lacking." However, a number of studies have focused on big sagebrush in general. Fire as a management tool has primarily been used to reduce big sagebrush. Where sagebrush reduction is a desired goal, prescribed burns in basin big sagebrush communities tend to be more successful than those in Wyoming big sagebrush, but less successful than those in mountain big sagebrush [19]. In Nevada where "range improvements" were desired, best results have been obtained after spring or late fall burns [5]. Summer burns in big sagebrush communities can leave the soil bare and subject to erosion. Favorable results are often obtained after fire in basin big sagebrush is an adequate understory is present prior to the burn [21].

Britton and others [19] report that as a general rule for a successful prescribed burn in big sagebrush at least 20% canopy cover of big sagebrush should be present, with at least 200 to 300 lb. per acre of herbaceous fuel. Beardall and Sylvester [5] suggest that for prescribed burns to succeed in big sagebrush communities in Nevada, the following conditions should be met: 600 to 700 lb./acre fine fuels; ignition should occur when relative humidity is 60% or less; soil must be wet, winds must be 8 miles per hour or greater; and burning should stop when spring growth of grasses reaches 2 inches. Big sagebrush should be at least 1/3rd of total plant cover [84]. The presence of weedy annuals may prevent establishment of desirable perennial grasses and can increase future fire hazards [20].

Success of winter broadcast burning (n=5) in big sagebrush communities in southern Idaho was as follows [78]:

Conditions Fire carried Fire did not carry Canopy cover (%) 72.1 60.0 Density (plants/ha) 114,296 121,020 Biomass (g/plant) 1,634 1,496 Shrub height (cm) 103.8 108.3 Basal diameter (cm) 3.8 3.2 Distance between plants (cm) 15.4 37.5 Temperature (C) 9.0 9.0 Relative humidity (%) 49.3 46.6 Windspeed (km/h) 8.3 6.6 Fuel moisture (%) 37.0 38.0 In Idaho, wildfires in basin big sagebrush-needle and thread grass communities may create unstable soil conditions leading to wind erosion and "difficulty in seedling establishment" [25].

Removing sagebrush by fire or chemical treatment may release desirable undergrowth if the site is in good condition. However, many basin big sagebrush sites today are limited in extent and do not have a high density of undergrowth to respond if the overstory is reduced. Animals are attracted to burned areas and may damage low-vigor plants if the animals concentrate in a small area. In some cases, prescribed fire in big sagebrush communities can create mosaics that are beneficial to wildlife [21].

Several studies have examined big sagebrush as a fuel. Average fuel load for basin big sagebrush is reported as follows [38]:

fuel load (kg/m2) leaves 1 hr 10 hr 100 hr basin big sagebrush 0.084 0.12 0.14 0.16 In general, burning in cheatgrass-infested big sagebrush types is not recommended if cheatgrass cover exceeds 50% or if cover of fire-resistant native grasses is less than 20%. Cheatgrass is more likely to invade after fire if the dominant native grass is not a fire-resistant species (for example, Thurber needlegrass or Idaho fescue) or if native grasses were in poor condition prior to fire [84,115]. Artificial seeding with native grasses is recommended after fire if cheatgrass was a major component of the prefire community or if it was a minor component and native grasses were in poor condition [115,121]. Communities in good condition may at least partially recover from temporary postfire increases in cheatgrass, especially when fire is followed by favorable precipitation.

  • 115. West, Neil E.; Hassan, M. A. 1985. Recovery of sagebrush-grass vegetation following wildfire. Journal of Range Management. 38(2): 131-134. [2513]
  • 121. Young, James A.; Evans, Raymond A.; Weaver, Ronald A. 1976. Estimating potential downy brome competition after wildfires. Journal of Range Management. 29(4): 322-325. [2677]
  • 19. Britton, Carlton M.; Clark, Robert G.; Sneva, Forrest A. 1981. Will your sagebrush range burn? Rangelands. 3(5): 207-208. [517]
  • 20. Bunting, Stephen C. 1990. Prescribed fire effects in sagebrush-grasslands and pinyon-juniper woodlands. In: Alexander, M. E.; Bisgrove, G. F., technical coordinator. The art and science of fire management: Proceedings of the 1st Interior West Fire Council annual meeting and workshop; 1988 October 24-27; Kananaskis Village, AB. Information Rep. NOR-X-309. Edmonton, AB: Forestry Canada, Northwest Region, Northern Forestry Centre: 176-181. [15519]
  • 21. Bunting, Stephen C.; Kilgore, Bruce M.; Bushey, Charles L. 1987. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin. Gen. Tech. Rep. INT-231. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 33 p. [5281]
  • 25. Collins, P. D.; Harper, K. T. 1982. Habitat types of the Curlew National Grassland, Idaho. Provo, UT: Brigham Young University, Department of Botany and Range Science. 46 p. Editorial draft. [663]
  • 38. Frandsen, William H. 1983. Modeling big sagebrush as a fuel. Journal of Range Management. 36(5): 596-600. [958]
  • 5. Beardall, Louis E.; Sylvester, Vern E. 1976. Spring burning for removal of sagebrush competition in Nevada. In: Proceedings, Tall Timbers fire ecology conference and fire and land management symposium; 1974 October 8-10; Missoula, MT. No. 14. Tallahassee, FL: Tall Timbers Research Station: 539-547. [406]
  • 78. Neuenschwander, L. F. 1980. Broadcast burning of sagebrush in the winter. Journal of Range Management. (33)3: 233-236. [1746]
  • 84. Pechanec, Joseph F.; Stewart, George; Blaisdell, James P. 1954. Sagebrush burning good and bad. Farmers' Bulletin No. 1948. Washington, DC: U.S. Department of Agriculture. 34 p. [1859]
  • 90. Sapsis, David B. 1990. Ecological effects of spring and fall prescribed burning on basin big sagebrush/Idaho fescue--bluebunch wheatgrass communities. Corvallis, OR: Oregon State University. 105 p. Thesis. [16579]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Broad-scale Impacts of Plant Response to Fire

More info for the term: cover



In Wyoming, where big sagebrush has been removed by chemical
means, it regained its pretreatment cover in 17 years on
stands where grazing was not controlled [61].

  • 61. Johnson, W. M. 1969. Life expectancy of a sagebrush control in central Wyoming. Journal of Range Management. 22: 177-182. [1290]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Plant Response to Fire

More info for the terms: forb, frequency, interference, prescribed fire, shrubs

Basin big sagebrush does not sprout after fire. Because of the time needed to produce seed, it is eliminated by frequent fires [21]. Basin big sagebrush reinvades a site primarily by off-site seed or seed from plants that survive in unburned patches. The rate of stand recovery depends on the season of burn, as season affects the availability of seed, postfire precipitation patterns, and the amount of interference offered by other regenerating plant species [18,30,124]. Establishment may be delayed until favorable moisture conditions occur [55].

Sagebrush seed is not disseminated for great distances so off-site sources are probably less important than on-site seed [43]. Shrubs surviving within the perimeter of a disturbed area provide a more important seed source than those on the perimeter [60]. The vast majority of big sagebrush seed produced during fall is gone by spring and very few seeds persist. Seed of some subspecies of big sagebrush may persist in a seed bank [72]. However, unlike many of the other subspecies, emergence of basin big sagebrush seed appears to be reduced by exposure to heat [23].

Prescribed fire may favor big sagebrush on some sites by reducing the relative densities of other woody species. Fall and spring prescribed burning in a basin big sagebrush community in east-central Oregon reduced overall densities of woody species, including basin big sagebrush, in postfire year 1 or 2 compared to prefire densities. However, frequency of basin big sagebrush increased after spring burning due to postfire seedling establishment, with basin big sagebrush showing best postfire seedling establishment of 5 woody species [90]. See the Fire Case Studies and Research Project Summary of this study for more information on fire effects on basin big sagebrush and 60 additional woody plant, grass, and forb species.

  • 124. Zschaechner, Greg A. 1985. Studying rangeland fire effects: a case study in Nevada. In: Sanders, Ken; Durham, Jack, eds. Rangeland fire effects: Proceedings of the symposium; 1984 November 27-29; Boise, ID. Boise, ID: U.S. Department of the Interior, Bureau of Land Managment, Idaho State Office: 66-84. [2692]
  • 18. Britton, Carlton M.; Clark, Robert G. 1985. Effects of fire on sagebrush and bitterbrush. In: Sanders, Ken; Durham, Jack, eds. Rangeland fire effects: a symposium: Proceedings of the symposium; 1984 November 27-29; Boise, ID. Boise, ID: U.S. Department of the Interior, Bureau of Land Management, Idaho State Office: 22-26. [515]
  • 21. Bunting, Stephen C.; Kilgore, Bruce M.; Bushey, Charles L. 1987. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin. Gen. Tech. Rep. INT-231. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 33 p. [5281]
  • 23. Chaplin, M. R.; Winward, A. H. 1982. The effect of simulated fire on emergence of seeds found in the soil of big sagebrush communities. In: Society for Range Management Abstracts: Proceedings, 35th Annual Meeting of the Society for Range Management; [Date of conference unknown]; Calgary, AB. Denver, CO: Society for Range Management: 37. Abstract. [9800]
  • 30. Daubenmire, Rexford F. 1975. Ecology of Artemisia tridentata subsp. tridentata in the state of Washington. Northwest Science. 49(1): 24-35. [744]
  • 43. Goodwin, Duwayne Leroy. 1956. Autecological studies of Artemisia tridentata, Nutt. Pullman, WA: State College of Washington. 79 p. Dissertation. [1035]
  • 55. Humphrey, L. David. 1984. Patterns and mechanisms of plant succession after fire on Artemisia-grass sites in southeastern Idaho. Vegetatio. 57: 91-101. [1214]
  • 60. Johnson, James R.; Payne, Gene F. 1968. Sagebrush reinvasion as affected by some environmental influences. Journal of Range Management. 21: 209-213. [1280]
  • 72. Meyer, Susan E. 1994. Germination and establishment ecology of big sagebrush: implications for community restoration. In: Monsen, Stephen B.; Kitchen, Stanley G, compilers. Proceedings--ecology and management of annual rangelands; 1992 May 18-22; Boise, ID. Gen. Tech. Rep. INT-GTR-313. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 244-251. [24290]
  • 90. Sapsis, David B. 1990. Ecological effects of spring and fall prescribed burning on basin big sagebrush/Idaho fescue--bluebunch wheatgrass communities. Corvallis, OR: Oregon State University. 105 p. Thesis. [16579]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Broad-scale Impacts of Fire

More info for the terms: density, fuel

Site productivity affects the ease with which big sagebrush communities will burn. Highly productive sites have greater plant density and more biomass which, in turn, are likely to provide more fuel to carry a fire.

Among the three major subspecies of big sagebrush, basin big sagebrush is considered intermediate in flammability. Mountain big sagebrush is most flammable, and Wyoming big sagebrush is least flammable [18].

  • 18. Britton, Carlton M.; Clark, Robert G. 1985. Effects of fire on sagebrush and bitterbrush. In: Sanders, Ken; Durham, Jack, eds. Rangeland fire effects: a symposium: Proceedings of the symposium; 1984 November 27-29; Boise, ID. Boise, ID: U.S. Department of the Interior, Bureau of Land Management, Idaho State Office: 22-26. [515]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Ecology

More info for the terms: fire frequency, fire occurrence, fire severity, fire suppression, frequency, fuel, severity, tree

Big sagebrush plants are killed by most fires. Prolific seed production from nearby unburned plants coupled with high germination rates enables seedlings to establish rapidly following fire. Wind-, water-, and animal-carried seed contribute to regeneration on a site [43,60,99].

Few if any fire history studies have been conducted on basin big sagebrush. Sapsis [90] suggests that fire return intervals in basin big sagebrush are intermediate between mountain big sagebrush (5 to 15 years) and Wyoming big sagebrush (10 to 70 years) [90,118]. It is important to note that "given the wide range of fuel situations and our understanding of yearly climatic variation in the sagebrush ecosystem, a naturally wide variation in fire frequency in this system should be expected" [90].

In many basin big sagebrush communities, changes in fire occurrence have occurred along with fire suppression and livestock grazing. Prior to the introduction of annuals, insufficient fuels may have limited fire spread in big sagebrush communities. Introduction of annuals has increased fuel loads so that fire can easily carry. Burning in some big sagebrush communities can set the stage for repeated fires. Fire frequency can be as little as 5 years, not sufficient time for the establishment and reproduction of big sagebrush. Repeated fires have removed big sagebrush from extensive areas in the Great Basin and Columbia River drainages [20].

Fire severity in big sagebrush communities is described as "variable" depending on weather, fuels, and topography. However, fire in basin big sagebrush communities are typically stand replacing [91].

For further information on FIRE REGIMES in forest and woodland communities, see the FEIS species summaries on dominant tree species including:

Species Fire return interval interior ponderosa pine 2-45 years    (P. ponderosa var. scopulorum) western juniper 7-100 years    (J. occidentalis) Rocky Mountain juniper ----    (J. scopulorum)

  • 118. Young, James A.; Evans, Raymond A. 1981. Demography and fire history of a western juniper stand. Journal of Range Management. 34(6): 501-505. [2659]
  • 20. Bunting, Stephen C. 1990. Prescribed fire effects in sagebrush-grasslands and pinyon-juniper woodlands. In: Alexander, M. E.; Bisgrove, G. F., technical coordinator. The art and science of fire management: Proceedings of the 1st Interior West Fire Council annual meeting and workshop; 1988 October 24-27; Kananaskis Village, AB. Information Rep. NOR-X-309. Edmonton, AB: Forestry Canada, Northwest Region, Northern Forestry Centre: 176-181. [15519]
  • 43. Goodwin, Duwayne Leroy. 1956. Autecological studies of Artemisia tridentata, Nutt. Pullman, WA: State College of Washington. 79 p. Dissertation. [1035]
  • 60. Johnson, James R.; Payne, Gene F. 1968. Sagebrush reinvasion as affected by some environmental influences. Journal of Range Management. 21: 209-213. [1280]
  • 90. Sapsis, David B. 1990. Ecological effects of spring and fall prescribed burning on basin big sagebrush/Idaho fescue--bluebunch wheatgrass communities. Corvallis, OR: Oregon State University. 105 p. Thesis. [16579]
  • 91. Sapsis, David B.; Kauffman, J. Boone. 1991. Fuel consumption and fire behavior associated with prescribed fires in sagebrush ecosystems. Northwest Science. 65(4): 173-179. [16594]
  • 99. Tisdale, E. W.; Hironaka, M. 1981. The sagebrush-grass region: a review of the ecological literature. Bull. 33. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 31 p. [2344]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Successional Status

More info on this topic.

More info for the terms: climax, density

Big sagebrush is the climax species on most of its present day range [23]. Research suggests that invasion into other vegetation types was uncommon [23,31,50,52,78,101,124]. Humphrey [57] describes big sagebrush as a "late successional" species in southeastern Idaho.

Basin big sagebrush may increase in disturbed pastures which have been seeded to grasses such as crested wheatgrass (Agropyron cristatum) [85]. In many instances, basin big sagebrush shows only a moderate increase in density on disturbed sites, but may exhibit large increases in crown density [118]. Seedling establishment may begin immediately following a disturbance, but it usually takes a decade or more before big sagebrush dominates the site.

Many basin big sagebrush sites are now depleted of "normal" perennial grasses and are now dominated by cheatgrass (Bromus tectorum) [24].

  • 101. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 118. Young, James A.; Evans, Raymond A. 1981. Demography and fire history of a western juniper stand. Journal of Range Management. 34(6): 501-505. [2659]
  • 124. Zschaechner, Greg A. 1985. Studying rangeland fire effects: a case study in Nevada. In: Sanders, Ken; Durham, Jack, eds. Rangeland fire effects: Proceedings of the symposium; 1984 November 27-29; Boise, ID. Boise, ID: U.S. Department of the Interior, Bureau of Land Managment, Idaho State Office: 66-84. [2692]
  • 23. Chaplin, M. R.; Winward, A. H. 1982. The effect of simulated fire on emergence of seeds found in the soil of big sagebrush communities. In: Society for Range Management Abstracts: Proceedings, 35th Annual Meeting of the Society for Range Management; [Date of conference unknown]; Calgary, AB. Denver, CO: Society for Range Management: 37. Abstract. [9800]
  • 24. Collins, Ellen I. 1984. Preliminary classification of Wyoming plant communities. Cheyenne, WY: Wyoming Natural Heritage Program/The Nature Conservancy. 42 p. [661]
  • 31. Dealy, J. Edward. 1971. Habitat characteristics of the Silver Lake mule deer range. Res. Pap. PNW-125. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 99 p. [782]
  • 50. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 52. Hopkins, William E.; Kovalchik, Bernard L. 1983. Plant associations of the Crooked River National Grassland. R6 Ecol 133-1983. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 98 p. [1193]
  • 57. Jensen, M. E.; Peck, L. S.; Wilson, M. V. 1988. A sagebrush community type classification for mountainous northeastern Nevada rangelands. The Great Basin Naturalist. 48: 422-433. [27717]
  • 78. Neuenschwander, L. F. 1980. Broadcast burning of sagebrush in the winter. Journal of Range Management. (33)3: 233-236. [1746]
  • 85. Personius, Timothy L.; Wambolt, Carl L.; Stephens, Jeffrey R.; Kelsey, Rick G. 1987. Crude terpenoid influence on mule deer preference for sagebrush. Journal of Range Management. 40(1): 84-88. [1872]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regeneration Processes

More info for the terms: density, shrub

Basin big sagebrush reproduces from seed. None of the subspecies of big sagebrush resprout after fire or other disturbance [93]. Flowers are self- or wind-pollinated [42,94,121]. Plants 2 to 3 years of age are capable of producing viable seed. Approximately 90% of big sagebrush seed is dispersed within 30 feet (9 m) of the parent shrub [42]. Few seeds are carried more than 100 feet (30 m) [94]. Density falls off rapidly away from the parent shrub, with maximum seed dispersal at approximately 108 feet (33 m) [42,94]. The rate of seed dispersal depends on wind and storm activity after seeds reach maturity [94].

Wind is the primary dispersal agent, although animal and water dispersal can also occur. Animals can serve as a minor dispersal agent when seeds are dislodged as the animals brush against branches. Seeds of big sagebrush contain a small air space which permits floatation in water. Rates of seed dispersal are slower in basin big sagebrush than in other subspecies. Seed dispersal takes approximately 8 weeks [94]. Seed of basin big sagebrush is short-lived and lasts less than 5 years when stored in a warehouse [77]. Some seedbanking occurs in other subspecies of big sagebrush [74], so seedbanking in basin big sagebrush is probable. Some basin big sagebrush seeds remained viable after prescribed burning in Utah. Emergence of basin big sagebrush seedlings on burned soil was reduced, however, compared to emergence of Wyoming and mountain big sagebrush. It was also reduced compared to emergence of basin big sagebrush on unburned control soil [26].

Germination may occur during winter or even late fall at mild winter sites such as the Mojave Desert, but at cold winter sites, it may be delayed until snowmelt [75,77].

Big sagebrush seeds germinate within a wide range of temperature. Rates of germination of unstratified seed vary according to temperature, with basin big sagebrush requiring 2 to 3 days at all temperatures [72]. According to Meyer and others [77], big basin sagebrush seed from cold winter populations germinate much more slowly at near-freezing temperatures than do seeds from warm winter populations and also exhibit dormancy under autumn temperature regimes. Basin big sagebrush also shows annual variation in germination [48]. Basin big sagebrush is a more prolific seed producer than is Wyoming big sagebrush [76]. Studies suggest that sufficient basin big sagebrush seed was present for adequate germination each year even at the lowest germination rates observed [48]. Specific details on germination rates are available [75,77].

Seedlings emerge in early spring soon after snowmelt [75]. Seedling survival often depends on precipitation. Seedlings under mature sagebrush plants are more likely to survive [83]. Seedling survival tends to be lower in grazed, unsheltered areas [85].

  • 121. Young, James A.; Evans, Raymond A.; Weaver, Ronald A. 1976. Estimating potential downy brome competition after wildfires. Journal of Range Management. 29(4): 322-325. [2677]
  • 26. Cook, C. Wayne. 1963. Herbicide control of sagebrush on seeded foothill ranges in Utah. Journal of Range Management. 16: 190-195. [675]
  • 42. Goodrich, Sherel; McArthur, E. Durant; Winward, Alma H. 1985. A new combination and a new variety in Artemisia tridentata. The Great Basin Naturalist. 45(1): 99-104. [1034]
  • 48. Harniss, Roy O.; West, Neil E. 1973. Changes in Artemisia tridentata/Sitanion hystrix vegetation on the National Reactor Testing Station, southeastern Idaho, 1950-1965. Utah Academy Proceedings. 50(1): 10-16. [1087]
  • 72. Meyer, Susan E. 1994. Germination and establishment ecology of big sagebrush: implications for community restoration. In: Monsen, Stephen B.; Kitchen, Stanley G, compilers. Proceedings--ecology and management of annual rangelands; 1992 May 18-22; Boise, ID. Gen. Tech. Rep. INT-GTR-313. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 244-251. [24290]
  • 74. Meyer, Susan E.; Monsen, Stephen B. 1993. Genetic considerations in propagating native shrubs, forbs, and grasses from seed. In: Landis, Thomas D., ed. Proceedings, Western Forest Nursery Association; 1992 September 14-18; Fallen Leaf Lake, CA. Gen. Tech. Rep. RM-221. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 47-54. [22074]
  • 75. Meyer, Susan E.; Monsen, Stephen B.; McArthur, E. Durant. 1990. Germination response of Artemisia tridentata (Asteraceae) to light and chill: patterns of between-population variation. Botanical Gazette. 151(2): 176-183. [15525]
  • 76. Mueggler, W. F.; Stewart, W. L. 1980. Grassland and shrubland habitat types of western Montana. Gen. Tech. Rep. INT-66. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 154 p. [1717]
  • 77. Mueggler, Walter F. 1956. Is sagebrush seed residual in the soil of burns or is it wind-borne? Research Note No. 35. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 10 p. [1704]
  • 83. Owens, M. K.; Norton, B. E. 1992. Interactions of grazing and plant protection on basin big sagebrush (Artemisia tridentata subsp. tridentata) seedling survival. Journal of Range Management. 45(3): 257-262. [18406]
  • 85. Personius, Timothy L.; Wambolt, Carl L.; Stephens, Jeffrey R.; Kelsey, Rick G. 1987. Crude terpenoid influence on mule deer preference for sagebrush. Journal of Range Management. 40(1): 84-88. [1872]
  • 93. Sheehy, Dennis P.; Winward, A. H. 1981. Relative palatability of seven Artemisia taxa to mule deer and sheep. Journal of Range Management. 34(5): 397-399. [2128]
  • 94. Shumar, Mark L.; Anderson, Jay E. 1986. Gradient analysis of vegetation dominated by two subspecies of big sagebrush. Journal of Range Management. 39(2): 156-159. [2142]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Growth Form (according to Raunkiær Life-form classification)

More info on this topic.

More info for the term: phanerophyte

RAUNKIAER [87] LIFE FORM:

Phanerophyte
  • 87. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Form

More info for the term: shrub

shrub

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Immediate Effect of Fire

Big sagebrush is readily killed when aboveground plant parts are charred by fire [55]. If sagebrush foliage is exposed to temperatures above 195 degrees Fahrenheit (90oC) for longer than 30 seconds, the plant dies [18]. In some areas, scattered unburned basin big sagebrush may survive, particularly where the soil is thin and rocky and where sparse herbaceous biomass limits the fire's spread [22].

  • 18. Britton, Carlton M.; Clark, Robert G. 1985. Effects of fire on sagebrush and bitterbrush. In: Sanders, Ken; Durham, Jack, eds. Rangeland fire effects: a symposium: Proceedings of the symposium; 1984 November 27-29; Boise, ID. Boise, ID: U.S. Department of the Interior, Bureau of Land Management, Idaho State Office: 22-26. [515]
  • 22. Bushey, Charles L. 1987. Short-term vegetative response to prescribed burning in the sagebrush/grass ecosystem of the northern Great Basin; three years of postburn data from the demonstration of prescribed burning on selected Bureau of Land Management districts. Final Report. Cooperative Agreement 22-C-4-INT-33. Missoula, MT: Systems for Environmental Management. 77 p. [568]
  • 55. Humphrey, L. David. 1984. Patterns and mechanisms of plant succession after fire on Artemisia-grass sites in southeastern Idaho. Vegetatio. 57: 91-101. [1214]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Post-fire Regeneration

Initial-offsite colonizer (off-site, initial community)
Initial-onsite colonizer (on-site, initial community)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Cyclicity

Phenology

More info on this topic.

Primary new leaves develop along the main stem in spring. As vegetative growth continues, new short lateral branches form from the existing stem and support smaller leaves which persist throughout the next winter, long after the initial leaves are shed. In Utah, accentuated stem growth begins in early June, with maximum longitudinal stem growth occurring in early June. By the end of June, vegetative stem growth begins to decline as reproductive buds and shoots begin expansion [34].

The reproductive shoots form, mature, and bear seed within the span of a single growing season [34]. Basin big sagebrush flowers from late August to October [94]. In Utah, reproductive shoots reach maximum size and flowerbuds first appear in late July [34]. Basin big sagebrush tends to flower later than Wyoming big sagebrush [6]. High-elevation ecotypes flower and set seed earlier than do valley ecotypes [77]. The inflorescence may persist until the following season [120].

Seed production occurs from October to December [77]. Most seed is shed in the fall, although some may remain on the plant through the winter. Seeds germinate in the spring as early as April.

Seasonal development in the valley of Alpowa Creek near Clarkston, Washington, was as follows [32]:

Approx. Date Phenological Event ------------ ------------------ Mar. 4 No evidence of new shoot growth Apr. 1 1.5-2 in (4-5 cm) of new shoot growth Apr. 30 4-5 in (10-13 cm) of new shoot growth Jun. 2 4-10 in (10-25 cm) of new shoot growth Jul. 1 18 in (45 cm) of new shoot growth Aug. 1 Remaining leaves mainly in panicle or at branch tips Sep. 1 Flower buds formed Oct. 3 Pollination starting Oct. 31 Fruits immature Feb. 27 Dissemination ended, inflorescence brittle Mar. 15 Buds swelling
  • 120. Young, James A.; Evans, Raymond A. 1989. Reciprocal common garden studies of the germination of seeds of Big Sagebrush (Artemisia tridentata). Weed Science. 37: 319-325. [8692]
  • 32. DePuit, Edward J.; Caldwell, Martyn M. 1973. Seasonal pattern of new photosynthesis of Artemisia tridentata. American Journal of Botany. 60(5): 426-435. [778]
  • 34. Eckert, Richard E., Jr. 1957. Vegetation-soil relationships in some Artemisia types in northern Harney and Lake Counties. Corvallis, OR: Oregon State College. 208 p. Dissertation. [837]
  • 6. Beetle, A. A. 1960. A study of sagebrush: The section Tridentatae of Artemisia. Bulletin 368. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 83 p. [416]
  • 77. Mueggler, Walter F. 1956. Is sagebrush seed residual in the soil of burns or is it wind-borne? Research Note No. 35. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 10 p. [1704]
  • 94. Shumar, Mark L.; Anderson, Jay E. 1986. Gradient analysis of vegetation dominated by two subspecies of big sagebrush. Journal of Range Management. 39(2): 156-159. [2142]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

Canada

Rounded National Status Rank: NNR - Unranked

United States

Rounded National Status Rank: N4 - Apparently Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: T4 - Apparently Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Status

Consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g. threatened or endangered species, state noxious status, and wetland indicator values).

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Status

Consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g. threatened or endangered species, state noxious status, and wetland indicator values).

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Pests and potential problems

Perhaps the greatest danger to sagebrush stands comes from fire. Big sagebrush plants have no fire resistance and many acres are destroyed annually because of increased fire frequency resulting from infestations of exotic annual weeds such as cheatgrass and medusahead.

Another minor cause of sagebrush mortality is winter injury. This occurs when temperatures drop quickly below freezing before plants have entered dormancy, or when a warm spell promotes winter growth followed by a return to typical winter temperatures. Extended periods of winter and summer drought (normally more than 2 years) can also cause dehydration and death.

Big sagebrush is occasionally susceptible to limited outbreaks of the sagebrush defoliator moth, or webworm, (Aroga websteri). Although the moths can cause extensive damage, they too are subject to insect predators, and it is rare that entire stands will be lost.

Additionally, there are a number of other microbial and fungal pathogens known to attack big sagebrush. Although these may inflict serious damage locally, they have not been viewed as a great threat to sagebrush populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Pests and potential problems

Perhaps the greatest danger to sagebrush stands comes from fire. Big sagebrush plants have no fire resistance and many acres are destroyed annually because of increased fire frequency resulting from infestations of exotic annual weeds such as cheatgrass and medusahead.

Another minor cause of sagebrush mortality is winter injury. This occurs when temperatures drop quickly below freezing before plants have entered dormancy, or when a warm spell promotes winter growth followed by a return to typical winter temperatures. Extended periods of winter and summer drought (normally more than 2 years) can also cause dehydration and death.

Big sagebrush is occasionally susceptible to limited outbreaks of the sagebrush defoliator moth, or webworm, (Aroga websteri). Although the moths can cause extensive damage, they too are subject to insect predators, and it is rare that entire stands will be lost.

Additionally, there are a number of other microbial and fungal pathogens known to attack big sagebrush. Although these may inflict serious damage locally, they have not been viewed as a great threat to sagebrush populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Management considerations


Management of sagebrush can include regulating animal numbers
to levels the plants can tolerate [105].
Excessive fall use by domestic sheep can sometimes kill
big sagebrush [82].



The shelter basin big sagebrush provides livestock and
wildlife can be evaluated when management options
are considered. Its usefulness as wind and sun protection may
exceed any benefits gained by its removal. When basin big sagebrush
is removed from drainages, soil erosion can become a problem
[51].



Big sagebrush can be controlled by burning or with herbicides. Big
sagebrush can be controlled with herbicides although variable
results have been reported [1,26,27]. Tebuthiuron, 2,4-D,
and 2,4,5-T have been effective in killing big
sagebrush [53,54,56,69,80]. Success depends on such factors as rates of application, dates of
spraying, and types of carriers used [27,53,56,69]. In
eastern Oregon, mid-season applications (late May-early June) were
most injurious to big sagebrush [56]. Similarly in California, best
control was obtained when plants were treated from late May through
mid-June [27]. In Wyoming, Hull and others [53] reported that
diesel oil carriers were more effective than applications with water. Both
aerial and ground applications are effective in controlling big
sagebrush [27,53,54].



Length of big sagebrush control is highly variable. In Wyoming,
Thilenius and Brown [97] observed some big sagebrush reinvasion within
10 years after herbicide applications. Deferment from cattle
grazing for as long as 3 years after big sagebrush control had no effect
on herbage production. However, Johnson [61] reported
that it is important to manage grazing after sagebrush spraying. Caution
should be used where big sagebrush provides habitat for sage grouse. Klebenow [63]
found that herbicide application was detrimental to sage grouse
populations.

  • 1. Alley, Harold P. 1956. Chemical control of big sagebrush and its effect upon production and utilization of native grass species. Weeds. 4: 164-173. [309]
  • 105. Wambolt, Carl L. 1996. Mule deer and elk foraging preference for 4 sagebrush taxa. Journal of Range Management. 49(6): 499-503. [27222]
  • 26. Cook, C. Wayne. 1963. Herbicide control of sagebrush on seeded foothill ranges in Utah. Journal of Range Management. 16: 190-195. [675]
  • 27. Cornelius, Donald R.; Graham, Charles A. 1958. Sagebrush control with 2,4-D. Journal of Range Management. 11: 122-125. [690]
  • 51. Hodgkinson, Harmon S. 1989. Big sagebrush subspecies and management implications. Rangelands. 11(1): 20-22. [6265]
  • 53. Hull, A. C., Jr.; Kissinger, N. A., Jr.; Vaughn, W. T. 1952. Chemical control of big sagebrush in Wyoming. Journal of Range Management. 5: 398-402. [1210]
  • 54. Hull, A. C., Jr.; Vaughn, W. T. 1951. Controlling big sagebrush with 2,4-D and other chemicals. Journal of Range Management. 4: 158-164. [1212]
  • 56. Hyder, Donald N.; Sneva, Forrest A. 1962. Selective control of big sagebrush associated with bitterbrush. Journal of Range Management. 15: 211-219. [1236]
  • 61. Johnson, W. M. 1969. Life expectancy of a sagebrush control in central Wyoming. Journal of Range Management. 22: 177-182. [1290]
  • 63. Klebenow, Donald A. 1970. Sage grouse versus sagebrush control in Idaho. Journal of Range Management. 23: 396-400; 1970. [1344]
  • 69. McDaniel, Kirk C.; Balliette, John F. 1986. Control of big sagebrush (Artemisia tridentata) with pelleted tebuthiuron. Weed Science. 34: 276-280. [1596]
  • 80. Olson, Rich; Hansen, John; Whitson, Tom; Johnson, Kris. 1994. Tebuthiuron to enhance rangeland diversity. Rangelands. 16(5): 197-201. [29727]
  • 82. Owens, M. K.; Norton, B. E. 1990. Survival of juvenile basin big sagebrush under different grazing regimes. Journal of Range Management. 43(2): 132-135. [11171]
  • 97. Thilenius, John F.; Brown, Gary R. 1974. Long-term effects of chemical control of big sagebrush. Journal of Range Management. 27(3): 223-224. [2320]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Cultivars, improved and selected materials (and area of origin)

Hobble Creek mountain big sagebrush was released by the Utah Agricultural Experiment Station, Utah State University and the USDA Forest Service Rocky Mountain Research Station in 1987. Seed was originally collected in 1968 by A. Perry Plummer at the Hobble Creek drainage east of Springville, UT. ‘Hobble Creek’ was chosen for its high vegetative production and for its high palatability to mule deer and wintering domestic sheep. It is adapted to sites with deep, well-drained soils receiving more than 350 mm (14 in) of annual precipitation and having a growing season of 90 days or longer. Soils should be no finer than a clay loam, containing 40% or less clay and have a pH between 6.6 and 8.6. Breeder seed is maintained at a breeder block at the USDA Forest Service Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, UT.

Gordon Creek Wyoming big sagebrush was originally collected near Helper, Carbon County, UT. It was released in 1992 by the USDA Forest Service Rocky Mountain Research Station to fill the need for a low precipitation ecotype of big sagebrush to improve winter diets of mule deer and sage grouse and for rangeland restoration. Gordon Creek was chosen for its high growth rate, nutrient levels and mule deer preference. It is widely adapted to dry regions of the west receiving 250 or more mm (10 in) mean annual precipitation. It prefers deep to shallow, well-drained soils with up to 55% clay content with a pH of 6.6 to 8.8.

Contact your local Natural Resources Conservation Service (formerly Soil Conservation Service) office for more information. Look in the phone book under ”United States Government.” The Natural Resources Conservation Service will be listed under the subheading “Department of Agriculture.”

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seed production

The vast majority of big sagebrush seed used in revegetation is wildland collected material. Seed collection occurs in late fall to early winter (early October through the end of December) depending on the subspecies. Collections are commonly made by hand stripping, beating or clipping seed heads into containers or by using a reel type harvester. Seed can be cleaned with a hammermill, debearder, air-screen or gravity table with varying results. Most sagebrush seed lots used for rangeland seeding are only cleaned to a purity of 15 to 20 percent due to the small nature of the seeds (achenes). This practice requires less time for cleaning and also allows for easier seed flow and metering in seeding equipment. Pure seed yields approximately 1.7 to 2.5 million seeds per pound. The NRCS Plant Materials Center in Bridger, MT reported four hours collecting time and 5.5 hours cleaning yielded 200g (0.45 lb) cleaned material, or 21g (0.04 lb) per hour.

Sagebrush seed that has been dried to a minimum of 9 percent moisture content will remain viable for many years when stored under cool, dry conditions. Welch et al (1996) reported seed viabilities above 90% for seed stored at 10 ºC (50 ºF) and relative humidity (RH) of 20 percent after nine years of storage. Seed stored at higher RH levels are susceptible to germination or damage by insects or microorganisms.

Because sagebrush seed can readily be collected from wild stands, sagebrush is rarely grown in commercial production fields. However, in very droughty periods, very little sagebrush seed can be collected from wild stands. Increasing seed demands and decreasing sagebrush stands lost to weeds and fire are growing concerns. Recent studies suggest protecting wildland seed-producing stands for optimum harvesting. The greatest factor in seed production for sagebrush is protection against grazing animals. Surrounding plants with a wire fence has shown an increase in seed stalk number of as much as 3 to 5 times the amount of unprotected plants. Studies also show significantly higher seed yields from plants grown on reclaimed mine lands when compared with those on adjacent non-mined areas. The reason for this correlation is unclear, but it may be a result of increased available soil moisture due to lower competing plant frequencies on the mined lands.

Seed production varies greatly between years and between stands due to differences in climate, stand density and maturity, soil and genetics. It has been estimated that an average stand of big sagebrush could potentially produce 100 to 300 lbs PLS per acre annually. Seed production declines as plants and stands mature creating larger amounts of woody biomass. Greater seed yields can be achieved by thinning decadent stands to encourage new flower stalk production

For nursery plantings, pre-stratified seed can be planted in greenhouse conditions, or seed can be allowed to naturally stratify after being planted in containers outdoors. Keep soil medium slightly moist during germination. Greenhouse sprayers or misters are commonly used during daylight hours at a rate of 10 seconds every 15 minutes. Uniform germination occurs after two weeks of temperatures over 20º C (70º F). Seedlings are ready for field transplanting approximately 5 months after germination.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Historically, sagebrush communities have been poorly managed, mostly in attempts to reduce or eliminate sagebrush stands to increase forage production for livestock. Recently, however, the value of sagebrush to the western rangelands is being recognized, and practices are evolving to better manage healthy and productive sagebrush communities.

Contrary to long standing beliefs, studies show that complete sagebrush removal negatively affects biodiversity and has little long term affect on perennial grass production. Indeed, several studies indicate that forage production may actually decline when sagebrush is completely removed or controlled.

Overgrazing of the understory decreases plant biodiversity, especially the forb component of the plant community and increases the density of weeds. Annual weeds, such as cheatgrass (Bromus tectorum L.) and medusahead (Taeniatherum caput-medusae [L.] Nevski) often out-compete young sagebrush seedlings and create undesirable monocultures. Annual weed infestations also increase the frequency of wildfires which result in eliminating sagebrush stands therefore not allowing stand re-establishment.

Despite the many valuable benefits of sagebrush to rangelands, there may be cases when it is desirable to thin and rejuvenate sagebrush stands. In these instances it is not necessary to remove the entire stand, and control treatments in mosaic patterns are recommended. Several methods exist for partial removal of the shrubby over story.

Herbicide use is an effective means of thinning sagebrush stands. Contact your local agricultural extension specialist or county weed specialist to determine what works best in your area and how to use it safely.

Probably the simplest and most cost effective means of stand reduction is through prescribed burning. If there is sufficient fuel, a burn can completely eliminate a sagebrush community. For this reason niche burning is recommended when possible. In situations where cheatgrass is a dominant part of the understory, burning should take place when ripe cheatgrass seeds are still on the plants and will be consumed in the fire.

Methods of mechanical removal for sagebrush include anchor chaining, pipe harrowing, land imprinting offset disking and brush beating with brush hogs or mowers. Of these, chaining and land imprinting are the least expensive and do an excellent job of reducing sagebrush stands while still leaving enough plants for diversity and browsing. Brush beating does a good job, but it is expensive. Disking and harrowing also do a good job of shrub removal, but are more expensive and more destructive to under-story plant populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Cultivars, improved and selected materials (and area of origin)

Hobble Creek mountain big sagebrush was released by the Utah Agricultural Experiment Station, Utah State University and the USDA Forest Service Rocky Mountain Research Station in 1987. Seed was originally collected in 1968 by A. Perry Plummer at the Hobble Creek drainage east of Springville, UT. ‘Hobble Creek’ was chosen for its high vegetative production and for its high palatability to mule deer and wintering domestic sheep. It is adapted to sites with deep, well-drained soils receiving more than 350 mm (14 in) of annual precipitation and having a growing season of 90 days or longer. Soils should be no finer than a clay loam, containing 40% or less clay and have a pH between 6.6 and 8.6. Breeder seed is maintained at a breeder block at the USDA Forest Service Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, UT.

Gordon Creek Wyoming big sagebrush was originally collected near Helper, Carbon County, UT. It was released in 1992 by the USDA Forest Service Rocky Mountain Research Station to fill the need for a low precipitation ecotype of big sagebrush to improve winter diets of mule deer and sage grouse and for rangeland restoration. Gordon Creek was chosen for its high growth rate, nutrient levels and mule deer preference. It is widely adapted to dry regions of the west receiving 250 or more mm (10 in) mean annual precipitation. It prefers deep to shallow, well-drained soils with up to 55% clay content with a pH of 6.6 to 8.8.

Contact your local Natural Resources Conservation Service (formerly Soil Conservation Service) office for more information. Look in the phone book under ”United States Government.” The Natural Resources Conservation Service will be listed under the subheading “Department of Agriculture.”

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seed production

The vast majority of big sagebrush seed used in revegetation is wildland collected material. Seed collection occurs in late fall to early winter (early October through the end of December) depending on the subspecies. Collections are commonly made by hand stripping, beating or clipping seed heads into containers or by using a reel type harvester. Seed can be cleaned with a hammermill, debearder, air-screen or gravity table with varying results. Most sagebrush seed lots used for rangeland seeding are only cleaned to a purity of 15 to 20 percent due to the small nature of the seeds (achenes). This practice requires less time for cleaning and also allows for easier seed flow and metering in seeding equipment. Pure seed yields approximately 1.7 to 2.5 million seeds per pound. The NRCS Plant Materials Center in Bridger, MT reported four hours collecting time and 5.5 hours cleaning yielded 200g (0.45 lb) cleaned material, or 21g (0.04 lb) per hour.

Sagebrush seed that has been dried to a minimum of 9 percent moisture content will remain viable for many years when stored under cool, dry conditions. Welch et al (1996) reported seed viabilities above 90% for seed stored at 10 ºC (50 ºF) and relative humidity (RH) of 20 percent after nine years of storage. Seed stored at higher RH levels are susceptible to germination or damage by insects or microorganisms.

Because sagebrush seed can readily be collected from wild stands, sagebrush is rarely grown in commercial production fields. However, in very droughty periods, very little sagebrush seed can be collected from wild stands. Increasing seed demands and decreasing sagebrush stands lost to weeds and fire are growing concerns. Recent studies suggest protecting wildland seed-producing stands for optimum harvesting. The greatest factor in seed production for sagebrush is protection against grazing animals. Surrounding plants with a wire fence has shown an increase in seed stalk number of as much as 3 to 5 times the amount of unprotected plants. Studies also show significantly higher seed yields from plants grown on reclaimed mine lands when compared with those on adjacent non-mined areas. The reason for this correlation is unclear, but it may be a result of increased available soil moisture due to lower competing plant frequencies on the mined lands.

Seed production varies greatly between years and between stands due to differences in climate, stand density and maturity, soil and genetics. It has been estimated that an average stand of big sagebrush could potentially produce 100 to 300 lbs PLS per acre annually. Seed production declines as plants and stands mature creating larger amounts of woody biomass. Greater seed yields can be achieved by thinning decadent stands to encourage new flower stalk production

For nursery plantings, pre-stratified seed can be planted in greenhouse conditions, or seed can be allowed to naturally stratify after being planted in containers outdoors. Keep soil medium slightly moist during germination. Greenhouse sprayers or misters are commonly used during daylight hours at a rate of 10 seconds every 15 minutes. Uniform germination occurs after two weeks of temperatures over 20º C (70º F). Seedlings are ready for field transplanting approximately 5 months after germination.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Historically, sagebrush communities have been poorly managed, mostly in attempts to reduce or eliminate sagebrush stands to increase forage production for livestock. Recently, however, the value of sagebrush to the western rangelands is being recognized, and practices are evolving to better manage healthy and productive sagebrush communities.

Contrary to long standing beliefs, studies show that complete sagebrush removal negatively affects biodiversity and has little long term affect on perennial grass production. Indeed, several studies indicate that forage production may actually decline when sagebrush is completely removed or controlled.

Overgrazing of the understory decreases plant biodiversity, especially the forb component of the plant community and increases the density of weeds. Annual weeds, such as cheatgrass (Bromus tectorum L.) and medusahead (Taeniatherum caput-medusae [L.] Nevski) often out-compete young sagebrush seedlings and create undesirable monocultures. Annual weed infestations also increase the frequency of wildfires which result in eliminating sagebrush stands therefore not allowing stand re-establishment.

Despite the many valuable benefits of sagebrush to rangelands, there may be cases when it is desirable to thin and rejuvenate sagebrush stands. In these instances it is not necessary to remove the entire stand, and control treatments in mosaic patterns are recommended. Several methods exist for partial removal of the shrubby over story.

Herbicide use is an effective means of thinning sagebrush stands. Contact your local agricultural extension specialist or county weed specialist to determine what works best in your area and how to use it safely.

Probably the simplest and most cost effective means of stand reduction is through prescribed burning. If there is sufficient fuel, a burn can completely eliminate a sagebrush community. For this reason niche burning is recommended when possible. In situations where cheatgrass is a dominant part of the understory, burning should take place when ripe cheatgrass seeds are still on the plants and will be consumed in the fire.

Methods of mechanical removal for sagebrush include anchor chaining, pipe harrowing, land imprinting offset disking and brush beating with brush hogs or mowers. Of these, chaining and land imprinting are the least expensive and do an excellent job of reducing sagebrush stands while still leaving enough plants for diversity and browsing. Brush beating does a good job, but it is expensive. Disking and harrowing also do a good job of shrub removal, but are more expensive and more destructive to under-story plant populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Value for rehabilitation of disturbed sites

More info for the terms: cover, presence, restoration

Basin big sagebrush shows high potential for range restoration and soil stabilization [66]. Big sagebrush grows rapidly and spreads readily from seed. Seed can be broadcast or drilled [92]. It is important to select basin big sagebrush seed adapted to the specific site [73]. Studies indicate that seedling survival is much higher for seed collections planted in a habitat similar to that of the parent population [75].

Transplant stock can also be used in rehabilitation projects [92]. Seedlings are easily transplanted and may be used to stabilize gullies and eroded hillsides. Transplants reproduce and begin to spread from seed in 3 to 7 years [86].

Sagebrush species are associated with mycorrhizal fungus in the genus Glomus. The presence of these fungi may be required for the successful establishment of seedlings. Areas that lose their sagebrush cover due to frequent fire and are dominated subsequently by nonmycorrhizal cheatgrass may no longer have the fungi in the soil. Sagebrush reestablishment may be inhibited on these sites [88].

  • 66. McArthur, E. Durant; Giunta, Bruce C.; Plummer, A. Perry. 1977. Shrubs for restoration of depleted range and disturbed areas. Utah Science. 35: 28-33. [25035]
  • 73. Meyer, Susan E.; Monsen, Stephen B. 1992. Big sagebrush germination patterns: Subspecies and population differences. Journal of Range Management. 45(1): 87-93. [17776]
  • 75. Meyer, Susan E.; Monsen, Stephen B.; McArthur, E. Durant. 1990. Germination response of Artemisia tridentata (Asteraceae) to light and chill: patterns of between-population variation. Botanical Gazette. 151(2): 176-183. [15525]
  • 86. Plummer, A. Perry; Christensen, Donald R.; Monsen, Stephen B. 1968. Restoring big-game range in Utah. Publ. No. 68-3. Ephraim, UT: Utah Division of Fish and Game. 183 p. [4554]
  • 88. Rosentreter, Roger; Jorgensen, Ray. 1986. Restoring winter game ranges in southern Idaho. Tech. Bull. 86-3. Boise, ID: U.S. Department of the Interior, Bureau of Land Management, Idaho State Office. 26 p. [5295]
  • 92. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Cover Value

More info for the term: cover

Big sagebrush provides some shade for domestic livestock and important cover for several upland game bird species [25]. In presettlement times, the range of the sage grouse paralleled the range of big sagebrush. Basin big sagebrush provides important cover for sage grouse [8]. Basin big sagebrush also provides cover for small mammals such as the pygmy rabbit [110].

The degree to which basin big sagebrush provides cover for wildlife species is as follows [33]:

CO UT WY Pronghorn ---- fair good Elk ---- fair good Mule deer ---- fair good White-tailed deer good ---- ---- Small mammals ---- good fair Small nongame birds ---- good good Upland game birds ---- good good Waterfowl ---- poor good

  • 110. Weiss, Nondor T.; Verts, B. J. 1984. Habitat and distribution of pygmy rabbits (Sylvilagus idahoensis) in Oregon. The Great Basin Naturalist. 44(4): 563-571. [23635]
  • 25. Collins, P. D.; Harper, K. T. 1982. Habitat types of the Curlew National Grassland, Idaho. Provo, UT: Brigham Young University, Department of Botany and Range Science. 46 p. Editorial draft. [663]
  • 33. Dittberner, Phillip L.; Olson, Michael R. 1983. The plant information network (PIN) data base: Colorado, Montana, North Dakota, Utah, and Wyoming. FWS/OBS-83/86. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service. 786 p. [806]
  • 8. Benson, Lee A.; Braun, Clait E.; Leininger, Wayne C. 1991. Sage grouse response to burning in the big sagebrush type. In: Comer, Robert D.; Davis, Peter R.; Foster, Susan Q.; [and others], eds. Issues and technology in the management of impacted wildlife: Proceedings of a national symposium; 1991 April 8-10; Snowmass Resort, CO. Boulder, CO: Thorne Ecological Institute: 97-104. [21766]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Other uses and values

Basin big sagebrush shows promise as a snow hedge [68].

Some Native American peoples used the bark of big sagebrush to make ropes and baskets [52].

  • 52. Hopkins, William E.; Kovalchik, Bernard L. 1983. Plant associations of the Crooked River National Grassland. R6 Ecol 133-1983. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 98 p. [1193]
  • 68. McArthur, E. Durant; Stevens, Richard. 1986. Composite shrubs. Unpublished manuscript on file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Labortory, Missoula, MT. 155 p. [7342]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Nutritional Value



In general, big sagebrush is highly digestible and nutritious
[105]. It has high
levels of protein, carotene, and phosphorus [88]. Digestibility of big sagebrush
is influenced by the total terpenoid content [105].
Basin big sagebrush has relatively
high levels of crude terpenoids that can reduce palatability
[96]. Basin big sagebrush has a higher
winter crude protein content than mountain big sagebrush [89].



In-vitro digestibility (%, oven-dried) of basin big sagebrush in Montana has
been rated as follows [96]:
whole sagebrush terpenoid-extracted sagebrush*
1/1 2/15 4/1 1/1 2/15 4/1
mule deer 47.2 63.4 62.4 59.5 65.6 75.7
domestic sheep 54.0 55.3 59.6 71.8 72.3 75.2
steer 55.8 56.6 58.4 68.7 69.1 72.3
*Leaf samples from which terpenoid compounds were removed prior to drying

  • 105. Wambolt, Carl L. 1996. Mule deer and elk foraging preference for 4 sagebrush taxa. Journal of Range Management. 49(6): 499-503. [27222]
  • 88. Rosentreter, Roger; Jorgensen, Ray. 1986. Restoring winter game ranges in southern Idaho. Tech. Bull. 86-3. Boise, ID: U.S. Department of the Interior, Bureau of Land Management, Idaho State Office. 26 p. [5295]
  • 89. Rosentreter, Roger; Kelsey, Rick G. 1991. Xeric big sagebrush, a new subspecies in the Artemisia tridentata complex. Journal of Range Management. 44(4): 330-335. [15479]
  • 96. Striby, Karl D.; Wambolt, Carl L.; Kelsey, Rick G.; Havstad, Kris M. 1987. Crude terpenoid influence on in vitro digestibility of sagebrush. Journal of Range Management. 40(3): 244-248. [2265]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Palatability


Palatability varies great among the subspecies of big sagebrush
[92]. Basin big sagebrush is the least palatable of the three major
subspecies of big sagebrush [82]. Both
mountain big sagebrush and Wyoming big sagebrush are preferred
[110]. Palatability of basin big
sagebrush is in general "low" [66].



The palatability and degree of use shown by livestock and
wildlife species for basin big sagebrush is rated
as follows [33]: MT ND WY
Cattle poor poor poor
Domestic sheep fair good fair
Horses poor poor poor
Pronghorn ---- good poor
Elk ---- fair poor
Mule deer ---- good poor
Small mammals ---- fair fair
Small nongame birds ---- fair fair
Upland game birds ---- good fair
Waterfowl ---- poor poor

  • 110. Weiss, Nondor T.; Verts, B. J. 1984. Habitat and distribution of pygmy rabbits (Sylvilagus idahoensis) in Oregon. The Great Basin Naturalist. 44(4): 563-571. [23635]
  • 33. Dittberner, Phillip L.; Olson, Michael R. 1983. The plant information network (PIN) data base: Colorado, Montana, North Dakota, Utah, and Wyoming. FWS/OBS-83/86. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service. 786 p. [806]
  • 66. McArthur, E. Durant; Giunta, Bruce C.; Plummer, A. Perry. 1977. Shrubs for restoration of depleted range and disturbed areas. Utah Science. 35: 28-33. [25035]
  • 82. Owens, M. K.; Norton, B. E. 1990. Survival of juvenile basin big sagebrush under different grazing regimes. Journal of Range Management. 43(2): 132-135. [11171]
  • 92. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Importance to Livestock and Wildlife

Considerable quantities of big sagebrush are eaten by sage grouse, mule deer, and pronghorn [92]. In southwestern Montana, basin big sagebrush is browsed by elk and mule deer from autumn through early spring [104]. In parts of Montana, mule deer use, but do not prefer basin big sagebrush [82,105]. In Oregon, mule deer showed an intermediate preference for basin big sagebrush in winter feeding trials. In fall trials, mule deer used, but did not prefer basin big sagebrush. Mule deer use of basin big sagebrush in Oregon is, in general, described as "intermediate" [93]. For mule deer in Utah, basin big sagebrush is the least preferred of all subspecies of big sagebrush [111]. In some instances, mule deer preference of basin big sagebrush varies greatly by local population [112].

Pygmy rabbits forage extensively on big sagebrush [110]. Pygmy rabbits feed on basin big sagebrush but show preference for certain accessions [112].

Basin big sagebrush generally is not preferred by sage grouse; however, the birds do exhibit preferences for certain individual plants. Sage grouse readily feed on basin big sagebrush where mountain and Wyoming big sagebrush are absent [112].

In fall, domestic sheep in Oregon fed on basin big sagebrush to a limited degree. During the winter months, the sheep exhibited a "moderate preference for basin big sagebrush." In general, domestic sheep preference for basin big sagebrush in Oregon is described as "low" [93]. In Utah, some accessions (mostly tetraploid) of basin big sagebrush were preferred by domestic sheep [111].

Basin big sagebrush may serve as emergency food during severe winter weather, but it is not usually sought out by livestock or wildlife [7]. However, researchers emphasize that although basin big sagebrush is not preferred by wildlife, it is nevertheless, heavily used particularly during winter when preferred taxa are not available. In southwestern Montana, winter leader use by mule deer ranged from 4% to 71% [105].

  • 104. Wambolt, C. L.; Creamer, W. H.; Rossi, R. J. 1994. Predicting big sagebrush winter forage by subspecies and browse form class. Journal of Range Management. 47(3): 231-234. [23240]
  • 105. Wambolt, Carl L. 1996. Mule deer and elk foraging preference for 4 sagebrush taxa. Journal of Range Management. 49(6): 499-503. [27222]
  • 110. Weiss, Nondor T.; Verts, B. J. 1984. Habitat and distribution of pygmy rabbits (Sylvilagus idahoensis) in Oregon. The Great Basin Naturalist. 44(4): 563-571. [23635]
  • 111. Welch, Bruce L.; McArthur, E. Durant; Rodriguez, Ronald L. 1987. Variation in utilization of big sagebrush accessions by wintering sheep. Journal of Range Management. 40(2): 113-115. [2486]
  • 112. Welch, Bruce L.; Wagstaff, Fred J.; Roberson, Jay A. 1991. Preference of wintering sage grouse for big sagebrush. Journal of Range Management. 44(5): 462-465. [16608]
  • 7. Beetle, Alan A.; Johnson, Kendall L. 1982. Sagebrush in Wyoming. Bull. 779. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 68 p. [421]
  • 82. Owens, M. K.; Norton, B. E. 1990. Survival of juvenile basin big sagebrush under different grazing regimes. Journal of Range Management. 43(2): 132-135. [11171]
  • 92. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]
  • 93. Sheehy, Dennis P.; Winward, A. H. 1981. Relative palatability of seven Artemisia taxa to mule deer and sheep. Journal of Range Management. 34(5): 397-399. [2128]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Uses

Forage/Wildlife: Big sagebrush is perhaps the most important shrub on western rangelands. Evergreen leaves and abundant seed production provide an excellent winter food source to numerous species of large mammals including mule deer, black-tailed deer, white-tailed deer, elk, pronghorn antelope, bighorn sheep and jack rabbits. Nearly 100 bird species depend on sagebrush ecosystems for their habitat needs. Additionally, there are several animal species having an obligate relationship with big sagebrush including sage grouse, sharp tailed grouse, pygmy rabbits, sage thrashers, sage sparrows and Brewer’s sparrow. Sagebrush also provide habitat and food for hosts of invertebrates which in turn support birds, reptiles and small mammals. In addition to the numerous species of animals that depend on sagebrush for food and cover, there are several plant species having close relationships with sagebrush as well.

Sagebrush plants maintain high levels of most nutrients including crude protein (see table 1). This high forage value makes it especially useful for wildlife, and in some areas livestock, winter grazing. Separate studies indicated that sagebrush made up 78% of the annual diet for antelope in Wyoming and 59% of the winter diet of deer and elk near Gardiner, Montana. Sagebrush also makes up close to 100% of the winter diet of sage grouse and over 60% of their total annual diet. Use of sagebrush by livestock is limited and variable.

Animal preference of sagebrush varies with subspecies, populations and even individual plants due to chemical variation found in the foliage. Deer and elk tend to prefer mountain big sagebrush followed by Wyoming big sagebrush and finally basin big sagebrush. Although many range managers believe that deer and other large mammals prefer to browse shrubby members of the Rosaceae such as mountain mahogany (Cercocarpus), bitterbrush (Purshia) and cliffrose (Cowania) over big sagebrush, studies show sagebrush significantly more readily browsed.

Sagebrush’s value as thermal or security cover is also very high for wildlife. This includes nesting cover and escape cover for sage grouse, sharp tailed grouse, pheasants, chukar and other upland birds.

Table 1. Nutritive values as percent dry matter and percent in-vitro dry matter digestibility (IVDMD).

Crude Protein

IVDMD

Spring

12.6

58.1

Summer

13.2

-

Winter

11.7

57.8

(Adapted from Welch, 2005)

Revegetation/reclamation: Because of its wide range of adaptation and ease of establishment, big sagebrush can be a very important species for use in revegetation efforts. Seedlings are able to compete with grasses and forbs as well as other shrubs allowing it to be used as a component of a wide range of seed mixes. Seedlings are very easy to establish when planted correctly (see “Establishment” section) and can be drill seeded or broadcast with near equal levels of success. Because sagebrush plants spread readily by seed, it can be seeded at relatively low rates and allowed to spread by natural recruitment.

Big sagebrush plants provide many additional benefits to the plant community. The dense canopy protects understory herbaceous plants from grazing. Healthy sagebrush communities provide a multi- tiered ecosystem with high levels of biodiversity. Big sagebrush plants also have a two-part root system with a deep tap root and a shallow, diffuse root system. Numerous studies have shown sagebrush plants create “hydraulic lift” where deep soil moisture is brought to near the soil surface by the tap root system during the day and then released into the upper soil at night. This water is then available to the diffuse root system of big sagebrush as well as to the roots of other understory plants. Sagebrush plants also increase water retention by trapping and holding windblown snow.

Big sagebrush subspecies are often useful indicators of soil characteristics. Generally, a subspecies indicates the soils at a site, thus proper identification of big sagebrush at a subspecific level can provide useful information on soils and ecological site characteristics. In some areas, however, such as those with glacial deposits, a separation based on soil characteristics is considerably more complex.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Uses

Forage/Wildlife: Big sagebrush is perhaps the most important shrub on western rangelands. Evergreen leaves and abundant seed production provide an excellent winter food source to numerous species of large mammals including mule deer, black-tailed deer, white-tailed deer, elk, pronghorn antelope, bighorn sheep and jack rabbits. Nearly 100 bird species depend on sagebrush ecosystems for their habitat needs. Additionally, there are several animal species having an obligate relationship with big sagebrush including sage grouse, sharp tailed grouse, pygmy rabbits, sage thrashers, sage sparrows and Brewer’s sparrow. Sagebrush also provide habitat and food for hosts of invertebrates which in turn support birds, reptiles and small mammals. In addition to the numerous species of animals that depend on sagebrush for food and cover, there are several plant species having close relationships with sagebrush as well.

Sagebrush plants maintain high levels of most nutrients including crude protein (see table 1). This high forage value makes it especially useful for wildlife, and in some areas livestock, winter grazing. Separate studies indicated that sagebrush made up 78% of the annual diet for antelope in Wyoming and 59% of the winter diet of deer and elk near Gardiner, Montana. Sagebrush also makes up close to 100% of the winter diet of sage grouse and over 60% of their total annual diet. Use of sagebrush by livestock is limited and variable.

Animal preference of sagebrush varies with subspecies, populations and even individual plants due to chemical variation found in the foliage. Deer and elk tend to prefer mountain big sagebrush followed by Wyoming big sagebrush and finally basin big sagebrush. Although many range managers believe that deer and other large mammals prefer to browse shrubby members of the Rosaceae such as mountain mahogany (Cercocarpus), bitterbrush (Purshia) and cliffrose (Cowania) over big sagebrush, studies show sagebrush significantly more readily browsed.

Sagebrush’s value as thermal or security cover is also very high for wildlife. This includes nesting cover and escape cover for sage grouse, sharp tailed grouse, pheasants, chukar and other upland birds.

Table 1. Nutritive values as percent dry matter and percent in-vitro dry matter digestibility (IVDMD).

Crude Protein

IVDMD

Spring

12.6

58.1

Summer

13.2

-

Winter

11.7

57.8

(Adapted from Welch, 2005)

Revegetation/reclamation: Because of its wide range of adaptation and ease of establishment, big sagebrush can be a very important species for use in revegetation efforts. Seedlings are able to compete with grasses and forbs as well as other shrubs allowing it to be used as a component of a wide range of seed mixes. Seedlings are very easy to establish when planted correctly (see “Establishment” section) and can be drill seeded or broadcast with near equal levels of success. Because sagebrush plants spread readily by seed, it can be seeded at relatively low rates and allowed to spread by natural recruitment.

Big sagebrush plants provide many additional benefits to the plant community. The dense canopy protects understory herbaceous plants from grazing. Healthy sagebrush communities provide a multi- tiered ecosystem with high levels of biodiversity. Big sagebrush plants also have a two-part root system with a deep tap root and a shallow, diffuse root system. Numerous studies have shown sagebrush plants create “hydraulic lift” where deep soil moisture is brought to near the soil surface by the tap root system during the day and then released into the upper soil at night. This water is then available to the diffuse root system of big sagebrush as well as to the roots of other understory plants. Sagebrush plants also increase water retention by trapping and holding windblown snow.

Big sagebrush subspecies are often useful indicators of soil characteristics. Generally, a subspecies indicates the soils at a site, thus proper identification of big sagebrush at a subspecific level can provide useful information on soils and ecological site characteristics. In some areas, however, such as those with glacial deposits, a separation based on soil characteristics is considerably more complex.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy

More info for the terms: diploid, introgression



The scientific name of basin big sagebrush
is Artemisia tridentata Nutt. subsp. tridentata
(Asteraceae) [6,49,62]. Genotypic and phenotypic variation is common in basin
big sagebrush. Both diploid and tetraploid
plants occur, but diploids are most common [4]. At
least 4 or 5 subspecies of big sagebrush (A. tridentata)
have been identified [49,62]. Kartesz [62] recognizes the
following subspecies:

A. tridentata subsp. tridentata - basin big sagebrush

A. tridentata subsp. spiciformis (Osterhout) Kartesz & Gandhi -
snowfield big sagebrush

A. tridentata subsp. vaseyana (Rydb.) Beetle - mountain big sagebrush

A. tridentata subsp. wyomingensis Beetle & Young - Wyoming big sagebrush

A. tridentata subsp. xericensis Winward ex Rosentreter & R. Kelsey - big sagebrush



Freeman and others [39] suggest
"each subspecies is distinct in pure stands, but at
contact points introgression may blur the distinctions."
Ecotypes occur in each subspecies [73].



Hybrids between basin big sagebrush and mountain
big sagebrush have been confirmed [44,67]. "Hybrid zones" exist
between these 2 subspecies in parts of Utah [39,40,106]. In
southeastern Idaho, introgression between
the 2 subspecies is common [94].
The "hybrid zone" which occurs across a narrow elevational
band between the 2 parent taxa
is believed to be stable. In Utah, it is generally less
than 0.6 miles (1 km) wide and in some locations, less than 330 feet (100 m) wide
[40]. Hybrids between basin big sagebrush
and mountain big sagebrush are intermediate for all characters
and exhibit considerable genetic variation
[40,107].


  • 106. Wang, Han; Byrd, David W.; Howard, Jeffrey L.; [and others]. 1998. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). V. Soil properties. International Journal of Plant Science. 159(1): 139-147. [28641]
  • 107. Wang, Han; McArthur, E. Durant; Sanderson, Stewart C.; [and others]. 1997. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). IV. Reciprocal transplant experiments. Evolution. 51(1): 95-102. [29409]
  • 39. Freeman, D. C.; Turner, W. A.; McArthur, E. D.; Graham, J. H. 1991. Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). American Journal of Botany. 78(6): 805-815. [15470]
  • 4. Barker, Jerry R.; McKell, Cyrus M. 1986. Differences in big sagebrush (Artemisia tridentata) plant stature along soil-water gradients: genetic components. Journal of Range Management. 39(2): 147-151; 1986. [389]
  • 40. Freeman, D. Carl; Graham, John H.; Byrd, David W.; [and others]. 1995. Narrow hybrid zone between two subspecies of big sagebrush, Artemisia tridentata (Asteraceae). III. Developmental instability. American Journal of Botany. 82(9): 1144-1152. [26180]
  • 44. Graham, John H.; Freeman, D. Carl; McArthur, E. Durant. 1995. Narrow hybrid zone between two subspecies of big sagebursh (Artemisia tridentata: Asteraceae). II. Selection gradients and hybrid fitness. American Journal of Botany. 82(6): 709-716. [26072]
  • 49. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]
  • 6. Beetle, A. A. 1960. A study of sagebrush: The section Tridentatae of Artemisia. Bulletin 368. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 83 p. [416]
  • 62. Kartesz, John T. 1994. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland. Volume I--checklist. 2nd ed. Portland, OR: Timber Press. 622 p. [23877]
  • 67. McArthur, E. Durant; Mudge, Joann; Van Buren, Renee; [and others]. 1998. Randomly amplified polymorphic DNA analysis (RAPD) of Artemisia subgenus Tridentatae species and hybrids. The Great Basin Naturalist. 58(1): 12-27. [28609]
  • 73. Meyer, Susan E.; Monsen, Stephen B. 1992. Big sagebrush germination patterns: Subspecies and population differences. Journal of Range Management. 45(1): 87-93. [17776]
  • 94. Shumar, Mark L.; Anderson, Jay E. 1986. Gradient analysis of vegetation dominated by two subspecies of big sagebrush. Journal of Range Management. 39(2): 156-159. [2142]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Common Names

basin big sagebrush

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!