Overview

Comprehensive Description

Taxonomy

Currently there are six subspecies of Artemisia tridentata recognized by the National Plant Data Center: basin (ssp. tridentata), Wyoming (ssp. wyomingensis Beetle & Young), mountain (ssp. vaseyana [Rydb.] Beetle), subalpine (ssp. spiciformis [Ousterhout] Kartesz & Gandhi), xeric (ssp. xericensis Winward ex R. Rosentreter & R. Kelsey) and Parish’s (ssp. parishii [Gray] Hall & Clements). Each is highly variable with multiple ecotypes, but can generally be separated using a number of morphological, geographical and topographical characters.

All chromosome number information was obtained from McArthur and Sanderson (1999) as updated in McArthur (2005). Appendix 1 contains a general summary of characteristics useful to separate subspecies. See McArthur and Stevens (2004) for a detailed review of the characters for the subspecies occurring in the Intermountain West.

Figure 2. Leafy stem of basin big sagebrush. Photo courtesy of the PLANTS database.

Basin big sagebrush usually occurs at the lowest elevational range of the species, being most abundant in the valley bottoms to mountain foothills. Plants typically have a single main trunk and may grow to a height of 4 m (13 ft) under proper conditions, making basin the largest subspecies. Basin big sagebrush plants are generally uneven-topped with loosely branching flowering stems distributed throughout the crown (see figure 1). Floral heads typically contain 3 to 6 small flowers per head. Leaves of the vegetative stems are narrowly cuneate averaging 2 cm (0.8 in) or more and can be as long as 5 cm (2 in) being many times longer than wide (see figure 2). Ultraviolet visible coumarins in leaf extracts are minimal; leaf UV color is none to light blue in water and a rusty red-brown color in alcohol. 2n = 18 or sometimes 36.

Figure 3. Wyoming big sagebrush.

Derek Tilley, USDA NRCS Idaho PMC

Wyoming big sagebrush overlaps in range and elevation with basin big sagebrush. Plants are considerably smaller than those of basin big sagebrush, usually less than 0.9 m (3 ft) tall, and have main stems branching from the ground (see figure 3). Flowering stems are not as widely branching as those of basin, but otherwise closely resemble that subspecies. Leaves are typically shorter, from 1 to 1.5 cm (0.4 to 0.6 in) long, and flabelliform. UV extract color in water is none to light blue and rusty in alcohol. 2n = 36.

The vegetative stems of mountain big sagebrush create a characteristic even topped crown with the panicles rising distinctly and relatively uniformly above the foliage (see figure 3). Plants are normally smaller than those of basin big sagebrush, averaging about 0.9 m (3 ft) tall. Inflorescences are narrow and spicate bearing flower heads containing 4 to 8 flowers per head. Leaves are characteristically wider than those of basin or Wyoming big sagebrush. In extracts, ultraviolet visible coumarins are abundant. Leaf extracts fluoresce blue in water and blue-cream in alcohol. 2n = 18 or sometimes 36.

Figure 4. Even topped mountain big sagebrush.

Derek Tilley, USDA NRCS Idaho PMC

Originally considered a xeric form of mountain big sagebrush, xeric big sagebrush shares similarities with both basin and mountain big sagebrush and may be the result of hybridization between the two subspecies. Xeric big sagebrush plants are large and have an uneven topped crown like those of basin big sagebrush, but in leaf UV color and cytological characters it resembles mountain big sagebrush. Ultraviolet visible coumarins are blue in water, blue-cream in alcohol. 2n = 36.

A new variation of big sagebrush being recognized by some is Bonneville big sagebrush. This as yet undescribed taxon may represent hybridization between Wyoming and mountain big sagebrush. It is reported to have the general growth form of Wyoming plants but bears the leaves and fluorescing characteristics of the mountain subspecies. It has been reported from the bench areas of Lake Bonneville and other ancient lakes of the Intermountain West in Utah and Nevada. Reports of Bonneville big sagebrush have also come from western Wyoming and western Colorado. Of particular importance is this sagebrush’s reported high palatability to wild ungulates and sage grouse.

Subalpine, or spicate big sagebrush, is believed to be a stabilized hybrid between mountain big sagebrush and silver sagebrush (Artemisia cana Pursh ssp. viscidula [Osterhout] Beetle). Plants are similar to those of mountain big sagebrush except that leaves and floral heads are larger, the floral heads having 10 to 18 flowers per head. Ultraviolet visible coumarins in leaf extracts fluoresce blue in water and blue-cream in alcohol. 2n = 18 or 36.

Parish’s big sagebrush is an uncommon taxon restricted to dry, sandy soils in the hills of southern California. It is nearest in appearance and relationship to basin big sagebrush, but differs from basin in having drooping flowering branches and the achenes are hairy. 2n = 36.

One additional taxon that should be mentioned is Lahontan sagebrush (Artemisia arbuscula ssp. longicaulis Winward and McArthur). It is thought to be a stable hybrid between low sagebrush (A. arbuscula) and Wyoming big sagebrush. It bears the flowers of low sagebrush but has the vegetative characteristics of its big sagebrush parent. This subspecies forms dominant communities in northwestern Nevada and adjacent portions of California and Oregon in shallow or clayey soils above and around the shoreline of the Pleistocene Lake Lahontan.

The following key should provide some assistance in separating the subspecies of big sagebrush.

1. plants larger, usually >0.9 m (3 ft) tall, with a

single main trunk; crown uneven with floral stems

throughout

2. achenes hairy; floral stems drooping; plants

endemic to sandy soils in southern

California……………………......ssp. parishii

2. achenes glabrous; floral stems erect; plants

widely distributed throughout western U.S,

including southern California

3. plants occurring in valley bottoms and low

foothills, occupying deep fertile soils; leaves

narrowly cuneate, 2-5 cm (0.8-2.0 in) long,

UV leaf color in water=none, in alcohol=red

to brown ……...................…...ssp. tridentata

3. UV in water=blue, in alcohol=blue-cream;

plants restricted to well-drained basaltic soils in western Idaho….........ssp. xericensis

1. plants smaller, averaging 0.9 m (3 ft) or less, with

trunks branching at or near ground level; crowns

various

4. crowns uneven-topped, plants of low

valleys and foothills;

5. UV color in water=none, in alcohol=rust

…………………………..ssp. wyomingensis

5. UV color in water=blue, in alcohol=blue-

cream…………………………..(Bonneville)

4. crowns even-topped, floral stems rising

uniformly above the vegetative stems; plants of

higher elevations

6. flowers 4 to 8; leaf tips lobed

………………………………….ssp. vaseyana

6. flowers 10 to 18; leaf tips often pointed

……….…………...…………..ssp. spiciformis

Additional taxonomic information can be found in the Flora of North America, Volume 19 (FNA Editorial Committee 2006) and the Intermountain Flora, Volume 5 (Cronquist et al. 1994).

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description

General: Although big sagebrush plants generally have a similar growth form, the species does have considerable morphological variation with several subspecies and ecotypes. Big sagebrush are evergreen shrubs ranging in size from less than 0.6 m (2 ft) tall to as large as 4 m (13 ft) tall. Branches are spreading, arising from numerous main stems in the lower growing subspecies or from one main trunk in the larger forms. Leaves are blue-gray to blue-green in color due to dense gray hairs. They are typically cuneate (wedge-shaped, triangular and gradually tapering to the base) or flabelliform (bell shaped) depending on subspecies, and have three lobes at the apex on the majority of the persistent foliage. Leaves vary in length from 0.5 to 5 cm (0.2 to 2.0 in), and can be 0.2 to 2.0 cm (0.08 to 0.8 in) wide. Leaves are spirally arranged with internodes short in young vegetative stems making the leaves very dense. Panicles overtop plants of mountain and spicate big sagebrush, or can grow throughout the crown in basin and Wyoming big sagebrush. Floral heads contain from three to 18 perfect (both male and female parts present) flowers per head. Achenes are typically glabrous but are hairy in the California endemic Parish’s big sagebrush. Big sagebrush plants are very aromatic with the smell being described as bitter pungent to pleasant, the odor varying by subspecies. Ploidy levels often differ among subspecies and may differ among populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Alternative names

A. tridentata ssp. parishii = Parish’s big sagebrush

A. tridentata ssp. spiciformis = subalpine or spicate big sagebrush

A. tridentata ssp. tridentata = basin big sagebrush

A. tridentata ssp. vaseyana = mountain big sagebrush

A. tridentata ssp. wyomingensis = Wyoming big sagebrush

A. tridentata ssp. xericensis = xeric or foothills big sagebrush

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

National Distribution

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regional Distribution in the Western United States

More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):





 5  Columbia Plateau

 6  Upper Basin and Range

10  Wyoming Basin

11  Southern Rocky Mountains

12  Colorado Plateau

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Occurrence in North America






AZ CA CO ID MT NE NM NV ND OR SD UT WY

Trusted

Article rating from 0 people

Default rating: 2.5 of 5


Wyoming big sagebrush occurs from Montana and North Dakota south to California, New Mexico, Colorado, and Nebraska [64,133,144]. Its population distribution is poorly understood in areas where it overlaps with other big sagebrush subspecies [139,144].

  • 133. U.S. Department of Agriculture, National Resource Conservation Service. (1999) The PLANTS database [Online]. (2000, January). National Plant Data Center (Producer). Available: http://plants.usda.gov/plants [2000, March 14]. [29113]
  • 139. Weber, William A. 1987. Colorado flora: western slope. Boulder, CO: Colorado Associated University Press. 530 p. [7706]
  • 144. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 64. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fossil records and records from early pioneers indicate that sagebrush was widespread and existed in nearly the same general distribution for the past several thousand years as it does in the present day. Densities of sagebrush communities, however, have been reduced historically due to range management practices. Big sagebrush presently covers a vast ecological range from British Columbia to Baja California eastward to the Dakotas. Mahalovich and McArthur (2004) provide distribution as well as seed and plant transfer guidelines for Artemisia subgenus Tridentatae. For current distribution for each subspecies, please consult the Plant Profile page for this species on the PLANTS Web site.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Description

More info for the terms: cypsela, shrub

Wyoming big sagebrush is a native shrub [6,34,39,64]. It is the most drought tolerant of the 3 major big sagebrush subspecies [94]. Plants are generally 18 to 30 inches (46-76 cm) tall, with rounded, uneven crowns. The main stem is usually branched at or near ground level into 2 or more substems [11,112]. Wyoming big sagebrush is technically an evergreen but is semideciduous in habit. It develops 2 types of leaves: large ephemeral leaves and smaller, perennial leaves produced from ephemeral leaf axes [96]. The inflorescence is an open, many-flowered spike [11]. The fruit is a small, easily shattered cypsela [116].

The root system is deep and well developed, with many laterals and one or more taproots. The majority of roots (about 35% of the total root system) are in the upper 1 foot (30.5 cm) of soil. Some roots may penetrate as far as 6 feet (1.8 m) [51,85,124]. Roots are infected with the vesicular-arbuscular mycorrhizae (VAM) Glomus microcarpus and Gigaspora spp. [16,36,71].

Wyoming big sagebrush is a long-lived species. In an undisturbed Wyoming big sagebrush community in southern Wyoming, plants ranged from 26 to 57 years of age; average age was 42 years [124]. Plants in long-undisturbed communities of New Mexico typically reach 50 years of age [135]. Maximum life span may exceed 150 years [50].

Identification of big sagebrush subspecies based upon morphology is difficult and often faulty. This is especially true for Wyoming big sagebrush, which is intermediate in several characteristics used to distinguish basin and mountain big sagebrush [67,129,132,139,149]. Chemical analyses are more reliable, but they cannot be conducted in the field and sometimes give indeterminate results [140]. Combining field identification with chemical analysis produces the most positive identification of subspecies. Laboratory techniques used to identify Wyoming and other big sagebrush subspecies include paper chromatography [78,115], UV absorption [120,121], and DNA analysis [89].

  • 11. Beetle, Alan A.; Johnson, Kendall L. 1982. Sagebrush in Wyoming. Bull. 779. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 68 p. [421]
  • 112. Schlatterer, E. F. 1973. Sagebrush species and subspecies. Range Improvement Notes. 18(2): 1-11. [2077]
  • 115. Shafizadeh, F.; Bhadane, N.R.; Morris, M.S.; [and others]. 1971. Sesqyiterpene lactones of big sagebrush. Phytochemistry. 10: 2745-2754. [2115]
  • 116. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]
  • 120. Shumar, Mark L.; Anderson, Jay E.; Reynolds, Timothy D. 1982. Identification of subspecies of big sagebrush by ultraviolet spectrophotometry. Journal of Range Management. 35 (1): 60-62. [30181]
  • 121. Spomer, George G.; Henderson, Douglass M. 1988. Use of UV absorption for identifying subspecies of Artemisia tridentata. Journal of Range Management. 41(5): 395-398. [6260]
  • 124. Sturges, David L. 1977. Soil water withdrawal and root characteristics of big sagebrush. The American Midland Naturalist. 98(2): 257-274. [30167]
  • 129. Tisdale, E. W.; Hironaka, M.; Fosberg, M. A. 1969. The sagebrush region in Idaho: a problem in range resource management. Bulletin 512. Moscow, ID: University of Idaho, College of Agriculture, Agricultural Experiment Station. 15 p. [7514]
  • 132. U.S. Department of Agriculture, Forest Service, Intermountain Region. 1989. Indentification characteristics of major sagebrush taxa and species adapted to areas inhabited by each. The Habitat Express. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region. No. 89-1. 2 p. [5911]
  • 135. Vincent, Dwain W. 1992. The sagebrush/grasslands of the upper Rio Puerco Area, New Mexico. Rangelands. 14(5): 268-271. [19698]
  • 139. Weber, William A. 1987. Colorado flora: western slope. Boulder, CO: Colorado Associated University Press. 530 p. [7706]
  • 140. Weiss, Nondor T.; Verts, B. J. 1984. Habitat and distribution of pygmy rabbits (Sylvilagus idahoensis) in Oregon. The Great Basin Naturalist. 44(4): 563-571. [23635]
  • 149. Winward, A. H.; Tisdale, E. W. 1977. Taxonomy of the Artemisia tridentata complex in Idaho. Bulletin Number 19. Moscow, ID: University of Idaho, College of Forestry, Wildlife and Range Sciences, Forest, Wildlife and Range Experiment Station. 15 p. [2590]
  • 16. Bethlenfalvay, Gabor J.; Dakessian, Suren. 1984. Grazing effects on mycorrhizal colonization and floristic composition of the vegetation on a semiarid range in northern Nevada. Journal of Range Management. 37(4): 312-316. [439]
  • 34. Cronquist, Arthur; Holmgren, Arthur H.; Holmgren, Noel H.; [and others]. 1994. Intermountain flora: Vascular plants of the Intermountain West, U.S.A. Vol. 5. Asterales. New York: The New York Botanical Garden. 496 p. [28653]
  • 36. Doerr, Phillip D.; Keith, Lloyd B.; Rusch, Donald H. 1971. Effects of fire on a ruffed grouse population. In: Proceedings, annual Tall Timbers fire ecology conference; 1970 August 20-21; Fredericton, NB. No. 10. Tallahassee, FL: Tall Timbers Research Station: 25-46. [14320]
  • 39. Dorn, Robert D. 1988. Vascular plants of Wyoming. Cheyenne, WY: Mountain West Publishing. 340 p. [6129]
  • 50. Ferguson, Charles Wesley. 1964. Annual rings in big sagebrush, Artemisia tridentata. Papers of the Laboratory of Tree-Ring Research: No. 1. Tucson, AZ: University of Arizona Press. 95 p. [30179]
  • 51. Fernandez, Osvaldo A.; Caldwell, Martyn M. 1975. Phenology and dynamics of root growth of three cool semi-desert shrubs under field conditions. Journal of Ecology. 63: 703-714. [919]
  • 6. Balliette, John F.; McDaniel, Kirk C.; Wood, M. Karl. 1986. Infiltration and sediment production following chemical control of sagebrush in New Mexico. Journal of Range Management. 39(2): 160-165. [386]
  • 64. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]
  • 67. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 71. Hurley, C. A.; Wicklow-Howard, M. 1986. The occurence of vesicular-arbuscular mycorrhizae associated with Artemisia tridentata var. wyomingenesis within burned areas of the Idaho. Journal of the Idaho Academy of Science. 22(1): 7. Abstract. [1223]
  • 78. Kelsey, Rick G.; Morris, Melvin S.; Shafizadeh, Fred. 1976. The use of sesquiterpene lactones as taxonomic markers in the shrubby species of Artemisia (section Tridentatae) in Montana. Journal of Range Management. 29(6): 502-505. [1329]
  • 85. Leaf, Charles F. 1975. Watershed management in the central and southern Rocky Mountains: a summary of the status of our knowledge by vegetation types. Res. Pap. RM-142. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 28 p. [8422]
  • 89. McArthur, E. Durant; Freeman, D. Carl; Graham, John H.; [and others]. 1998. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). VI. Respiration and water potential. Canadian Journal of Botany. 76(4): 567-574. [29357]
  • 94. Meyer, Susan E.; Monsen, Stephen B. 1993. Genetic considerations in propagating native shrubs, forbs, and grasses from seed. In: Landis, Thomas D., ed. Proceedings, Western Forest Nursery Association; 1992 September 14-18; Fallen Leaf Lake, CA. Gen. Tech. Rep. RM-221. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 47-54. [22074]
  • 96. Miller, Richard F.; Shultz, Leila M. 1987. Development and longevity of ephemeral and perennial leaves on Artemisia tridentata Nutt. subsp. wyomingensis. The Great Basin Naturalist. 47(2): 227-230. [1655]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Comments: Rocky or fine-grained soils, cold-desert basins to high plateaus, foothills; 800-2200 m. Subspecies tridentata is the common sagebrush of deep, well-drained soils in the Great Basin of western North America, where it is often the dominant shrub of valleys and open grasslands. On drier sites and on high plateaus, it is replaced by subsp. wyomingensis, a taxon that appears to be increasing with prolonged droughts and disturbance from grazing.

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat characteristics

More info for the terms: mesic, shrubs, xeric

Wyoming big sagebrush is most common on foothills, undulating terraces, slopes, and plateaus, but also occurs in basins and valley bottoms [34,39,54,69,128]. Aspect varies, but shrubs are most common on south- to west-facing slopes [28,128,131].

Soils: Wyoming big sagebrush occurs on frigid, mesic, and xeric soils of silty, clayey, skeletal, and mixed textures [54,69,70,103,150]. Soil parent material is highly variable [131]. Soil pH ranges from moderately acidic to moderately basic [70,75]. In riparian zones, Wyoming big sagebrush communities usually develop on gravelly outwashes and high floodplains [46,54]. Where Wyoming, basin, and mountain big sagebrush ranges overlap, Wyoming big sagebrush tends to grow on shallowest, most well-drained, and hottest soils relative to the other 2 subspecies. Basin big sagebrush tends to occupy the deepest, most fertile soils, and mountain big sagebrush tends to occupy moderately deep soils that are wetter and cooler than those occupied by Wyoming big sagebrush [7,19,150].

When Wyoming big sagebrush occurs with smaller sagebrush species, Wyoming big sagebrush often occupies the relatively deeper soils. In Wyoming, black (A. nova), low (A. longiloba), and three-tip (A. tripartitia) sagebrush communities interface with Wyoming big sagebrush, with the dwarf sagebrush communities occupying the shallower soils [131]. On the Humboldt National Forest, Nevada, sites dominated by Wyoming big sagebrush tend to be Mollisols with intermediate surface soil thickness, while black sagebrush dominates sites with little to no upper soil horizon, and mountain or basin big sagebrush dominates sites with deep surface soil horizons [72].

Precipitation: In the Snake River Plains of southern Idaho, Wyoming big sagebrush communities occur on sites with greater than 7 inches (200 mm) of annual precipitation. Sites receiving less precipitation are dominated by shadscale and/or winterfat [66]. Where the ranges of Wyoming and mountain big sagebrush overlap, Wyoming big sagebrush generally occurs where precipitation is less than 12 inches (300 mm), whereas mountain big sagebrush occurs on wetter sites [26,27,65,67]. In the southern Rocky Mountains, Wyoming big sagebrush occurs on low- to mid-elevation sites receiving most precipitation as rain, whereas mountain big sagebrush occurs above 7,000 feet (2100 m), and most precipitation is snow [85].

Elevational ranges of Wyoming big sagebrush are as follows:

California: up to 7,260 feet (2200 m) [64]
Idaho: 2,500 to 6,500 feet (700-1980 m) [149]
Utah: 5,030 to 6,530 feet (1525-1980 m) [144]
Wyoming: 5,000 to 7,000 feet (1500-2100 m) [11]
East of the Continental Divide: below 7,000 feet (2100 m) [112]

  • 103. Passey, H. B.; Hugie, Vern K.; Williams, E. W.; Ball, D. E. 1982. Relationships between soil, plant community, and climate on rangelands of the Intermountain West. Tech. Bull. 1669. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service. 123 p. [1834]
  • 11. Beetle, Alan A.; Johnson, Kendall L. 1982. Sagebrush in Wyoming. Bull. 779. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 68 p. [421]
  • 112. Schlatterer, E. F. 1973. Sagebrush species and subspecies. Range Improvement Notes. 18(2): 1-11. [2077]
  • 128. Tiedeman, James A.; Francis, Richard E.; Terwilliger, Charles, Jr.; Carpenter, Len H. 1987. Shrub-steppe habitat types of Middle Park, Colorado. Res. Pap. RM-273. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 20 p. [2329]
  • 131. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 144. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 149. Winward, A. H.; Tisdale, E. W. 1977. Taxonomy of the Artemisia tridentata complex in Idaho. Bulletin Number 19. Moscow, ID: University of Idaho, College of Forestry, Wildlife and Range Sciences, Forest, Wildlife and Range Experiment Station. 15 p. [2590]
  • 150. Winward, Alma H. 1983. Using sagebrush ecology in wildland management. In: Johnson, Kendall L., ed. Proceedings, 1st Utah shrub ecology workshop; 1981 September 9-10; Ephraim, UT. Logan, UT: Utah State University: 15-19. [2586]
  • 19. Bonham, C. D.; Cottrell, T. R.; Mitchell, J. E. 1991. Inferences for life history strategies of Artemisia tridentata subspecies. Journal of Vegetation Science. 2(3): 339-344. [16599]
  • 26. Bunting, Stephen C.; Hironaka, M.; Schroeder-Teeter, Stephanie. 1993. Seedling ecology of shrubs associated with Snake River Plain Wyoming sagebrush vegetation. In: Steenhof, Karen, ed. Snake River Birds of Prey National Conservation Area research and monitoring annual report: 1993. [Boise, ID]: U.S. Department of the Interior, Bureau of Land Management, Boise District: 366-368. [25898]
  • 27. Bunting, Stephen C.; Kilgore, Bruce M.; Bushey, Charles L. 1987. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin. Gen. Tech. Rep. INT-231. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 33 p. [5281]
  • 28. Burke, Ingrid C.; Reiners, William A.; Olson, Richard K. 1989. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetatio. 84(2): 77-86. [11178]
  • 34. Cronquist, Arthur; Holmgren, Arthur H.; Holmgren, Noel H.; [and others]. 1994. Intermountain flora: Vascular plants of the Intermountain West, U.S.A. Vol. 5. Asterales. New York: The New York Botanical Garden. 496 p. [28653]
  • 39. Dorn, Robert D. 1988. Vascular plants of Wyoming. Cheyenne, WY: Mountain West Publishing. 340 p. [6129]
  • 46. Evenden, Angela G. 1989. Ecology and distribution of riparian vegetation in the Trout Creek Mountains of southeastern Oregon. Corvallis, OR: Oregon State University. 156 p. Dissertation. [10231]
  • 54. Francis, Richard E. 1983. Sagebrush-steppe habitat types in northern Colorado: a first approximation. In: Moir, W. H.; Hendzel, Leonard, tech. coords. Proceedings of the workshop on Southwestern habitat types; 1983 April 6-8; Albuquerque, NM. Abluquerque, NM: U.S. Department of Agriculture, Forest Service, Southwestern Region: 67-71. [955]
  • 64. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]
  • 65. Hironaka, M. 1986. Habitat type, range site, and community type. In: McArthur, E. Durant; Welch, Bruce L., compilers. Proceedings--symposium on the biology of Artemisia and Chrysothamnus; 1984 July 9-13; Provo, UT. Gen. Tech. Rep. INT-200. Ogden. UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 15-17. [1156]
  • 66. Hironaka, M. 1991. Vegetation of lower Snake River Plains. In: Abstracts, 64th annual meeting of the Northwest Scientific Association; 1991 March 20-22; Boise, ID. In: Northwest Science. 65(2): 64. Abstract. [17142]
  • 67. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 69. Hodgkinson, Harmon S. 1989. Big sagebrush subspecies and management implications. Rangelands. 11(1): 20-22. [6265]
  • 7. Barker, Jerry R.; McKell, Cyrus M. 1983. Habitat differences between basin and Wyoming big sagebrush in contiguous populations. Journal of Range Management. 36(4): 450-454. [8100]
  • 70. Holland, Robert F. 1986. Preliminary descriptions of the terrestrial natural communities of California. Sacramento, CA: California Department of Fish and Game. 156 p. [12756]
  • 72. Jensen, M. E.; Peck, L. S.; Wilson, M. V. 1988. A sagebrush community type classification for mountainous northeastern Nevada rangelands. The Great Basin Naturalist. 48: 422-433. [27717]
  • 75. Johnston, Barry C. 1987. Plant associations of Region Two: Potential plant communities of Wyoming, South Dakota, Nebraska, Colorado, and Kansas. 4th ed. R2-ECOL-87-2. Lakewood, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Region. 429 p. [3519]
  • 85. Leaf, Charles F. 1975. Watershed management in the central and southern Rocky Mountains: a summary of the status of our knowledge by vegetation types. Res. Pap. RM-142. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 28 p. [8422]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Key Plant Community Associations

More info for the terms: cover, forb, lichens, natural, shrub




Wyoming big sagebrush steppe communities are prevalent in the West. Wyoming big sagebrush/bluebunch wheatgrass (Pseudoroegneria spicata) is the most common of the big sagebrush/bluebunch wheatgrass types [95]. Other codominants in Wyoming big sagebrush steppe include western wheatgrass (Pascopyrum smithii), Sandberg bluegrass (Poa secunda), bottlebrush squirreltail (Elymus elymoides), Idaho fescue (Festuca idahoensis), Thurber needlegrass (Achnatherum thurberianum), and needle-and-thread grass (Hesperostipa comata) [37,54,67,86]. Although not often used in vegetation classifications, cheatgrass (Bromus tectorum) is also a dominant species in some Wyoming big sagebrush steppe communities [37]. Evenden [46] described a Wyoming big sagebrush/cheatgrass community in the Trout Creek Mountains of southeastern Oregon where Wyoming big sagebrush and cheatgrass comprised 40 and 28% cover, respectively.


Wyoming big sagebrush occurs in pinyon-juniper (Pinus-Juniperus spp.) woodlands and ponderosa pine (P. ponderosa) forests, often as a dominant shrub [42,109,127,147]. It is the most abundant big sagebrush subspecies in singleleaf pinyon
(P. monophylla)-Utah juniper (J. osteosperma) communities of northern Arizona [69]. It is also common in singleleaf pinyon-Utah juniper communities of the northern Great Basin [147].



Species diversity is lower in Wyoming big sagebrush communities than in other big sagebrush types. A few perennial forb species are usually present in low numbers [27]. Common associates of Wyoming big sagebrush are listed below by state.

AZ: Associates in singleleaf pinyon-Utah juniper/Wyoming big sagebrush of northern Arizona include blue grama, bottlebrush squirreltail, Indian ricegrass, mutton grass (Poa fendleriana), broom snakeweed (Gutierrezia sarothrae), and green rabbitbrush (Chrysothamnus viscidiflorus) [69].

CA/NV: In Humboldt National Forest, Nevada, Wyoming big sagebrush codominates with bluebunch wheatgrass and bottlebrush squirreltail [72,73]. Other associates common in Wyoming big sagebrush communities of eastern California and western Nevada include fourwing saltbush (Atriplex canescens), rubber rabbitbrush (Chrysothamnus nauseosus), blackbrush (Coleogyne ramosissima), California brome (Bromus carinatus), needle-and-thread grass, Thurber needlegrass, and Idaho fescue [70].



Associates in singleleaf pinyon/Wyoming big sagebrush community in Nevada include Sandberg bluegrass and slender false phlox (Microsteris gracilis). Annuals, especially blue-eyed Mary (Collinsia parviflora), are important in wet years [47].

CO: Associates of Wyoming big sagebrush in northern Colorado include black greasewood (Sarcobatus vermiculatus), green rabbitbrush, Sandberg bluegrass, bottlebrush squirreltail, blue grama, pine needlegrass (A. pinetorum), mutton grass, Hood's phlox (Phlox hoodii), and Engelmann's fleabane (Erigeron
engelmannii) [75,128].

ID: Wyoming big sagebrush communities are common in southern Idaho [76]. On the Snake River Plain, community associates include budsage (Artemisia spinescens), shadscale (Atriplex confertifolia), littleleaf horsebrush (Tetradymia glabrata), green rabbitbrush, winterfat (Krascheninnikovia lanata), Indian ricegrass, bottlebrush squirreltail, Sandberg bluegrass, and cheatgrass [26]. Soil crusts of cyanobacteria, lichens, and mosses including twisted moss (Tortula ruralis), fire moss (Ceratodaon purpureus), Bryum argenteum, and Funaria hygrometrica may be well represented. Thick stands of cheatgrass usually exclude soil crust biota [76].

MT: Important associates in a Wyoming big sagebrush/western wheatgrass community near Miles City include needle-and-thread grass, blue grama, Japanese brome (Bromus japonicus), cheatgrass, threadleaf sedge (Carex filifolia), fringed sagewort (A. frigida), and western salsify (Tragopogon dubius) [63].

Associated species in Wyoming big sagebrush/bluebunch wheatgrass of western Montana include Indian ricegrass, bottlebrush squirreltail, Sandberg bluegrass, cheatgrass, Hood's phlox, low fleabane (Erigeron pumilis), and green rabbitbrush [113].

OR: Associates in a western juniper (Juniperus occidentalis)/Wyoming big sagebrush community on the Northern Great Basin Experimental Range include Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass, prairie junegrass (Koeleria macrantha), bushy bird's beak (Cordylanthus ramosus), scabland fleabane (Eriogonum bloomeri), desert yellow fleabane (E. linearis), and green rabbitbrush [49].

In ponderosa pine (Pinus ponderosa var. ponderosa) forest, associates include western juniper (Juniperus occidentalis), mountain big sagebrush, wax currant (Ribes cereum), low sagebrush (Artemisia arbuscula), green rabbitbrush, common snowberry (Symphoricarpos albus), and Saskatoon serviceberry (Amelanchier alnifolia) [109].



WY: On Shoshone National Forest, associates of Wyoming big sagebrush include mountain big sagebrush, fringed sagebrush, broom snakeweed, bluebunch wheatgrass, prairie junegrass, Sandberg bluegrass, and needle-and-thread grass. Phlox and Antennaria species are common [131].

Classifications describing plant communities dominated by Wyoming big sagebrush are as follows:

Presettlement vegetation of part of northwestern Moffat County, Colorado, described from remnants [5]

Seral stage classification and monitoring model for big sagebrush/western wheatgrass/blue grama habitat [13]

Identification of the Artemisia tridentata subsp. wyomingensis/Festuca idahoensis habitat type in eastern Oregon [37]

Pinyon-Juniper woodland understory distribution patterns and species associations [47]

Sagebrush-steppe habitat types in northern Colorado: a first approximation [54]

Preliminary descriptions of the terrestrial natural communities of California [70]

Sagebrush-grass habitat types of southern Idaho [67]

A sagebrush community type classification for mountainous northeastern Nevada rangelands [72]

Plant associations of Region Two: potential plant communities of Wyoming, South Dakota, Nebraska, Colorado, and Kansas [75]

A preliminary description of plant communities found on the Sawtooth, White Cloud, Boulder, and Pioneer Mountains [113]

Shrub-steppe habitat types of Middle Park, Colorado [128]

Grassland and shrubland habitat types of the Shoshone National Forest [131]

A management-oriented classification of pinyon-juniper woodlands of the Great Basin [147]

Collins and Harper [33] describe a common habitat type on the Curlew National Grasslands, Idaho, that is dominated by a Wyoming big sagebrush × mountain big sagebrush hybrid.

  • 109. Rose, Jeffrey A.; Eddleman, Lee E. 1994. Ponderosa pine and understory growth following western juniper removal. Northwest Science. 68(2): 79-85. [23145]
  • 113. Schlatterer, Edward F. 1972. A preliminary description of plant communities found on the Sawtooth, White Cloud, Boulder and Pioneer Mountains. Unpublished report. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region. 111 p. [2076]
  • 127. Tausch, R. J.; Tueller, P. T. 1990. Foliage biomass and cover relationships between tree- and shrub- dominated communities in pinyon-juniper woodlands. The Great Basin Naturalist. 50(2): 121-134. [15528]
  • 128. Tiedeman, James A.; Francis, Richard E.; Terwilliger, Charles, Jr.; Carpenter, Len H. 1987. Shrub-steppe habitat types of Middle Park, Colorado. Res. Pap. RM-273. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 20 p. [2329]
  • 13. Benkobi, Lakhdar; Uresk, Daniel W. 1996. Seral stage classification and montioring model for big sagebrush/western wheatgrass/blue grama habitat. In: Barrow, Jerry R.; McArthur, E. Durant; Sosebee, Ronald E.; Tausch, Robin J., compilers. Proceedings: shrubland ecosystem dynamics in a changing environment; 1995 May 23-25; Las Cruces, NM. Gen. Tech. Rep. INT-GTR-338. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 69-73. [27033]
  • 131. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 147. West, Neil E.; Tausch, Robin J.; Tueller, Paul T. 1998. A management-oriented classification of pinyon-juniper woodlands of the Great Basin. Gen. Tech. Rep. RMRS-GTR-12. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 42 p. [29131]
  • 26. Bunting, Stephen C.; Hironaka, M.; Schroeder-Teeter, Stephanie. 1993. Seedling ecology of shrubs associated with Snake River Plain Wyoming sagebrush vegetation. In: Steenhof, Karen, ed. Snake River Birds of Prey National Conservation Area research and monitoring annual report: 1993. [Boise, ID]: U.S. Department of the Interior, Bureau of Land Management, Boise District: 366-368. [25898]
  • 27. Bunting, Stephen C.; Kilgore, Bruce M.; Bushey, Charles L. 1987. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin. Gen. Tech. Rep. INT-231. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 33 p. [5281]
  • 33. Collins, P. D.; Harper, K. T. 1982. Habitat types of the Curlew National Grassland, Idaho. Provo, UT: Brigham Young University, Department of Botany and Range Science. 46 p. Editorial draft. [663]
  • 37. Doescher, P. S.; Miller, R. F.; Swanson, S. R.; [and others]. 1986. Identification of the Artemisia tridentata subsp. wyomingensis/Festuca ihahoensis habitat type in eastern Oregon. Northwest Science. 60(1): 55-60. [815]
  • 42. Eddleman, Lee E.; Miller, Patricia M.; Miller, Richard F.; Dysart, Patricia L. 1994. Western juniper woodlands (of the Pacific Northwest): Science assessment. Walla Walla, WA: Interior Columbia Basin Ecosystem Management Project. 131 p. [27969]
  • 46. Evenden, Angela G. 1989. Ecology and distribution of riparian vegetation in the Trout Creek Mountains of southeastern Oregon. Corvallis, OR: Oregon State University. 156 p. Dissertation. [10231]
  • 47. Everett, Richard L.; Sharrow, Steven H.; Meeuwig, Richard O. 1983. Pinyon-juniper woodland understory distribution patterns and species associations. Torrey Botanical Club. 110(4): 454-463. [899]
  • 49. Fajemisin, B.; Ganskopp, D.; Cruz, R.; Vavra, M. 1996. Potential for woody plant control by Spanish goats in the sagebrush steppe. Small Ruminant Research. 20(3): 229-238. [29196]
  • 5. Baker, William L.; Kennedy, Susan C. 1985. Presettlement vegetation of part of northwestern Moffat County, Colorado, described from remnants. The Great Basin Naturalist. 45(4): 747-783. [384]
  • 54. Francis, Richard E. 1983. Sagebrush-steppe habitat types in northern Colorado: a first approximation. In: Moir, W. H.; Hendzel, Leonard, tech. coords. Proceedings of the workshop on Southwestern habitat types; 1983 April 6-8; Albuquerque, NM. Abluquerque, NM: U.S. Department of Agriculture, Forest Service, Southwestern Region: 67-71. [955]
  • 63. Heitschmidt, R. K.; Grings, E. E.; Haferkamp, M. R.; Karl, M. G. 1995. Herbage dymamics on 2 Northern Great Plains range sites. Journal of Range Management. 48(3): 211-217. [26685]
  • 67. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 69. Hodgkinson, Harmon S. 1989. Big sagebrush subspecies and management implications. Rangelands. 11(1): 20-22. [6265]
  • 70. Holland, Robert F. 1986. Preliminary descriptions of the terrestrial natural communities of California. Sacramento, CA: California Department of Fish and Game. 156 p. [12756]
  • 72. Jensen, M. E.; Peck, L. S.; Wilson, M. V. 1988. A sagebrush community type classification for mountainous northeastern Nevada rangelands. The Great Basin Naturalist. 48: 422-433. [27717]
  • 73. Jensen, M. E.; Simonson, G. H.; Dosskey, M. 1990. Correlation between soils and sagebrush-dominated plant communities of northeastern Nevada. Soil Science Society of America Journal. 54: 902-910. [15502]
  • 75. Johnston, Barry C. 1987. Plant associations of Region Two: Potential plant communities of Wyoming, South Dakota, Nebraska, Colorado, and Kansas. 4th ed. R2-ECOL-87-2. Lakewood, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Region. 429 p. [3519]
  • 76. Kaltenecker, Julie; Wicklow-Howard, Marcia. 1994. Microbiotic soil crusts in sagebrush habitats of southern Idaho. Report prepared for the Eastside Ecosystem Management Project. Walla Walla, WA: Interior Columbia Basin Ecosystem Management Project. 48 p. [26455]
  • 86. Lentz, R. D.; Simonson, G. H. 1987. Correspondence of soil properties and classification units with sagebrush communities in southeastern Oregon: I. Comparisons between mono-taxa soil-vegetation units. Soil Science Society of America Journal. 51: 1263-1271. [6621]
  • 95. Miller, Richard F.; Seufert, Jamie M.; Hauferkamp, Marshall R. 1986. The ecology and management of bluebunch wheatgrass (Agropyon spicatum): a review. Station Bulletin 669. Corvallis, OR: Oregon State University, Agriculture Experiment Station. 39 p. [6666]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Rangeland Cover Types

More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):





107 Western juniper/big sagebrush/bluebunch wheatgrass

212 Blackbush

314 Big sagebrush-bluebunch wheatgrass

315 Big sagebrush-Idaho fescue

317 Bitterbrush-bluebunch wheatgrass

318 Bitterbrush-Idaho fescue

320 Black sagebrush-bluebunch wheatgrass

321 Black sagebrush-Idaho fescue

322 Curlleaf mountain-mahogany-bluebunch wheatgrass

324 Threetip sagebrush-Idaho fescue

401 Basin big sagebrush

402 Mountain big sagebrush

403 Wyoming big sagebrush

404 Threetip sagebrush

405 Black sagebrush

406 Low sagebrush

412 Juniper-pinyon woodland

413 Gambel oak

414 Salt desert shrub

420 Snowbrush

501 Saltbush-greasewood

504 Juniper-pinyon pine woodland

612 Sagebrush-grass

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Plant Associations

More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

More info for the term: shrub





K005 Mixed conifer forest

K010 Ponderosa shrub forest

K011 Western ponderosa forest

K016 Eastern ponderosa forest

K023 Juniper-pinyon woodland

K024 Juniper steppe woodlands

K037 Mountain mahogany-oak scrub

K038 Great Basin sagebrush

K039 Blackbrush

K040 Saltbush-greasewood

K055 Sagebrush steppe

K056 Wheatgrass-needlegrass shrubsteppe

K057 Galleta-three-awn shrubsteppe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Ecosystem

More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):





FRES21   Ponderosa pine

FRES29   Sagebrush

FRES30   Desert shrub

FRES34   Chaparral-mountain shrub

FRES35   Pinyon-juniper

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Cover Types

More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):





209 Bristlecone pine

219 Limber pine

220 Rocky Mountain juniper

237 Interior ponderosa pine

238 Western juniper

239 Pinyon-juniper

243 Sierra Nevada mixed conifer

245 Pacific ponderosa pine

247 Jeffrey pine

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

The big sagebrush complex is adapted to a wide range of precipitation zones and soil conditions. Plants are well adapted to the arid plains, valleys, foothills and mountains of the West where annual precipitation ranges from as little as 200 to as much as 750 or more mm (8 to 30 in). It is often found growing in loamy to sandy loam soils, but plants are found on all 12 soil textural classes in five soil orders: Alfisols, Aridisols, Entisols, Inceptisols and Mollisols. Tolerance to alkalinity or acidity varies by subspecies. In general big sagebrush will grow in soils with a pH of 5.9 to 10.0 and with organic matter content of 0.62 to 4.14 percent.

Basin big sagebrush is commonly found at low to mid elevations from 600 to 2,100 m (1,900 to 6,900 ft) in valleys and mountain foothills, occupying sites with deep fertile loamy to sandy soil, 0.9 m (3 ft) or deeper. It is often the dominant shrub species of the plant community, but is also found in association with juniper, piñon pine and rabbitbrush communities. Basin big sagebrush has a deep penetrating root system that allows it to occupy deeper soils in areas receiving little precipitation. Plants are often found growing in valleys, plains, alluvial fans and in seasonal or perennial stream channels. Basin big sagebrush prefers soils which are non-alkaline, non-saline and non-calcareous. The deep root system does not allow plants to grow in soils with a soil depth limiting hardpan or caliche layer. Depending on soil infiltration and water storage capacity, plants will grow in areas receiving less than 200 to more than 400 mm (8 to 16 in) annual precipitation. This subspecies also does not tolerate soils saturated for more than a few weeks in a season.

Wyoming big sagebrush grows at low to intermediate elevations between basin and mountain big sagebrush, but also commonly overlaps in range with the other two subspecies. When found in proximity with basin big sagebrush, Wyoming sagebrush will occupy the shallower, better-drained soils. Like basin big sagebrush, Wyoming is typically found in large stands covering many acres. Plants are also found in juniper, rabbitbrush, bitterbrush and mountain mahogany communities. At lower precipitation areas it is sometimes intermixed with shadscale and other Atriplex species. Wyoming big sagebrush commonly occurs from 800 to 2,200 m (2600 to 7,200 ft) in elevation. Wyoming big sagebrush is the most drought tolerant of the big sagebrush subspecies and is commonly found growing on low valley slopes and foothills receiving between 200 and 300 mm (8 to 12 in) annual precipitation. It occupies loamy soils with high clay content and a depth of 25 to 75 cm (10 to 30 in). Soils may be quite rocky or gravelly, but in these cases plants will be smaller. Wyoming big sagebrush will be found growing in soils underlain by a caliche or silica layer if the available soil is deep enough. Plants are typically found in soils with a low water holding capacity where excess water may run off into channels more suitable to basin big sagebrush.

Mountain big sagebrush grows in mountain and mountain foothill plant communities such as rabbitbrush, piñon pine, juniper, mountain shrub, aspen, Douglas fir, ponderosa pine and spruce-fir habitats from 800 to 3,100 m (2,600 to 10,000 ft). Plants prefer moderately deep to deep, well-drained soils providing summer moisture. Mountain big sagebrush occurs at higher elevations and in higher annual precipitation zones than either Wyoming big sagebrush or basin big sagebrush. Soils are typically 45 to 90 centimeters (18 to 36 in) deep or more, and are most often loamy to gravelly but can contain greater amounts of clay. Plants commonly grow in areas receiving over 350 mm (14 in) annual precipitation, but may be found in lower elevations and precipitation zones under certain conditions such as snow drift accumulation areas and shaded north facing slopes.

Xeric big sagebrush is limited to basaltic and granitic soils of western and west central Idaho and is often associated with bluebunch wheatgrass. Plants grow in the foothills from 800 to 1,500 meters (2,600 to 4,900 ft). Precipitation ranges from 300 to 400 mm (12 to 16 in) annually.

Spicate big sagebrush grows at high elevation ridge lines and snow accumulation areas from 2,000 to 3,300 m (6,500 to 10,800 ft) in annual precipitation zones of over 750 mm (30 in). It is normally found near Douglas fir, spruce-fir, and aspen communities.

Figure 5. Adaptation of Intermountain big sagebrush subspecies based on elevational and moisture gradients (Mahalovich and McArthur, 2004).

Parish’s big sagebrush is adapted to the dry sandy soils of California’s Inner South Coast Ranges, South Coast, Western Transverse Ranges, White and Inyo Mountains and the desert mountains of the Mojave Desert.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Dispersal

Establishment

Seed of big sagebrush are best adapted to germinate in habitats with ecological conditions approximating those of the seed collection site. Seed source and subspecies should always be seriously considered prior to seeding. It may be necessary to use seed from more than one subspecies in a given revegetation project to ensure adequate establishment in all habitats.

Seed should be sown in the late fall or early winter and allowed to naturally stratify. It should be noted that big sagebrush seed has special seed storage requirements (See “Seed and Plant Production” section). If stored in conditions with relative humidity above 30 percent, seeds lose vigor and germinability after two or three years. To ensure a greater chance of establishment success, check the viability of seed lots before planting.

Seed should be planted into a firm, weed-free seedbed at a depth of no more than 1/8 inch. Seed covered too deeply with soil will generally fail to establish. Best results come from surface broadcast seed that has been pressed into the soil to provide for good seed-soil contact. Seed can also be broadcast directly onto snow with good results. Pressing broadcast seed into the soil surface with a land imprinter has provided very good establishment success. Land imprinters create good contact between the seed and soil as well as provide microhabitats that optimize temperature and water requirements. Broadcast seeding has also yielded good results when followed by a cultipacker or drag chain.

Drill seeding can be successful, but strict attention must be paid to seeding depth. Optimal drilling depth is 0 to 1/8 inch.

Sagebrush seed lots range in purity from approximately 8 to 30 percent or greater pure seed. Seed lots with high purity levels (20 percent or greater) can be difficult to seed due to limitations of the seeding equipment. Because sagebrush seed is very small and is metered through seeding equipment with difficulty, seed can be diluted with rice hulls or another inert carrier to improve flow.

Post-fire aerial seeding of big sagebrush has been done with limited success. Studies suggest that best results come from aerial seeding followed by land imprinting, cultipacking or chaining, or after allowing native perennial grasses to establish for a season following fire. It is believed that native grasses would suppress exotic annual grass species while allowing the establishment of sagebrush. Further study of this option is indicated.

Big sagebrush is not recommended for pure seedings. Seed should be a small component of a seed mix. Drill seeding 0.025 lbs PLS per acre (approximately 1 viable seed/ft²) provides approximately 400 plants per acre for optimal wildlife habitat. For broadcast seeding increase to 0.05 to 0.075 lbs PLS (approximately 2-3 viable seeds/ft²). With adequate soil moisture seedlings develop quickly and compete well with other shrubs and most herbaceous plants. However, to enhance establishment, sagebrush should not be sown in the same drill row with more aggressive forbs and grasses.

Sagebrush seedlings require sufficient soil moisture to germinate and survive. Young plants do not do well in open, unprotected locations. Best establishment results occur in sites where soil moisture is at or near field capacity, or in areas where snow accumulates. Existing shrubs, downed trees and litter can create microhabitats which also provide very good germination conditions.

Containerized stock or bareroot seedlings can also be used with high establishment success (50% or greater). This method, however, is quite costly, and is rarely used except in small critical area plantings. Plants can be taken from nursery stock or field harvested wildings. Wildings should be collected and transplanted during dormancy in fall or very early spring when soil moisture conditions are best. For best cost efficiency, “mother plants” should be placed in key locations throughout the revegetation site to allow for natural seed dispersal and recruitment over time.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Fire Management Considerations

More info for the terms: cover, density, fire management, fire-resistant species, forb, fuel, fuel moisture, natural, restoration, shrub, stand-replacing fire, wildfire

Burning is the oldest method of big sagebrush control in the West, and it is still effective and relatively inexpensive. Sites generally need reburning every 15 to 30 years in order to control big sagebrush [85,112]. Composition of herbaceous vegetation is largely unaffected by burning, whereas herbicide control may reduce herb production by 45 to 65% [4,85]. Unlike burning in other big sagebrush types, burning in Wyoming big sagebrush usually does not usually increase forb density or diversity [53,58,151].

Fuels and Fire Guidelines: Prescribed burning may be difficult on some sites due to low fuel loads, but under the right combination of wind and high temperature, sparsely fueled Wyoming big sagebrush communities can burn [150]. On Wyoming big sagebrush rangeland in southern Idaho, prescribed burning in April, when fine fuels left over from the prior growing season carry a relatively "cool" fire, has been successful. Autenhreith and others [4] recommend burning in strips of not more than 50 yards (45 m) wide and 100 yards (90 m) in length in order to preserve some big sagebrush for wildlife. They do not recommend winter burning in sage grouse habitat, as winter availability of sagebrush is crucial to the birds.

Frandsen [55] developed a model estimating fuel load of Wyoming big sagebrush for fire behavior predictions. Britton and others [24] present a big sagebrush canopy cover-herbaceous fuel load curve representing proportions of big sagebrush cover and herbaceous fuels needed to produce a successful burn. Brown [25] has developed a model for fuel and fire behavior prediction in Wyoming and mountain big sagebrush based on sampling in Montana and Idaho.

General guidelines for burning big sagebrush types: For stand-replacing fire, Beardall and Sylvester [9] recommend fine fuels of 600 to 700 lbs/acre (674-786 kg/ha). Big sagebrush should be at least 1/3rd of total plant cover [104].

Success of winter broadcast burning (n=5 fires) in big sagebrush communities in southern Idaho was follows [101]:

Conditions                    Fire carried     Fire did not carry
Canopy cover (%)        72.1                 60.0
Density (plants/ha)       114,296           121,020
Biomass (g/plant)         1,634               1,496
Shrub height (cm)         103.8               108.3
Basal diameter (cm)     3.8                3.2
Distance between  
plants (cm)                 15.4                 37.5
Temperature (oC)      9.0               9.0
Relative humidity (%) 49.3                46.6
Windspeed (km/h)     8.3                 6.6
Fuel moisture (%)     37.0                38.0

Postfire Management: Native species that have been successfully seeded in after fire on degraded Wyoming big sagebrush rangelands include bluebunch wheatgrass, fourwing saltbush (Atriplex canescens), scarlet globemallow (Sphaeralcea coccinea), and balsamroot (Balsamorhiza spp.). Russian wildrye (Psathyrostachys juncea), crested, and desert wheatgrasses have also been successfully seeded in [80,150]. Reoccupation of Wyoming big sagebrush is slower on sites seeded to crested or desert wheatgrass than on sites seeded to native grasses [112].

Deferment of grazing is recommended for 1 to 2 years after burning Wyoming big sagebrush/grass types to allow native grasses to recover [69,104,152].

Cheatgrass: While burning will remove Wyoming big sagebrush, it will not restore perennial grasses in areas where cheatgrass has become dominant [27]. Arid regions may be most susceptible to cheatgrass invasion. Hironaka and others [67] reported that in the Wyoming big sagebrush/bluebunch wheatgrass type, cheatgrass has been less invasive in eastern Idaho than in the drier regions of southern Idaho, eastern Oregon, and northern Nevada and Utah. To reduce cheatgrass invasion after burning, they recommend a gradual reduction in shrub cover so that bluebunch wheatgrass and other bunchgrasses regain vigor and produce a continuous supply of seed.

In general, burning in cheatgrass-infested big sagebrush types is not recommended if cheatgrass cover exceeds 50% or if cover of fire-resistant native grasses is less than 20%. Cheatgrass is more likely to invade after fire if the dominant native grass is not a fire-resistant species (for example, Thurber needlegrass or Idaho fescue) or if native grasses were in poor condition prior to fire [104,146]. Artificial seeding with native grasses is recommended after fire if cheatgrass was a major component of the prefire community or if it was a minor component and native grasses were in poor condition [146,155].

Communities in good condition may at least partially recover from temporary postfire increases in cheatgrass, especially when fire is followed by favorable precipitation. For example, a summer wildfire in central Utah occurred in a Wyoming big sagebrush/bluebunch wheatgrass community in good condition shortly after vegetation sampling was performed for a different study. Precipitation was above average in postfire years 1 and 2. Further vegetation sampling was done in postfire years 1 and 2 for a fire effects study. Wyoming big sagebrush was removed by fire. Bluebunch wheatgrass recovered quickly, almost equaling prefire coverage by postfire year 2. Cheatgrass coverage increased greatly on both burned and unburned control plots, with coverage on burned plots over twice that on unburned plots. The authors concluded that on this rangeland, postfire seeding would not have increased abundance of bluebunch wheatgrass and other native grasses relative to cheatgrass. Pre- and postfire coverages of Wyoming big sagebrush, bluebunch wheatgrass, and cheatgrass are given below. Data are means and 1 standard error [146]. ----------------Burned---------------- Prefire Postfire yr 1 Postfire yr 2 sagebrush 6.5(1.3) 0 0 wheatgrass 12.9(5.0) 6.5(1.7) 12.3(4.9) cheatgrass 6.6(1.5) 34.8(12.1) 56.8(5.4) ------------Unburned Control---------- Prefire Postfire yr 1 Postfire yr 2 sagebrush 2.3(1.2) 3.7(1.2) 5.7(4.0) wheatgrass 13.3(0.5) 16.0(1.) 13.3(5.9) cheatgrass 6.8(1.1) 11.0(1.1) 24.0(8.2) Restoration of cheatgrass-dominated sites: Boltz [18] found seed imprinting resulted in best establishment of Wyoming big sagebrush seedlings the Jarbidge Resource Area of south-central Idaho. He studied natural and artificial regeneration on sites that had been subject to repeat wildfire and cheatgrass invasion. Natural regeneration of Wyoming big sagebrush was poor on cheatgrass-overrun sites receiving less than 10 inches (254 mm) average annual precipitation. He speculated a depleted seedbank combined with low and erratic precipitation resulted in low Wyoming big sagebrush seedling density and high seedling mortality. Imprinting seed into the soil after May prescribed burning on an already thrice-burned site in poor condition resulted in Wyoming big sagebrush establishment at an average rate of 2,750 seedlings/acre (6875/ha). Among imprinting, broadcasting, drilling, disking, or chaining seed, broadcasting was 2nd most successful at 750 seedlings/acre (300/ha).

Cheatgrass is most likely to invade the Wyoming big sagebrush/Thurber needlegrass type if overgrazing has preceded fire. Hironaka and others [67] suggest that due to low seedling vigor of Thurber needlegrass, restoring this type after cheatgrass becomes dominant would be difficult to impossible. They recommend artificial seeding with desert wheatgrass.

When perennial herbs are depleted by overgrazing or other means, the Wyoming big sagebrush/needle-and-thread grass type is easily invaded by cheatgrass because it tends to occur on warm soils. However, needle-and-thread grass is easier to establish by artificial seeding than most native bunchgrasses. Hironaka and others [67] recommend direct-seed drilling needle-and-thread grass into nontilled soil when cheatgrass has invaded this type.

Other invasive species: Rabbitbrush (Chrysothamnus spp.) may invade burned sites in the northern Great Basin. Rabbitbrush invasion after fire has occurred most often in western Idaho, and is least likely in eastern Idaho and Wyoming [27].

Sage grouse: Fire is an effective tool for promoting sage grouse [14,58,82,114]. For information on fire management of sage grouse habitat, see the FEIS report on sage grouse (Centrocercus urophasianus).

  • 101. Neuenschwander, L. F. 1980. Broadcast burning of sagebrush in the winter. Journal of Range Management. (33)3: 233-236. [1746]
  • 104. Pechanec, Joseph F.; Stewart, George; Blaisdell, James P. 1954. Sagebrush burning good and bad. Farmers' Bulletin No. 1948. Washington, DC: U.S. Department of Agriculture. 34 p. [1859]
  • 112. Schlatterer, E. F. 1973. Sagebrush species and subspecies. Range Improvement Notes. 18(2): 1-11. [2077]
  • 114. Schlatterer, Edward Frederick. 1960. Productivity and movements of a population of sage grouse in southeastern Idaho. Moscow, ID: University of Idaho. 87 p. Thesis. [26037]
  • 14. Benson, Lee A.; Braun, Clait E.; Leininger, Wayne C. 1991. Sage grouse response to burning in the big sagebrush type. In: Comer, Robert D.; Davis, Peter R.; Foster, Susan Q.; [and others], eds. Issues and technology in the management of impacted wildlife: Proceedings of a national symposium; 1991 April 8-10; Snowmass Resort, CO. Boulder, CO: Thorne Ecological Institute: 97-104. [21766]
  • 146. West, Neil E.; Hassan, M. A. 1985. Recovery of sagebrush-grass vegetation following wildfire. Journal of Range Management. 38(2): 131-134. [2513]
  • 150. Winward, Alma H. 1983. Using sagebrush ecology in wildland management. In: Johnson, Kendall L., ed. Proceedings, 1st Utah shrub ecology workshop; 1981 September 9-10; Ephraim, UT. Logan, UT: Utah State University: 15-19. [2586]
  • 151. Wright, Henry A.; Britton, Carlton M. 1976. Fire effects on vegetation in western rangeland communities. In: Use of prescribed burning in western woodland and range ecosystems: Proceedings of the symposium; 1976 March 18-19; Logan, UT. Logan, UT: Utah State University, Agricultural Experiment Station: 35-41. [2621]
  • 152. Wright, Henry A.; Neuenschwander, Leon F.; Britton, Carlton M. 1979. The role and use of fire in sagebrush-grass and pinyon-juniper plant communities: A state-of-the-art review. Gen. Tech. Rep. INT-58. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 48 p. [2625]
  • 155. Young, James A.; Evans, Raymond A.; Weaver, Ronald A. 1976. Estimating potential downy brome competition after wildfires. Journal of Range Management. 29(4): 322-325. [2677]
  • 18. Boltz, Mike. 1994. Factors influencing postfire sagebrush regeneration in south-central Idaho. In: Monsen, Stephen B.; Kitchen, Stanley G, compilers. Proceedings--ecology and management of annual rangelands; 1992 May 18-22; Boise, ID. Gen. Tech. Rep. INT-GTR-313. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 281-290. [24298]
  • 24. Britton, Carlton M.; Clark, Robert G.; Sneva, Forrest A. 1981. Will your sagebrush range burn? Rangelands. 3(5): 207-208. [517]
  • 25. Brown, James K. 1982. Fuel and fire behavior prediction in big sagebrush. Research Paper INT-290. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 10 p. [543]
  • 27. Bunting, Stephen C.; Kilgore, Bruce M.; Bushey, Charles L. 1987. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin. Gen. Tech. Rep. INT-231. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 33 p. [5281]
  • 4. Autenrieth, Robert; Molini, William; Braun, Clait, eds. 1982. Sage grouse management practices. Tech. Bull No. 1. Twin Falls, ID: Western States Sage Grouse Committee. 42 p. [7531]
  • 53. Fischer, Richard A.; Reese, Kerry P.; Connelly, John W. 1996. An investigation on fire effects within xeric sage grouse brood habitat. Journal of Range Management. 49: 194-198. [26598]
  • 55. Frandsen, William H. 1983. Modeling big sagebrush as a fuel. Journal of Range Management. 36(5): 596-600. [958]
  • 58. Gates, Robert J.; Eng, Robert L. 1984. Sage grouse, pronghorn, and lagomorph use of a sagebrush-grassland burn site on the Idaho National Engineering Laboratory. In: Markham, O. Doyle, ed. Idaho National Engineering Laboratory radio ecology and ecology programs: 1983 progress reports. Idaho Falls, ID: U.S. Department of Energy, Radiological and Environmental Sciences Laboratory: 220-235. [1005]
  • 67. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 69. Hodgkinson, Harmon S. 1989. Big sagebrush subspecies and management implications. Rangelands. 11(1): 20-22. [6265]
  • 80. Kindschy, Robert R. 1986. Rangeland vegetative succession--implications to wildlife. Rangelands. 8(4): 157-159. [22]
  • 82. Klebenow, Donald A. 1973. The habitat requirements of sage grouse and the role of fire in management. In: Proceedings, annual Tall Timbers fire ecology conference; 1972 June 8-9; Lubbock, TX. No. 12. Tallahassee, FL: Tall Timbers Research Station: 305-315. [1345]
  • 85. Leaf, Charles F. 1975. Watershed management in the central and southern Rocky Mountains: a summary of the status of our knowledge by vegetation types. Res. Pap. RM-142. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 28 p. [8422]
  • 9. Beardall, Louis E.; Sylvester, Vern E. 1976. Spring burning for removal of sagebrush competition in Nevada. In: Proceedings, Tall Timbers fire ecology conference and fire and land management symposium; 1974 October 8-10; Missoula, MT. No. 14. Tallahassee, FL: Tall Timbers Research Station: 539-547. [406]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Broad-scale Impacts of Plant Response to Fire

More info for the terms: cover, frequency



Prescribed burning in Wyoming big sagebrush has been accomplished on patches as little as 0.3 acre (0.05 ha) [105] and as much as 14,500 acres (5800 ha). The 14,500-acre fire, on the Upper Snake River Plain of Idaho, burned about 57% of the area and reduced Wyoming big sagebrush and threetip sagebrush (Artemisia tripartita) cover from approximately 20 to 11% [53]. The small patchy fires, on the East Fork of the Salmon River in south-central Idaho, reduced Wyoming big sagebrush from a prefire frequency of 100% to and average of 40% in postfire year 1. Wyoming big sagebrush seedlings had not recolonized by postfire year 3 [105].

Wyoming big sagebrush may be less able to benefit from the increased nutrient load on recently burned sites than associated grasses. In a greenhouse study, cheatgrass and bottlebrush squirreltail seedlings showed a significant increase (p = 0.05) in total biomass when grown on soil collected from a new burn compared to growth on soil from an adjacent unburned site. Biomass of Wyoming big sagebrush seedlings was slightly (but not significantly) less when grown on soil from the burn compared to biomass when grown on soil from the unburned site [17].

  • 105. Peek, James M.; Riggs, Robert A.; Lauer, Jerry L. 1979. Evaluation of fall burning on bighorn sheep winter range. Journal of Range Management. 32(6): 430-432. [1863]
  • 17. Blank, Robert R.; Allen, Fay; Young, James A. 1994. Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant and Soil. 164: 35-41. [26887]
  • 53. Fischer, Richard A.; Reese, Kerry P.; Connelly, John W. 1996. An investigation on fire effects within xeric sage grouse brood habitat. Journal of Range Management. 49: 194-198. [26598]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Plant Response to Fire

More info for the terms: cover, forbs, frequency, fuel, fuel moisture, prescribed burn, prescribed fire, shrub, wildfire

Wyoming big sagebrush is not an initial colonizer. It may be slow to establish on a burn, especially when compared to other big sagebrush subspecies, because of the relatively drier sites it normally occupies [21,24,27]. Additionally, the VAM upon which Wyoming big sagebrush depend for healthy growth are harmed by fire, and may take several years after fire to recover [71,109]. Wicklow-Howard [148] found that on the Snake River Birds of Prey Area of southern Idaho, fewer of the VAM associated with Wyoming big sagebrush were killed by low-intensity fire than by moderate-intensity fire.

In southwestern Montana, Wyoming big sagebrush seedlings were still absent from a prescribed burn site 6 years after fire [137]. In the Missouri River Breaks of central Montana, wildfire removed the Wyoming big sagebrush from a Wyoming big sagebrush/bluebunch wheatgrass community, and it was not found during vegetation sampling performed at postfire year 14. Total coverage at that time was 50% grasses, with the remainder consisting of forbs and bare ground. Shrub cover was "minimal" [43].

Wyoming big sagebrush frequency declined significantly after late-summer (Sept. 21, 1983) prescribed fire near Elko, Nevada. Fire and Wyoming big sagebrush frequency data were as follows [29]: Fire Parameters temperature 70oF relative humidity 15% windspeed 1-3 miles/h fuel moisture 3% live sagebrush moisture 93% soil moisture 8% Wyoming big sagebrush Frequency (%) Fire treatment Unburned control ----------------------- ---------------- year before fire 28 22 postfire year 1 2 18 postfire year 3 5 no data

  • 109. Rose, Jeffrey A.; Eddleman, Lee E. 1994. Ponderosa pine and understory growth following western juniper removal. Northwest Science. 68(2): 79-85. [23145]
  • 137. Wambolt, Carl L.; Payne, Gene F. 1986. An 18-year comparison of control methods for Wyoming big sagebrush in southwestern Montana. Journal of Range Management. 39(4): 314-319. [2449]
  • 148. Wicklow-Howard, Marcia. 1989. The occurrence of vesicular-arbuscular mycorrhizae in burned areas of the Snake River Birds of Prey Area, Idaho. Mycotaxon. 34(1): 253-257. [12312]
  • 21. Boyer, Donald E.; Dell, John D. 1980. Fire effects on Pacific Northwest forest soils. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Watershed Management and Aviation and Fire Management. 59 p. [5282]
  • 24. Britton, Carlton M.; Clark, Robert G.; Sneva, Forrest A. 1981. Will your sagebrush range burn? Rangelands. 3(5): 207-208. [517]
  • 27. Bunting, Stephen C.; Kilgore, Bruce M.; Bushey, Charles L. 1987. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin. Gen. Tech. Rep. INT-231. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 33 p. [5281]
  • 29. Bushey, Charles L. 1987. Short-term vegetative response to prescribed burning in the sagebrush/grass ecosystem of the northern Great Basin; three years of postburn data from the demonstration of prescribed burning on selected Bureau of Land Management districts. Final Report. Cooperative Agreement 22-C-4-INT-33. Missoula, MT: Systems for Environmental Management. 77 p. [568]
  • 43. Eichhorn, Larry C.; Watts, C. Robert. 1984. Plant succession on burns in the river breaks of central Montana. Proceedings, Montana Academy of Science. 43: 21-34. [15478]
  • 71. Hurley, C. A.; Wicklow-Howard, M. 1986. The occurence of vesicular-arbuscular mycorrhizae associated with Artemisia tridentata var. wyomingenesis within burned areas of the Idaho. Journal of the Idaho Academy of Science. 22(1): 7. Abstract. [1223]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Post-fire Regeneration

More info for the term: secondary colonizer

Secondary colonizer - on-site seed
Secondary colonizer - off-site seed

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Ecology

More info for the terms: fire cycle, fuel, litter, shrubs, top-kill

Fire adaptations
: Fire is the principal means of renewal for decadent stands of Wyoming big sagebrush [17]. Wyoming big sagebrush establishes after fire from the seedbank [12,90,112]; from seed produced by remnant plants that escaped fire [29]; and from plants adjacent to the burn that seed in [29,31]. Fires in Wyoming big sagebrush are usually not continuous, and remnant plants are the principal means of postfire reproduction [29]. Fire does not stimulate germination of soil-stored Wyoming big sagebrush seed, but neither does it inhibit its germination [30].

Wyoming big sagebrush × plains silver sagebrush (Artemisia cana subsp. cana) hybrids usually sprout after top-kill by fire [89].

Litter production is lower in Wyoming big sagebrush communities than in other big sagebrush subspecies, but still may be greater than litter production in communities dominated by other cold-desert shrubs. In the Curlew Valley of northern Utah, average annual litter production was greater in Wyoming big sagebrush (192 g/m2/year) than in winterfat (Krascheninnikovia lanta) or shadscale (Atriplex confertifolia) communities [145].

FIRE REGIMES in Wyoming big sagebrush communities: Wyoming big sagebrush steppe communities historically had low fuel loadings and were characterized by 10- to 70-year interval, patchy fires that produced a mosaic of burned and unburned lands [24,27,55,62,66,76,105,135,146,153,154,155]. Fire scars on western juniper in a Wyoming big sagebrush/bluebunch wheatgrass community in Lassen County, California, showed fire return intervals ranging from 10 to 40 years [154]. Vincent [135] suggests that in northern New Mexico, infrequent fire probably maintained Wyoming big sagebrush communities as open, seral stands of Wyoming big sagebrush with productive herbaceous understories. Historic mean fire return interval in northern New Mexico Wyoming big sagebrush communities is estimated at 40 to 50 years [135,153].

FIRE REGIMES have been radically altered in Wyoming big sagebrush communities heavily invaded by cheatgrass [27,66,76,89,116,129]. Cheatgrass dominates many Wyoming big sagebrush stands in southern Idaho, northern Nevada, and eastern Oregon. Annual cheatgrass production is highly variable and can be considerable in years of favorable precipitation. An abundance of cheatgrass enhances the likelihood of fire spread [27]. Fire hazard is estimated to be 5 times as great in big sagebrush communities converted to cheatgrass [106]. Besides removing Wyoming big sagebrush, frequent fire may also inhibit its re-establishment. Repeated burning and invasion by cheatgrass removes VAM associated with Wyoming big sagebrush [109]. Some Wyoming big sagebrush sites in southern Idaho have burned 2 or 3 times within 10 years [18]. On such sites, Wyoming big sagebrush is not regenerating before the next fire cycle, and former steppes are converting to annual grasslands [97].

FIRE REGIMES in other types: Fire return intervals in communities in which Wyoming big sagebrush is an important component of the understory are similar to those of Wyoming big sagebrush communities and are summarized below. For further information on FIRE REGIMES in these forest and woodland communities, see the FEIS species report.

Species Interval
Pacific ponderosa pine (Pinus ponderosa var. ponderosa) 1-30 yrs
interior ponderosa pine (P. p. var. scopulorum) 2-45 yrs
western juniper (Juniperus occidentalis) 7-100 yrs
Utah juniper (J. osteosperma) 10-30 yrs
  • 105. Peek, James M.; Riggs, Robert A.; Lauer, Jerry L. 1979. Evaluation of fall burning on bighorn sheep winter range. Journal of Range Management. 32(6): 430-432. [1863]
  • 106. Platt, Kenneth; Jackman, E. R. 1946. The cheatgrass problem in Oregon. Extension Bulletin No. 668. Corvallis, OR: Federal Cooperative Extension Service, Oregon State College. 48 p. [30178]
  • 109. Rose, Jeffrey A.; Eddleman, Lee E. 1994. Ponderosa pine and understory growth following western juniper removal. Northwest Science. 68(2): 79-85. [23145]
  • 112. Schlatterer, E. F. 1973. Sagebrush species and subspecies. Range Improvement Notes. 18(2): 1-11. [2077]
  • 116. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]
  • 12. Beetle, Alan A.; Young, Alvin. 1965. A third subspecies in the Artemisia tridentata complex. Rhodora. 67: 405-406. [422]
  • 129. Tisdale, E. W.; Hironaka, M.; Fosberg, M. A. 1969. The sagebrush region in Idaho: a problem in range resource management. Bulletin 512. Moscow, ID: University of Idaho, College of Agriculture, Agricultural Experiment Station. 15 p. [7514]
  • 135. Vincent, Dwain W. 1992. The sagebrush/grasslands of the upper Rio Puerco Area, New Mexico. Rangelands. 14(5): 268-271. [19698]
  • 145. West, Neil E. 1985. Aboveground litter production of three temperate semidesert shrubs. The American Midland Naturalist. 113(1): 158-169. [2510]
  • 146. West, Neil E.; Hassan, M. A. 1985. Recovery of sagebrush-grass vegetation following wildfire. Journal of Range Management. 38(2): 131-134. [2513]
  • 153. Young, James A.; Eckert, Richard E., Jr.; Evans, Raymond A. 1979. Historical perspectives regarding the sagebrush ecosystem. In: The sagebrush ecosystem: a symposium: Proceedings; 1978 April; Logan, UT. Logan, UT: Utah State University, College of Natural Resources: 1-13. [2644]
  • 154. Young, James A.; Evans, Raymond A. 1981. Demography and fire history of a western juniper stand. Journal of Range Management. 34(6): 501-505. [2659]
  • 155. Young, James A.; Evans, Raymond A.; Weaver, Ronald A. 1976. Estimating potential downy brome competition after wildfires. Journal of Range Management. 29(4): 322-325. [2677]
  • 17. Blank, Robert R.; Allen, Fay; Young, James A. 1994. Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant and Soil. 164: 35-41. [26887]
  • 18. Boltz, Mike. 1994. Factors influencing postfire sagebrush regeneration in south-central Idaho. In: Monsen, Stephen B.; Kitchen, Stanley G, compilers. Proceedings--ecology and management of annual rangelands; 1992 May 18-22; Boise, ID. Gen. Tech. Rep. INT-GTR-313. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 281-290. [24298]
  • 24. Britton, Carlton M.; Clark, Robert G.; Sneva, Forrest A. 1981. Will your sagebrush range burn? Rangelands. 3(5): 207-208. [517]
  • 27. Bunting, Stephen C.; Kilgore, Bruce M.; Bushey, Charles L. 1987. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin. Gen. Tech. Rep. INT-231. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 33 p. [5281]
  • 29. Bushey, Charles L. 1987. Short-term vegetative response to prescribed burning in the sagebrush/grass ecosystem of the northern Great Basin; three years of postburn data from the demonstration of prescribed burning on selected Bureau of Land Management districts. Final Report. Cooperative Agreement 22-C-4-INT-33. Missoula, MT: Systems for Environmental Management. 77 p. [568]
  • 30. Chaplin, M. R.; Winward, A. H. 1982. The effect of simulated fire on emergence of seeds found in the soil of big sagebrush communities. In: Society for Range Management Abstracts: Proceedings, 35th Annual Meeting of the Society for Range Management; [Date of conference unknown]; Calgary, AB. Denver, CO: Society for Range Management: 37. Abstract. [9800]
  • 31. Clifton, Nancy A. 1981. Response to prescribed fire in a Wyoming big sagebrush/bluebunch wheatgrass habitat type. Moscow, ID: University of Idaho. 39 p. Thesis. [650]
  • 55. Frandsen, William H. 1983. Modeling big sagebrush as a fuel. Journal of Range Management. 36(5): 596-600. [958]
  • 62. Harniss, Roy O.; Murray, Robert B. 1973. 30 years of vegetal change following burning of sagebrush-grass range. Journal of Range Management. 26(5): 322-325. [1086]
  • 66. Hironaka, M. 1991. Vegetation of lower Snake River Plains. In: Abstracts, 64th annual meeting of the Northwest Scientific Association; 1991 March 20-22; Boise, ID. In: Northwest Science. 65(2): 64. Abstract. [17142]
  • 76. Kaltenecker, Julie; Wicklow-Howard, Marcia. 1994. Microbiotic soil crusts in sagebrush habitats of southern Idaho. Report prepared for the Eastside Ecosystem Management Project. Walla Walla, WA: Interior Columbia Basin Ecosystem Management Project. 48 p. [26455]
  • 89. McArthur, E. Durant; Freeman, D. Carl; Graham, John H.; [and others]. 1998. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). VI. Respiration and water potential. Canadian Journal of Botany. 76(4): 567-574. [29357]
  • 90. McArthur, E. Durant; Giunta, Bruce C.; Plummer, A. Perry. 1977. Shrubs for restoration of depleted range and disturbed areas. Utah Science. 35: 28-33. [25035]
  • 97. Monsen, Stephen B.; Kitchen, Stanley G., compilers. 1994. Proceedings--ecology and management of annual rangelands; 1992 May 19-22; Boise, ID. Gen. Tech. Rep. INT-GTR-313. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermoutain Research Station. 416 p. [24323]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Successional Status

More info on this topic.

More info for the terms: cover, forbs, natural, restoration

Wyoming big sagebrush is a mid- to late-seral species [41,54,125]. Period of Wyoming big sagebrush establishment after a stand-replacing event such as fire is typically about a decade but varies with site [125]. Prior to re-establishment of Wyoming big sagebrush, disturbed Wyoming big sagebrush communities are mostly populated with associated grasses. Principal component analysis of Wyoming big sagebrush steppe on the Thunder Basin National Grassland of Wyoming produced this successional model (intervals between seres were not quantified) [13]:

early: forbs
early intermediate: blue grama
late intermediate: western wheatgrass
late seral: Wyoming big sagebrush

Wyoming big sagebrush/cheatgrass associations are most common on frequently disturbed sites. In the Trout Creek Mountains of Oregon, the type occurs on floodplains with large amounts of bare ground cover [46].

Wyoming big sagebrush may lose dominance on some steppe that have not experienced fire or other stand-replacing events for half a century or more. Kindschy [81] noted that in pristine Wyoming big sagebrush/bluebunch wheatgrass on Oregon's Jordan Crater Natural Research Area, most sites with a preponderance of dead Wyoming big sagebrush were the oldest seres. Old seres were primarily populated with long-established perennial herbs, with a few decadent Wyoming big sagebrush.

VAM associated with Wyoming big sagebrush are killed by heating or chemical alteration of the soil, and they may take several years to recolonize after fire or other soil-altering disturbance [148]. Absence of VAM probably inhibits Wyoming big sagebrush establishment on disturbed soils. For example, 2.5 years after restoration work, VAM had not yet colonized a coal-mined site in south-central Wyoming even though stockpiled topsoil was replaced. When VAM-infected and noninfected Wyoming big sagebrush seedlings were transplanted on the site, there was no significant difference in growth between the 2 groups: both showed poor establishment. In the greenhouse, however, biomass gain of the infected group was significantly greater (about 1.5 times more, p=0.05) compared to the uninfected group. This suggests that on the disturbed site, VAM were unable to survive anywhere but inside Wyoming big sagebrush roots, and establishment of VAM and host Wyoming big sagebrush probably will not occur until the chemistry of lower soil horizons changes [122].

  • 122. Stahl, Peter D.; Williams, S. E.; Christensen, Martha. 1988. Efficacy of native vesicular-arbuscular mycorrhizal fungi after severe soil disturbance. New Phytologist. 110(3): 347-354. [15463]
  • 125. Sturges, David L. 1994. High-elevation watershed response to sagebrush control in southcentral Wyoming. Res. Pap. RM-318. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 19 p. [25505]
  • 13. Benkobi, Lakhdar; Uresk, Daniel W. 1996. Seral stage classification and montioring model for big sagebrush/western wheatgrass/blue grama habitat. In: Barrow, Jerry R.; McArthur, E. Durant; Sosebee, Ronald E.; Tausch, Robin J., compilers. Proceedings: shrubland ecosystem dynamics in a changing environment; 1995 May 23-25; Las Cruces, NM. Gen. Tech. Rep. INT-GTR-338. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 69-73. [27033]
  • 148. Wicklow-Howard, Marcia. 1989. The occurrence of vesicular-arbuscular mycorrhizae in burned areas of the Snake River Birds of Prey Area, Idaho. Mycotaxon. 34(1): 253-257. [12312]
  • 41. Eddleman, Lee E.; Doescher, Paul S. 1978. Selection of native plants for spoils revegetation based on regeneration characteristics and successional status. In: Land Reclamation Program, Annual Report July 1976-October 1977. ANL/LRP-2. Argonne, IL: Argonne National Laboratory, Energy & Environmental Systems Division: 132-138. [5729]
  • 46. Evenden, Angela G. 1989. Ecology and distribution of riparian vegetation in the Trout Creek Mountains of southeastern Oregon. Corvallis, OR: Oregon State University. 156 p. Dissertation. [10231]
  • 54. Francis, Richard E. 1983. Sagebrush-steppe habitat types in northern Colorado: a first approximation. In: Moir, W. H.; Hendzel, Leonard, tech. coords. Proceedings of the workshop on Southwestern habitat types; 1983 April 6-8; Albuquerque, NM. Abluquerque, NM: U.S. Department of Agriculture, Forest Service, Southwestern Region: 67-71. [955]
  • 81. Kindschy, Robert R. 1994. Pristine vegetation of the Jordan Crater kipukas: 1978-91. In: Monsen, Stephen B.; Kitchen, Stanley G., compilers. Proceedings--ecology and management of annual rangelands; 1992 May 18-22; Boise, ID. Gen. Tech. Rep. INT-GTR-313. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 85-88. [24258]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regeneration Processes

More info for the terms: fresh, litter, shrubs

Wyoming big sagebrush reproduces from seed; it does not sprout or layer [12,90,112]. Pollination is mostly by outcrossing, but plants can also self pollinate [56]. Shrubs produce large quantities of small seeds beginning at 3 to 4 years of age [90,129]. Goodwin [60] estimated that a moderate-sized plant produces about 350,000 seeds in a season, and a large one produces over a million. Big sagebrush seed is disseminated mostly by wind, with some seed spread by animals and water [60,116]. The seed floats, so seedlings may establish along watercourses [60,98]. Most seed shatters within a week of maturation [60] and travels less than 100 feet (30 m) from the parent plant [10,129]. Some viable seed is retained on the parent and disseminates slowly over the winter [98]. Establishment occurs mostly from the seedbank [67]. Wyoming big sagebrush seed stored in the warehouse has retained viability for at least 6 years [116]; viability in the field is unknown. On burns, Wyoming big sagebrush that escape fire are an important seed source [29]. If the seedbank is destroyed over a large area by repeated fires or other means, Wyoming big sagebrush eventually seeds in from adjacent areas, but such a strategy may take several decades [129].

Seeds are nondormant, but a short (< 4 week) stratification period and light improve germination [92,93,98]. Germination rates in the laboratory are high over a broad range of temperatures (50-95 oF (10-35 oC)) [40,116]. Fresh seed collected over 5 western states showed germination rates of 69 to 100% [93]. Year-to-year seed viability seems more than adequate; germination rates of fresh seed collected in 3 successive years near Dubois, Idaho, ranged from 43 to 70% (mean=54%) [61].

A light litter layer favors seedling establishment; heavy litter retards establishment. Drought conditions favor establishment of Wyoming big sagebrush over perennial bunchgrasses [10]. Seedling growth is slow compared to growth of other subspecies and is probably under genetic control. Wyoming big sagebrush seedlings grow slowly even when water and nutrients are not limiting [17,20]. In the greenhouse, well-watered Wyoming big sagebrush seedlings stopped growth earlier in the growing season and attained less height than mountain and basin big sagebrush seedlings. Under drought conditions, Wyoming big sagebrush seedlings were not only shorter in stature, but also had smaller aboveground parts, than the other 2 major subspecies [20]. Seedling mortality can be high under drought conditions [40]

Although Wyoming big sagebrush seedlings outcompete mature bluebunch wheatgrass for water, mature crested or desert wheatgrass (Agropyron cristatum, A. desertorum) outcompetes Wyoming big sagebrush seedlings. In northwestern Utah, mortality of Wyoming big sagebrush seedlings was 8 times greater when transplanted into desert wheatgrass than when transplanted into bluebunch wheatgrass. Growth was best when Wyoming big sagebrush was planted alone [44].

  • 10. Beetle, A. A. 1960. A study of sagebrush: The section Tridentatae of Artemisia. Bulletin 368. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 83 p. [416]
  • 112. Schlatterer, E. F. 1973. Sagebrush species and subspecies. Range Improvement Notes. 18(2): 1-11. [2077]
  • 116. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]
  • 12. Beetle, Alan A.; Young, Alvin. 1965. A third subspecies in the Artemisia tridentata complex. Rhodora. 67: 405-406. [422]
  • 129. Tisdale, E. W.; Hironaka, M.; Fosberg, M. A. 1969. The sagebrush region in Idaho: a problem in range resource management. Bulletin 512. Moscow, ID: University of Idaho, College of Agriculture, Agricultural Experiment Station. 15 p. [7514]
  • 17. Blank, Robert R.; Allen, Fay; Young, James A. 1994. Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant and Soil. 164: 35-41. [26887]
  • 20. Booth, Gordon D.; Welch, Bruce L.; Jacobson, Tracy L. C. 1990. Seedling growth rate of 3 subspecies of big sagebrush. Journal of Range Management. 43(5): 432-436. [11005]
  • 29. Bushey, Charles L. 1987. Short-term vegetative response to prescribed burning in the sagebrush/grass ecosystem of the northern Great Basin; three years of postburn data from the demonstration of prescribed burning on selected Bureau of Land Management districts. Final Report. Cooperative Agreement 22-C-4-INT-33. Missoula, MT: Systems for Environmental Management. 77 p. [568]
  • 40. Eddleman, Lee E. 1979. Regeneration strategies of mixed-prairie plants. In: Goodin, J. R.; Northington, D. K., eds. Arid land plant resources: Proceedings of the international arid lands conference on plant resources; 1979 July; Lubbock, TX. Lubbock, TX: Texas Tech University, International Center for Arid and Semi-Arid Land Studies: 684-698. [845]
  • 44. Eissenstat, D. M.; Caldwell, M. M. 1988. Competitive ability is linked to rates of water extraction: A field study of two aridland tussock grasses. Oecologia. 75(1): 1-7. [13055]
  • 56. Freeman, D. C.; Turner, W. A.; McArthur, E. D.; Graham, J. H. 1991. Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). American Journal of Botany. 78(6): 805-815. [15470]
  • 60. Goodwin, Duwayne Leroy. 1956. Autecological studies of Artemisia tridentata, Nutt. Pullman, WA: State College of Washington. 79 p. Dissertation. [1035]
  • 61. Harniss Roy O.; McDonough, W. T. 1976. Yearly variation in germination in three subspecies of big sagebrush. Journal of Range Management. 29(2): 167-168. [1084]
  • 67. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 90. McArthur, E. Durant; Giunta, Bruce C.; Plummer, A. Perry. 1977. Shrubs for restoration of depleted range and disturbed areas. Utah Science. 35: 28-33. [25035]
  • 92. Meyer, Susan E.; Kitchen, Stanley; Wilson, G. Richard; Stevens, Richard. 1988. Proposal: Addition of Artemisia tridentata--big sagebrush to the rules. Newsletter of the Association of Official Seed Analysts. 62(1): 17-18. [5521]
  • 93. Meyer, Susan E.; Monsen, Stephen B. 1992. Big sagebrush germination patterns: Subspecies and population differences. Journal of Range Management. 45(1): 87-93. [17776]
  • 98. Mozingo, Hugh N. 1987. Shrubs of the Great Basin: A natural history. Reno, NV: University of Nevada Press. 342 p. [1702]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Growth Form (according to Raunkiær Life-form classification)

More info on this topic.

More info for the term: phanerophyte

Phanerophyte

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Form

More info for the term: shrub

Shrub

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Cyclicity

Phenology

More info on this topic.

More info for the term: phenology

Wyoming big sagebrush develops ephemeral leaves in early spring and retains them until onset of summer drought. Perennial leaves develop slowly, from late spring until July. Perennial leaves are generally retained until their 2nd year, when they are shed during summer drought. By retaining about 1/3rd of its perennial leaves over winter and then developing ephemeral leaves early in the growing season, Wyoming big sagebrush begins photosynthesis and height growth earlier than most herbaceous associates [38,96]. Relatively more leaves are shed in dry years compared to wet ones, and new leaves tend to be smaller in dry years [85]. Flowering begins in late summer (Aug. or Sept.), and fruits ripen in fall (mid-Oct. to mid-Nov.) [116,149]. Flowering continues until the onset of cold weather. Most seed is shed in fall, but some seed shed may continue until early winter [98].

Phenology of Wyoming big sagebrush in the Curlew Valley of northern Utah was as follows [51]: root elongation April - mid-May shoot elongation May - mid-Aug. flowering mid-July - Sept. fruiting mid-Aug. - Sept.

  • 116. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]
  • 149. Winward, A. H.; Tisdale, E. W. 1977. Taxonomy of the Artemisia tridentata complex in Idaho. Bulletin Number 19. Moscow, ID: University of Idaho, College of Forestry, Wildlife and Range Sciences, Forest, Wildlife and Range Experiment Station. 15 p. [2590]
  • 38. Doescher, Paul S.; Miller, Richard F.; Wang, Jianguo; Rose, Jeff. 1990. Effects of nitrogen avilability on growth and photosynthesis of Artemisia tridentata subsp. wyomingensis. The Great Basin Naturalist. 50(1): 9-19. [11396]
  • 51. Fernandez, Osvaldo A.; Caldwell, Martyn M. 1975. Phenology and dynamics of root growth of three cool semi-desert shrubs under field conditions. Journal of Ecology. 63: 703-714. [919]
  • 85. Leaf, Charles F. 1975. Watershed management in the central and southern Rocky Mountains: a summary of the status of our knowledge by vegetation types. Res. Pap. RM-142. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 28 p. [8422]
  • 96. Miller, Richard F.; Shultz, Leila M. 1987. Development and longevity of ephemeral and perennial leaves on Artemisia tridentata Nutt. subsp. wyomingensis. The Great Basin Naturalist. 47(2): 227-230. [1655]
  • 98. Mozingo, Hugh N. 1987. Shrubs of the Great Basin: A natural history. Reno, NV: University of Nevada Press. 342 p. [1702]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Cycle

Persistence: PERENNIAL, Long-lived, EVERGREEN

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

United States

Rounded National Status Rank: N4 - Apparently Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: T5 - Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Status

Consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g. threatened or endangered species, state noxious status, and wetland indicator values).

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Pests and potential problems

Perhaps the greatest danger to sagebrush stands comes from fire. Big sagebrush plants have no fire resistance and many acres are destroyed annually because of increased fire frequency resulting from infestations of exotic annual weeds such as cheatgrass and medusahead.

Another minor cause of sagebrush mortality is winter injury. This occurs when temperatures drop quickly below freezing before plants have entered dormancy, or when a warm spell promotes winter growth followed by a return to typical winter temperatures. Extended periods of winter and summer drought (normally more than 2 years) can also cause dehydration and death.

Big sagebrush is occasionally susceptible to limited outbreaks of the sagebrush defoliator moth, or webworm, (Aroga websteri). Although the moths can cause extensive damage, they too are subject to insect predators, and it is rare that entire stands will be lost.

Additionally, there are a number of other microbial and fungal pathogens known to attack big sagebrush. Although these may inflict serious damage locally, they have not been viewed as a great threat to sagebrush populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Management considerations

More info for the term: cover



Grazing: Wyoming big sagebrush normally appears in mid-seral steppes, and good grazing management will not prevent its reinvasion [62]. It may increase moderately under heavy grazing; however, because of its relatively high palatability it does not increase as much as other big sagebrush subspecies usually do [112,131]. Schlatterer [113] reported that in northern Idaho, Wyoming big sagebrush increased slightly with overgrazing. On some overgrazed sites, Wyoming big sagebrush has declined nearly as much as associated bunchgrasses, and its coverage has actually increased with cessation of grazing. On the Upper Snake River Plains of southeastern Idaho, Wyoming big sagebrush and associated bunchgrasses were depressed from approximately 50 years of heavy domestic sheep and cattle grazing. When grazing was stopped in 1950, Wyoming big sagebrush cover increased significantly (p=0.05), from 15% in 1950 to 22% by 1965 [3].



Total productivity in Wyoming big sagebrush communities is low, from less than 400 lbs/acre (450 kg/ha) on poor sites to 900 lbs/acre (1013 kg/ha) on the most productive sites [112].

Control: Wyoming big sagebrush can be controlled by burning or with herbicides. Because Wyoming big sagebrush provides palatable browse for livestock and big game animals, even on poor soils, Beetle and Johnson [11] recommend caution when reducing it. Among control methods, fire is the most effective [8,32,137,138] (see Fire Effects). It is also the least expensive [138]. Bastian and others [8] present an economic threshold analysis integrating cost-effectiveness of fire or 2,4-D control on Wyoming big sagebrush rangelands, projected over 15 to 25 years, with breakeven return per AUM. Their model predicts that chemical control is generally about twice as costly as fire control.

Phenoxy herbicides generally control Wyoming big sagebrush [4,32,79,85,137]. In central Nevada, 2,4-D caused a 75% reduction in Wyoming big sagebrush [32]. Winter or early spring spraying reduces Wyoming big sagebrush at a time when most herbaceous species are dormant and less harmed by herbicides [4].

2,4-D does not effectively control Wyoming big sagebrush in New Mexico (35-50% mortality) [6,91]. Teuthiuron application resulted in 80% mortality of Wyoming big sagebrush in northern New Mexico [6].

  • 11. Beetle, Alan A.; Johnson, Kendall L. 1982. Sagebrush in Wyoming. Bull. 779. Laramie, WY: University of Wyoming, Agricultural Experiment Station. 68 p. [421]
  • 112. Schlatterer, E. F. 1973. Sagebrush species and subspecies. Range Improvement Notes. 18(2): 1-11. [2077]
  • 113. Schlatterer, Edward F. 1972. A preliminary description of plant communities found on the Sawtooth, White Cloud, Boulder and Pioneer Mountains. Unpublished report. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region. 111 p. [2076]
  • 131. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 137. Wambolt, Carl L.; Payne, Gene F. 1986. An 18-year comparison of control methods for Wyoming big sagebrush in southwestern Montana. Journal of Range Management. 39(4): 314-319. [2449]
  • 138. Watts, Myles; Wambolt, Carl L. 1989. Economic evaluation of Wyoming big sagebrush (Artemisia tridentata) control methods. Weed Technology. 3: 640-645. [12146]
  • 3. Anderson, Jay E.; Holte, Karl E. 1981. Vegetation development over 25 years without grazing on sagebrush-dominated rangeland in southeastern Idaho. Journal of Range Management. 34(1): 25-29. [319]
  • 32. Cluff, Greg J.; Young, James A.; Evans, Raymond A. 1983. Edaphic factors influencing the control of Wyoming big sagebrush and seedling establishment of crested wheatgrass. Journal of Range Management. 36(6): 786-792. [656]
  • 4. Autenrieth, Robert; Molini, William; Braun, Clait, eds. 1982. Sage grouse management practices. Tech. Bull No. 1. Twin Falls, ID: Western States Sage Grouse Committee. 42 p. [7531]
  • 6. Balliette, John F.; McDaniel, Kirk C.; Wood, M. Karl. 1986. Infiltration and sediment production following chemical control of sagebrush in New Mexico. Journal of Range Management. 39(2): 160-165. [386]
  • 62. Harniss, Roy O.; Murray, Robert B. 1973. 30 years of vegetal change following burning of sagebrush-grass range. Journal of Range Management. 26(5): 322-325. [1086]
  • 79. Kerley, Linda L.; Anderson, Stanley H. 1995. Songbird responses to sagebrush removal in a high elevation sagebrush steppe ecosystem. Prairie Naturalist. 27(3): 129-146. [27097]
  • 8. Bastian, Chris T.; Jacobs, James J.; Smith, Michael A. 1995. How much sagebrush is too much: an economic threshold analysis. Journal of Range Management. 48(1): 73-80. [25909]
  • 85. Leaf, Charles F. 1975. Watershed management in the central and southern Rocky Mountains: a summary of the status of our knowledge by vegetation types. Res. Pap. RM-142. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 28 p. [8422]
  • 91. McDaniel, Kirk C.; Anderson, David L.; Balliette, John F. 1991. Wyoming big sagebrush control with metsulfurnon and 2,4-D in northern New Mexico. Journal of Range Management. 44(6): 623-627. [18515]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Cultivars, improved and selected materials (and area of origin)

Hobble Creek mountain big sagebrush was released by the Utah Agricultural Experiment Station, Utah State University and the USDA Forest Service Rocky Mountain Research Station in 1987. Seed was originally collected in 1968 by A. Perry Plummer at the Hobble Creek drainage east of Springville, UT. ‘Hobble Creek’ was chosen for its high vegetative production and for its high palatability to mule deer and wintering domestic sheep. It is adapted to sites with deep, well-drained soils receiving more than 350 mm (14 in) of annual precipitation and having a growing season of 90 days or longer. Soils should be no finer than a clay loam, containing 40% or less clay and have a pH between 6.6 and 8.6. Breeder seed is maintained at a breeder block at the USDA Forest Service Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, UT.

Gordon Creek Wyoming big sagebrush was originally collected near Helper, Carbon County, UT. It was released in 1992 by the USDA Forest Service Rocky Mountain Research Station to fill the need for a low precipitation ecotype of big sagebrush to improve winter diets of mule deer and sage grouse and for rangeland restoration. Gordon Creek was chosen for its high growth rate, nutrient levels and mule deer preference. It is widely adapted to dry regions of the west receiving 250 or more mm (10 in) mean annual precipitation. It prefers deep to shallow, well-drained soils with up to 55% clay content with a pH of 6.6 to 8.8.

Contact your local Natural Resources Conservation Service (formerly Soil Conservation Service) office for more information. Look in the phone book under ”United States Government.” The Natural Resources Conservation Service will be listed under the subheading “Department of Agriculture.”

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seed production

The vast majority of big sagebrush seed used in revegetation is wildland collected material. Seed collection occurs in late fall to early winter (early October through the end of December) depending on the subspecies. Collections are commonly made by hand stripping, beating or clipping seed heads into containers or by using a reel type harvester. Seed can be cleaned with a hammermill, debearder, air-screen or gravity table with varying results. Most sagebrush seed lots used for rangeland seeding are only cleaned to a purity of 15 to 20 percent due to the small nature of the seeds (achenes). This practice requires less time for cleaning and also allows for easier seed flow and metering in seeding equipment. Pure seed yields approximately 1.7 to 2.5 million seeds per pound. The NRCS Plant Materials Center in Bridger, MT reported four hours collecting time and 5.5 hours cleaning yielded 200g (0.45 lb) cleaned material, or 21g (0.04 lb) per hour.

Sagebrush seed that has been dried to a minimum of 9 percent moisture content will remain viable for many years when stored under cool, dry conditions. Welch et al (1996) reported seed viabilities above 90% for seed stored at 10 ºC (50 ºF) and relative humidity (RH) of 20 percent after nine years of storage. Seed stored at higher RH levels are susceptible to germination or damage by insects or microorganisms.

Because sagebrush seed can readily be collected from wild stands, sagebrush is rarely grown in commercial production fields. However, in very droughty periods, very little sagebrush seed can be collected from wild stands. Increasing seed demands and decreasing sagebrush stands lost to weeds and fire are growing concerns. Recent studies suggest protecting wildland seed-producing stands for optimum harvesting. The greatest factor in seed production for sagebrush is protection against grazing animals. Surrounding plants with a wire fence has shown an increase in seed stalk number of as much as 3 to 5 times the amount of unprotected plants. Studies also show significantly higher seed yields from plants grown on reclaimed mine lands when compared with those on adjacent non-mined areas. The reason for this correlation is unclear, but it may be a result of increased available soil moisture due to lower competing plant frequencies on the mined lands.

Seed production varies greatly between years and between stands due to differences in climate, stand density and maturity, soil and genetics. It has been estimated that an average stand of big sagebrush could potentially produce 100 to 300 lbs PLS per acre annually. Seed production declines as plants and stands mature creating larger amounts of woody biomass. Greater seed yields can be achieved by thinning decadent stands to encourage new flower stalk production

For nursery plantings, pre-stratified seed can be planted in greenhouse conditions, or seed can be allowed to naturally stratify after being planted in containers outdoors. Keep soil medium slightly moist during germination. Greenhouse sprayers or misters are commonly used during daylight hours at a rate of 10 seconds every 15 minutes. Uniform germination occurs after two weeks of temperatures over 20º C (70º F). Seedlings are ready for field transplanting approximately 5 months after germination.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Historically, sagebrush communities have been poorly managed, mostly in attempts to reduce or eliminate sagebrush stands to increase forage production for livestock. Recently, however, the value of sagebrush to the western rangelands is being recognized, and practices are evolving to better manage healthy and productive sagebrush communities.

Contrary to long standing beliefs, studies show that complete sagebrush removal negatively affects biodiversity and has little long term affect on perennial grass production. Indeed, several studies indicate that forage production may actually decline when sagebrush is completely removed or controlled.

Overgrazing of the understory decreases plant biodiversity, especially the forb component of the plant community and increases the density of weeds. Annual weeds, such as cheatgrass (Bromus tectorum L.) and medusahead (Taeniatherum caput-medusae [L.] Nevski) often out-compete young sagebrush seedlings and create undesirable monocultures. Annual weed infestations also increase the frequency of wildfires which result in eliminating sagebrush stands therefore not allowing stand re-establishment.

Despite the many valuable benefits of sagebrush to rangelands, there may be cases when it is desirable to thin and rejuvenate sagebrush stands. In these instances it is not necessary to remove the entire stand, and control treatments in mosaic patterns are recommended. Several methods exist for partial removal of the shrubby over story.

Herbicide use is an effective means of thinning sagebrush stands. Contact your local agricultural extension specialist or county weed specialist to determine what works best in your area and how to use it safely.

Probably the simplest and most cost effective means of stand reduction is through prescribed burning. If there is sufficient fuel, a burn can completely eliminate a sagebrush community. For this reason niche burning is recommended when possible. In situations where cheatgrass is a dominant part of the understory, burning should take place when ripe cheatgrass seeds are still on the plants and will be consumed in the fire.

Methods of mechanical removal for sagebrush include anchor chaining, pipe harrowing, land imprinting offset disking and brush beating with brush hogs or mowers. Of these, chaining and land imprinting are the least expensive and do an excellent job of reducing sagebrush stands while still leaving enough plants for diversity and browsing. Brush beating does a good job, but it is expensive. Disking and harrowing also do a good job of shrub removal, but are more expensive and more destructive to under-story plant populations.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Value for rehabilitation of disturbed sites

More info for the term: shrubs

Wyoming big sagebrush is used for stabilizing slopes and gullies and for restoring degraded wildlife habitat, rangelands, mine spoils, and other disturbed sites [90,116]. It is particularly recommended on dry upland sites where other shrubs are difficult to establish [94]. It can be established by direct seeding [94,116] and by transplanting greenhouse seedlings or wildings. Wild plants are best moved while dormant in winter [90,119]. Commercial seed is available [35].

Wyoming big sagebrush has been recommended for seeding on coal-mined lands based upon tolerance of germinants to droughty and saline soils [41].

  • 116. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]
  • 119. Shumar, Mark L.; Anderson, Jay E. 1987. Research note: Transplanting wildings in small revegetation projects. Arid Soil Research and Rehabilitation. 1: 253-256. [3005]
  • 35. Davenport Seed Corporation. 1997. Rainier Seed., Inc. [Catalog]. Davenport, WA: Davenport Seed Corporation. 20 p. [27624]
  • 41. Eddleman, Lee E.; Doescher, Paul S. 1978. Selection of native plants for spoils revegetation based on regeneration characteristics and successional status. In: Land Reclamation Program, Annual Report July 1976-October 1977. ANL/LRP-2. Argonne, IL: Argonne National Laboratory, Energy & Environmental Systems Division: 132-138. [5729]
  • 90. McArthur, E. Durant; Giunta, Bruce C.; Plummer, A. Perry. 1977. Shrubs for restoration of depleted range and disturbed areas. Utah Science. 35: 28-33. [25035]
  • 94. Meyer, Susan E.; Monsen, Stephen B. 1993. Genetic considerations in propagating native shrubs, forbs, and grasses from seed. In: Landis, Thomas D., ed. Proceedings, Western Forest Nursery Association; 1992 September 14-18; Fallen Leaf Lake, CA. Gen. Tech. Rep. RM-221. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 47-54. [22074]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Cover Value

More info for the terms: cover, shrubs, succession

Wyoming big sagebrush provides cover for a variety of wildlife including pronghorn [126,130], bighorn sheep [83], lagomorphs [80,140], shrub-nesting birds, and some ground-nesting birds including sage grouse [71,80]. Cover of mature shrubs is especially important to pronghorn fawns and sage grouse brood [80,130]. Early to mid-seral communities are important black-tailed jackrabbit and pygmy rabbit habitats [80,88,140]. In contrast, Townsend's ground squirrels, and raptors that rely on them as prey species, prefer open and grassy, early seral Wyoming big sagebrush communities such as burns. Their numbers decline as plant succession advances [80].

  • 126. Sundstrom, Charles; Hepworth, William G.; Diem, Kenneth L. 1973. Abundance, distribution and food habits of the pronghorn: A partial characterization of the optimum pronghorn habitat. Bulletin No. 12. Boise, ID: U.S. Bureau of Sport Fisheries and Wildlife, Division of River Basin Studies. 59 p. [5906]
  • 130. Trainer, Charles E.; Willis, Mitchell J.; Keister, George P., Jr.; Sheehy, Dennis P. 1983. Fawn mortality and habitat use among pronghorn during spring and summer in southeastern Oregon, 1981-1982. Wildlife Research Report No. 12. Portland, OR: Oregon Department of Fish and Wildlife, Wildlife Research and Development Division. 117 p. [25692]
  • 140. Weiss, Nondor T.; Verts, B. J. 1984. Habitat and distribution of pygmy rabbits (Sylvilagus idahoensis) in Oregon. The Great Basin Naturalist. 44(4): 563-571. [23635]
  • 71. Hurley, C. A.; Wicklow-Howard, M. 1986. The occurence of vesicular-arbuscular mycorrhizae associated with Artemisia tridentata var. wyomingenesis within burned areas of the Idaho. Journal of the Idaho Academy of Science. 22(1): 7. Abstract. [1223]
  • 80. Kindschy, Robert R. 1986. Rangeland vegetative succession--implications to wildlife. Rangelands. 8(4): 157-159. [22]
  • 83. Krausman, Paul R.; Valdez, Raul; Bissonette, John A. 1996. Bighorn sheep and livestock. In: Krausman, Paul R., ed. Rangeland wildlife. Denver, CO: The Society for Range Management: 237-243. [27318]
  • 88. McAdoo, J. Kent; Longland, William S.; Cluff, Greg J.; Klebenow, Donald A. 1987. Use of new rangeland seedings by black-tailed jackrabbits. Journal of Range Management. 40(6): 520-524. [135]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Nutritional Value

More info for the terms: fresh, shrub



Wyoming big sagebrush contains volatile oils, but is otherwise a highly nutritious shrub. The leaves equal alfalfa (Medicago sativa) in protein content, with slightly more carbohydrates and 12 times more lipids. Mule deer apparently avoid some of the effects of the volatile compounds by belching the compounds as they chew their cuds [98].

Nutritional content (%) of fresh big sagebrush browse is as follows [100]:                                        



Ash             
3.1                
Protein (N x 6.25)     

Crude fiber  13.2
                 
cattle                
3.3

Carotene (mg/kg) 10.            
domestic goats  3.0

Ca    
           0.37                  
horses              
3.1

Mg              0.11
                  
rabbits             
3.2

P   
             0.09                   
domestic sheep 3.2

                             

  • 100. National Academy of Sciences. 1971. Atlas of nutritional data on United States and Canadian feeds. Washington, DC: National Academy of Sciences. 772 p. [1731]
  • 98. Mozingo, Hugh N. 1987. Shrubs of the Great Basin: A natural history. Reno, NV: University of Nevada Press. 342 p. [1702]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Importance to Livestock and Wildlife

More info for the term: shrub

Wyoming big sagebrush is preferred browse for wild ungulates [22,105,116,141], and Wyoming big sagebrush communities are important winter ranges for big game [67,90,99,131]. Pronghorn usually browse Wyoming big sagebrush heavily [2]. On the Idaho National Engineering Laboratory, for example, the shrub comprised 90% of the diet of pronghorn from fall through spring. Lagomorphs may browse Wyoming big sagebrush heavily in winter [58]. Wyoming big sagebrush is a crucial food item of sage grouse, and Wyoming big sagebrush communities are critical habitat for the birds [4,31,52,53,131,143].

Livestock browse Wyoming big sagebrush, but may use it only lightly when palatable herbaceous species are available [102,117]. In south-central Wyoming, Wyoming big sagebrush formed about 10% of the spring and summer diet of domestic sheep. Cattle use was negligible. In contrast, it formed 85% of the spring diet of pronghorn on the same range [102]. In a Gambel oak (Quercus gambelii) community in northern Utah, domestic goats preferred almost any other browse to Wyoming big sagebrush [108].

  • 102. Ngugi, Kinuthia R.; Powell, Jeff; Hinds, Frank C.; Olson, Richard A. 1992. Range animal diet composition in southcentral Wyoming. Journal of Range Management. 45(6): 542-545. [19781]
  • 105. Peek, James M.; Riggs, Robert A.; Lauer, Jerry L. 1979. Evaluation of fall burning on bighorn sheep winter range. Journal of Range Management. 32(6): 430-432. [1863]
  • 108. Riggs, Robert A.; Urness, Philip J. 1989. Effects of goat browsing on Gambel oak communities in northern Utah. Journal of Range Management. 42(5): 354-360. [9299]
  • 116. Shaw, Nancy L.; Monsen, Stephen B. 1990. Use of sagebrush for improvement of wildlife habitat. In: Fisser, Herbert G., ed. Wyoming shrublands: Aspen, sagebrush and wildlife management: Proceedings, 17th Wyoming shrub ecology workshop; 1988 June 21-22; Jackson, WY. Laramie, WY: Wyoming Shrub Ecology Workshop, University of Wyoming, Department of Range Management: 19-35. [22929]
  • 117. Sheehy, Dennis P.; Winward, A. H. 1981. Relative palatability of seven Artemisia taxa to mule deer and sheep. Journal of Range Management. 34(5): 397-399. [2128]
  • 131. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 141. Welch, Bruce L.; McArthur, E. Durant. 1986. Wintering mule deer preference for 21 accessions of big sagebrush. The Great Basin Naturalist. 46(2): 281-286. [2484]
  • 143. Welch, Bruce L.; Wagstaff, Fred J.; Roberson, Jay A. 1991. Preference of wintering sage grouse for big sagebrush. Journal of Range Management. 44(5): 462-465. [16608]
  • 2. Allen, Arthur W.; Cook, John G.; Armbruster, Michael J. 1984. Habitat suitability index models: Pronghorn. FWS/OBS-82/10.65. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service. 22 p. [11709]
  • 22. Bray, Robert O.; Wambolt, Carl L.; Kelsey, Rick G. 1991. Influence of sagebrush terpenoids on mule deer preference. Journal of Chemical Ecology. 17(11): 2053-2062. [28439]
  • 31. Clifton, Nancy A. 1981. Response to prescribed fire in a Wyoming big sagebrush/bluebunch wheatgrass habitat type. Moscow, ID: University of Idaho. 39 p. Thesis. [650]
  • 4. Autenrieth, Robert; Molini, William; Braun, Clait, eds. 1982. Sage grouse management practices. Tech. Bull No. 1. Twin Falls, ID: Western States Sage Grouse Committee. 42 p. [7531]
  • 52. Fischer, Richard A.; Apa, Anthony D.; Wakkinen, Wayne L.; Reese, Kerry P. 1993. Nesting-area fidelity of sage grouse in southeastern Idaho. The Condor. 95: 1038-1041. [22544]
  • 53. Fischer, Richard A.; Reese, Kerry P.; Connelly, John W. 1996. An investigation on fire effects within xeric sage grouse brood habitat. Journal of Range Management. 49: 194-198. [26598]
  • 58. Gates, Robert J.; Eng, Robert L. 1984. Sage grouse, pronghorn, and lagomorph use of a sagebrush-grassland burn site on the Idaho National Engineering Laboratory. In: Markham, O. Doyle, ed. Idaho National Engineering Laboratory radio ecology and ecology programs: 1983 progress reports. Idaho Falls, ID: U.S. Department of Energy, Radiological and Environmental Sciences Laboratory: 220-235. [1005]
  • 67. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152]
  • 90. McArthur, E. Durant; Giunta, Bruce C.; Plummer, A. Perry. 1977. Shrubs for restoration of depleted range and disturbed areas. Utah Science. 35: 28-33. [25035]
  • 99. Mueggler, W. F.; Stewart, W. L. 1981. Forage production on important rangeland habitat types in western Montana. Journal of Range Management. 34(5): 347-353. [1716]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Other uses and values

Native Americans made tea from big sagebrush leaves. They used the tea as a tonic, an antiseptic, for treating colds, diarrhea, and sore eyes, and as a rinse to ward off ticks. Big sagebrush seeds were eaten raw or made into meal [98]. The wood is extremely aromatic when burned, and the wood smoke was used to mask the effects of an encounter with a skunk [45].

Big sagebrush was little used by European-American settlers. They occasionally used the branches for thatching [135]. The wood produces a very hot fire, and was used in mine smelters [98].

Big sagebrush has little current commercial use. It is sometimes used for xeriscaping [64,98].

  • 135. Vincent, Dwain W. 1992. The sagebrush/grasslands of the upper Rio Puerco Area, New Mexico. Rangelands. 14(5): 268-271. [19698]
  • 45. Elmore, Francis H. 1976. Shrubs and trees of the Southwest uplands. Tucson, AZ: Southwest Parks and Monuments Association. 214 p. [20920]
  • 64. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]
  • 98. Mozingo, Hugh N. 1987. Shrubs of the Great Basin: A natural history. Reno, NV: University of Nevada Press. 342 p. [1702]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Palatability



Wyoming big sagebrush is generally the most palatable of the big sagebrush subspecies, and big game species use it heavily, especially in winter [112,131]. In a trial using captive mule deer, it was the most preferred among the 3 major subspecies of big sagebrush [22]. It is moderately palatable to cattle and domestic sheep [131].

Coumarin, a compound present in big sagebrush leaves, imparts a bitter taste that affects animal use. There are regional differences in ungulate use of Wyoming big sagebrush relative to other big sagebrush subspecies, which may be at least partially due to between-population differences in coumarin concentration in Wyoming big sagebrush leaves [136,141]. For example, domestic sheep on the Kaibab Plateau of Arizona preferred Wyoming big sagebrush over either mountain or basin big sagebrush. Mule deer selected Wyoming big sagebrush as their 2nd choice among the 3 subspecies, but preferred mountain big sagebrush [142]. In eastern Oregon, however, Wyoming big sagebrush was the least palatable of 7 sagebrush taxa to domestic sheep but was moderately palatable to mule deer [117].

  • 112. Schlatterer, E. F. 1973. Sagebrush species and subspecies. Range Improvement Notes. 18(2): 1-11. [2077]
  • 117. Sheehy, Dennis P.; Winward, A. H. 1981. Relative palatability of seven Artemisia taxa to mule deer and sheep. Journal of Range Management. 34(5): 397-399. [2128]
  • 131. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377]
  • 136. Wambolt, Carl L. 1996. Mule deer and elk foraging preference for 4 sagebrush taxa. Journal of Range Management. 49(6): 499-503. [27222]
  • 141. Welch, Bruce L.; McArthur, E. Durant. 1986. Wintering mule deer preference for 21 accessions of big sagebrush. The Great Basin Naturalist. 46(2): 281-286. [2484]
  • 142. Welch, Bruce L.; McArthur, E. Durant; Rodriguez, Ronald L. 1987. Variation in utilization of big sagebrush accessions by wintering sheep. Journal of Range Management. 40(2): 113-115. [2486]
  • 22. Bray, Robert O.; Wambolt, Carl L.; Kelsey, Rick G. 1991. Influence of sagebrush terpenoids on mule deer preference. Journal of Chemical Ecology. 17(11): 2053-2062. [28439]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Uses

Forage/Wildlife: Big sagebrush is perhaps the most important shrub on western rangelands. Evergreen leaves and abundant seed production provide an excellent winter food source to numerous species of large mammals including mule deer, black-tailed deer, white-tailed deer, elk, pronghorn antelope, bighorn sheep and jack rabbits. Nearly 100 bird species depend on sagebrush ecosystems for their habitat needs. Additionally, there are several animal species having an obligate relationship with big sagebrush including sage grouse, sharp tailed grouse, pygmy rabbits, sage thrashers, sage sparrows and Brewer’s sparrow. Sagebrush also provide habitat and food for hosts of invertebrates which in turn support birds, reptiles and small mammals. In addition to the numerous species of animals that depend on sagebrush for food and cover, there are several plant species having close relationships with sagebrush as well.

Sagebrush plants maintain high levels of most nutrients including crude protein (see table 1). This high forage value makes it especially useful for wildlife, and in some areas livestock, winter grazing. Separate studies indicated that sagebrush made up 78% of the annual diet for antelope in Wyoming and 59% of the winter diet of deer and elk near Gardiner, Montana. Sagebrush also makes up close to 100% of the winter diet of sage grouse and over 60% of their total annual diet. Use of sagebrush by livestock is limited and variable.

Animal preference of sagebrush varies with subspecies, populations and even individual plants due to chemical variation found in the foliage. Deer and elk tend to prefer mountain big sagebrush followed by Wyoming big sagebrush and finally basin big sagebrush. Although many range managers believe that deer and other large mammals prefer to browse shrubby members of the Rosaceae such as mountain mahogany (Cercocarpus), bitterbrush (Purshia) and cliffrose (Cowania) over big sagebrush, studies show sagebrush significantly more readily browsed.

Sagebrush’s value as thermal or security cover is also very high for wildlife. This includes nesting cover and escape cover for sage grouse, sharp tailed grouse, pheasants, chukar and other upland birds.

Table 1. Nutritive values as percent dry matter and percent in-vitro dry matter digestibility (IVDMD).

Crude Protein

IVDMD

Spring

12.6

58.1

Summer

13.2

-

Winter

11.7

57.8

(Adapted from Welch, 2005)

Revegetation/reclamation: Because of its wide range of adaptation and ease of establishment, big sagebrush can be a very important species for use in revegetation efforts. Seedlings are able to compete with grasses and forbs as well as other shrubs allowing it to be used as a component of a wide range of seed mixes. Seedlings are very easy to establish when planted correctly (see “Establishment” section) and can be drill seeded or broadcast with near equal levels of success. Because sagebrush plants spread readily by seed, it can be seeded at relatively low rates and allowed to spread by natural recruitment.

Big sagebrush plants provide many additional benefits to the plant community. The dense canopy protects understory herbaceous plants from grazing. Healthy sagebrush communities provide a multi- tiered ecosystem with high levels of biodiversity. Big sagebrush plants also have a two-part root system with a deep tap root and a shallow, diffuse root system. Numerous studies have shown sagebrush plants create “hydraulic lift” where deep soil moisture is brought to near the soil surface by the tap root system during the day and then released into the upper soil at night. This water is then available to the diffuse root system of big sagebrush as well as to the roots of other understory plants. Sagebrush plants also increase water retention by trapping and holding windblown snow.

Big sagebrush subspecies are often useful indicators of soil characteristics. Generally, a subspecies indicates the soils at a site, thus proper identification of big sagebrush at a subspecific level can provide useful information on soils and ecological site characteristics. In some areas, however, such as those with glacial deposits, a separation based on soil characteristics is considerably more complex.

Public Domain

USDA NRCS Idaho State Office

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy



The currently accepted scientific name of Wyoming big sagebrush is Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young (Asteraceae). There are 2 other widely distributed subspecies of big sagebrush (A. tridentata): basin big sagebrush (A. t. subsp. tridentata) and mountain big sagebrush (A. t. subsp. vaseyana) [12,64,77]. It is impossible to distinguish Wyoming big sagebrush from basin or mountain big sagebrush without molecular analysis [12,139].

Besides the 3 major subspecies mentioned above, at least 2 other subspecies of big sagebrush with limited distributions are recognized: A. t. subsp. parishii [64] and A. t. subsp. xericensis [77]. Snowfield
big sagebrush has been classified both within in the big sagebrush complex (A. t. subsp. spiciformis) [59,77] and as a distinct species (A. spiciformis) [64].

In this report, the name "big sagebrush" is used when discussing the big sagebrush species complex. Infrataxa including Wyoming big sagebrush are referred to by the subspecific common names used above.

Wyoming big sagebrush hybridizes with other subspecies of big sagebrush [33,56,89] and with silver sagebrush (A. cana) [89] .

  • 12. Beetle, Alan A.; Young, Alvin. 1965. A third subspecies in the Artemisia tridentata complex. Rhodora. 67: 405-406. [422]
  • 139. Weber, William A. 1987. Colorado flora: western slope. Boulder, CO: Colorado Associated University Press. 530 p. [7706]
  • 33. Collins, P. D.; Harper, K. T. 1982. Habitat types of the Curlew National Grassland, Idaho. Provo, UT: Brigham Young University, Department of Botany and Range Science. 46 p. Editorial draft. [663]
  • 56. Freeman, D. C.; Turner, W. A.; McArthur, E. D.; Graham, J. H. 1991. Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). American Journal of Botany. 78(6): 805-815. [15470]
  • 59. Goodrich, Sherel; McArthur, E. Durant; Winward, Alma H. 1985. A new combination and a new variety in Artemisia tridentata. The Great Basin Naturalist. 45(1): 99-104. [1034]
  • 64. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]
  • 77. Kartesz, John T. 1994. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland. Volume I--checklist. 2nd ed. Portland, OR: Timber Press. 622 p. [23877]
  • 89. McArthur, E. Durant; Freeman, D. Carl; Graham, John H.; [and others]. 1998. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). VI. Respiration and water potential. Canadian Journal of Botany. 76(4): 567-574. [29357]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Common Names

Wyoming big sagebrush

 

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Synonyms

Artemisia tridentata var. wyomingensis (Beetle & Young) Welsh [34,39,144]

Seriphidum tridentatum subsp. wyomingense (Beetle & Young) Weber [139]
  • 139. Weber, William A. 1987. Colorado flora: western slope. Boulder, CO: Colorado Associated University Press. 530 p. [7706]
  • 144. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 34. Cronquist, Arthur; Holmgren, Arthur H.; Holmgren, Noel H.; [and others]. 1994. Intermountain flora: Vascular plants of the Intermountain West, U.S.A. Vol. 5. Asterales. New York: The New York Botanical Garden. 496 p. [28653]
  • 39. Dorn, Robert D. 1988. Vascular plants of Wyoming. Cheyenne, WY: Mountain West Publishing. 340 p. [6129]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!