Articles on this page are available in 1 other language: Spanish (1) (learn more)

Overview

Brief Summary

Taxonomy

Ivy belongs to the Araliaceae, or ginsengs, a mainly tropical family of trees, shrubs, woody lianes (vines) and a few herbs.The ivy genus, Hedera, has recently been expanded to contain 15 species, but not all botanists agree. The similarities between the species are reflected in the fact that all have, at some time or another, been viewed as variants of Hedera helix.

Description
Ivy is a woody, evergreen climber. In suitable conditions it can reach 30m high with stems up to 25cm in diameter, but it can also creep along the ground.The stems are clothed in hair-like roots which are adhesive, enabling the plant to cling to hard surfaces.The leaves are:
  • hairless
  • dark green above
  • pale green beneath
  • glossy
  • rather leathery
Leaves on creeping or climbing stems have blades with 3 to 5 triangular lobes, whereas those of flowering branches have oval or rhombic blades, without lobes.The flowers are borne in umbrella-like clusters, with all the stalks arising from a single point. They have 5 broad greenish yellow petals 3–4mm long and are followed by globose, dull black fruits which ripen in the following spring.When rubbed, the berries have an aromatic scent but a bitter and nauseous taste.There are hundreds of cultivars of ivy, mainly differing in their leaves which are very variable in size, colour, number and depth of lobes. The leaves are often variegated green and any one of a wide range of colours but particularly white, cream, yellow or gold. They are popular as garden ornamentals and as house plants.Several plants can be confused with ivy, mainly because of their names. Two are found in North America and are completely unrelated to ivy. They are:
  • Boston ivy (Parthenocissus tricuspidata) - a climber with lobed leaves that is a member of the grape family. It is deciduous and clings by means of tendrils with small suckers.
  • Poison ivy (Toxicodendron radicans) - this grows as a climbing vine or a small shrub with leaves divided into three leaflets. The sap contains a compound which causes an irritant rash when any part of the plant is touched.
Another species that can cause confusion is ground ivy (Glechoma hederacea) - this is a European herb related to the mints which was used to brew ale.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Natural History Museum, London

Partner Web Site: Natural History Museum

Trusted

Article rating from 1 person

Average rating: 5.0 of 5

History in the United States

English ivy was probably first introduced to the U.S. by European immigrants for its ornamental appeal. It persists as a popular plant for homeowners, businesses, landscape designers and others. Cooperative Extension offices continue to recommend English ivy for use as a low maintenance alternative to lawns because it is evergreen, relatively pest free, very cold hardy and fast-growing groundcover that requires little care once established.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

History in the United States

European colonists introduced English ivy as early as 1727. It is widely planted for its evergreen foliage and dependability as a year-round “carefree” groundcover. Although recognized as a serious weed of natural ecosystems, parks, landscapes and other areas, it continues to be sold and marketed as an ornamental plant in the United States. Vast resources, time and labor are expended attempting to manage infestations on public and private lands.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Introduction

Hedera helix is one of the few woody lianes (vines) found in Britain, and is probably best known as the 'living curtain' clinging to many buildings and trees.It is a woody, evergreen climber, and in suitable conditions can reach 30m high with stems up to 25cm in diameter, but it can also creep along the ground.The stems are clothed in hair-like roots which are adhesive, enabling the plant to cling to hard surfaces.It is one of the plants most closely associated with Christmas and produces flowers and fruits during the last months of the year.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Natural History Museum, London

Partner Web Site: Natural History Museum

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comprehensive Description

Biology

Ivy is one of a small number of plants that exhibit different juvenile and adult forms.Young growth consists of creeping or climbing stems bearing numerous fine, aerial roots and (usually) lobed leaves - this is what most people think of as ‘typical’ ivy. It’s the vigorous growth stage, when the plant spreads rapidly.When the plant reaches maturity it produces rootless, self-supporting stems with unlobed leaves. The adult growth bears the flowers and fruits but these are only produced in full sun. Very old ivies may look more like shrubs than climbers.Ivy flowers very late in the year, from September to December. The flowers are pollinated by wasps and moths, providing a useful food source for these insects.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Natural History Museum, London

Partner Web Site: Natural History Museum

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

National Distribution

Canada

Origin: Exotic

Regularity: Regularly occurring

Currently: Unknown/Undetermined

Confidence: Confident

United States

Origin: Exotic

Regularity: Regularly occurring

Currently: Unknown/Undetermined

Confidence: Confident

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

More info for the term: invasive species

Nonnative range: English ivy is nonnative to North America. In the eastern United States, it occurs from Massachusetts south throughout the mid-Atlantic and southeastern states to Florida and across the south-central states as far east as Texas. It occurs in some of the Great Lakes states including Michigan, Indiana, and Illinois [108,179], and in Ontario, Canada [108]. One invasive plant publication indicated it also occurred in Wisconsin [25]. In the West, English ivy occurs in all Pacific Coast states and British Columbia, in addition to Idaho, Utah, and Arizona [108,179]. It also occurs in Hawaii [186].

Based on regional floras [30,46,60,92,103,104,122,186,196], invasive plant publications [25,125,193], and websites [17,45,74,96,101,106,113,149,163,176,177], English ivy is most invasive in the Pacific Northwest. Based on a regional invasive species map, English ivy is not widespread in the Southeast [100], but it may be locally abundant in some mid-Atlantic states including Virginia [115,117], West Virginia, and in some southern states including North Carolina, South Carolina, Alabama, and Arkansas [100]. Several sources indicate that English ivy is not as problematic in the Northeast as in the Pacific Northwest, mid-Atlantic, and Southeast. A review of floristic surveys from the eastern United States found that English ivy occurred in temperate forests in this area but was not common [88]. Local floras indicate that English ivy occasionally escapes cultivation in the Northeast [46,92], and English ivy is not listed on a Northeastern invasive species website [96]. It may, however, be locally abundant in parts of Washington, DC [164,170]. NatureServe provides a map of English ivy's North American distribution.

Brought to North America by colonial settlers [99,125,146], English ivy was first documented in North America in Virginia around 1800 [191]. Since then English ivy has been widely cultivated as an ornamental [90,104,138,184,192], although its cultivation in Hawaii did not begin until the early 1900 [186]. In many places where it is planted, English ivy escapes cultivation to varying degrees [46,92,103,104,122,195] and invades and persists in wildlands [30,60,138,186,190,195].

English Ivy has been introduced to South Africa, India, Australia, New Zealand, Brazil, and Mexico [97,190].

Native range: English ivy is native to Eurasia [46,52,103,104,186,192,196], occurring from the Caucasus Mountains [184,186] to Norway [52,145] and south to Iran [97] and northern Africa [97,184]. It tends to be less abundant north of the Alps [145].

  • 30. Diggs, George M., Jr.; Lipscomb, Barney L.; O'Kennon, Robert J. 1999. Illustrated flora of north-central Texas. Sida Botanical Miscellany, No. 16. Fort Worth, TX: Botanical Research Institute of Texas. 1626 p. [35698]
  • 60. Hitchcock, C. Leo; Cronquist, Arthur; Ownbey, Marion; Thompson, J. W. 1961. Vascular plants of the Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. Seattle, WA: University of Washington Press. 614 p. [1167]
  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 46. Gleason, H. A.; Cronquist, A. 1963. Manual of vascular plants of northeastern United States and adjacent Canada. Princeton, NJ: D. Van Nostrand Company, Inc. 810 p. [7065]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 88. Luken, James O. 2003. Invasions of forests in the eastern United States. In: Gilliam, Frank S.; Roberts, Mark R., eds. The herbaceous layer in forests of eastern North America. New York: Oxford University Press, Inc: 283-400. [71484]
  • 90. Mack, Richard N. 1991. The commercial seed trade: an early disperser of weeds in the United States. Economic Botany. 45(2): 257-273. [55368]
  • 92. Magee, Dennis W.; Ahles, Harry E. 2007. Flora of the Northeast: A manual of the vascular flora of New England and adjacent New York. 2nd ed. Amherst, MA: University of Massachusetts Press. 1214 p. [74293]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 104. Nakanishi, Hiroki. 1996. Fruit color and fruit size of bird-disseminated plants in Japan. Vegetatio. 123(2): 207-218. [75442]
  • 115. Patterson, Karen D. 2008. Vegetation classification and mapping at George Washington Birthplace National Monument, Virginia. Technical Report NPS/NER/NRTR--2008/099. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 231 p. [79672]
  • 117. Patterson, Karen D. 2008. Vegetation classification and mapping at Richmond National Battlefield Park, Virginia. Technical Report NPS/NER/NRTR--2008/128. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 244 p. [79674]
  • 122. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606]
  • 125. Reichard, Sarah. 1996. Hedera helix--English ivy. In: Randall, John M.; Marinelli, Janet, eds. Invasive plants: Weeds of the global garden. Handbook #149. Brooklyn, NY: Brooklyn Botanic Garden: 93. [73462]
  • 138. Scoggan, H. J. 1978. The flora of Canada. Part 4: Dicotyledoneae (Dictoyledonceae to Compositae). National Museum of Natural Sciences: Publications in Botany, No. 7(4). Ottawa: National Museums of Canada. 1711 p. [78054]
  • 145. Snow, Barbara; Snow, David. 1988. Birds and berries: A study of ecological interaction. Staffordshire, UK: T. & A. D. Poyser. 268 p. [74664]
  • 164. Terrell, Edward E. 1970. Spring flora of the Chesapeake and Ohio Canal area, Washington, D.C. to Seneca, Maryland. Castanea. 35(1): 1-26. [73736]
  • 170. Thomas, Lindsey Kay, Jr. 1980. The impact of three exotic plant species on a Potomac island. National Park Service Scientific Monograph Series No. 13. Washington, DC: U.S. Department of the Interior, National Park Service. 179 p. [41748]
  • 184. Vines, Robert A. 1960. Trees, shrubs, and woody vines of the Southwest. Austin, TX: University of Texas Press. 1104 p. [7707]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 191. Wells, Elizabeth Fortson; Brown, Rebecca Louise. 2000. An annotated checklist of the vascular plants in the forest at historic Mount Vernon, Virginia: a legacy from the past. Castanea. 65(4): 242-257. [47363]
  • 192. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 193. White, David J.; Haber, Erich; Keddy, Cathy. 1993. Invasive plants of natural habitats in Canada: An integrated review of wetland and upland species and legislation governing their control. Ottawa, ON: Canadian Wildlife Service. 121 p. [71462]
  • 195. Wofford, B. Eugene. 1989. Guide to the vascular plants of the Blue Ridge. Athens, GA: The University of Georgia Press. 384 p. [12908]
  • 196. Wunderlin, Richard P.; Hansen, Bruce F. 2003. Guide to the vascular plants of Florida. 2nd edition. Gainesville, FL: The University of Florida Press. 787 p. [69433]
  • 101. Missouri Botanical Garden. 2002. Missouri exotic pest plants: A list of non-native plants that threaten Missouri's native biodiversity, [Online]. In: MO projects--North America. St. Louis, MO: Missouri Botanical Garden (Producer). Available: http://www.mobot.org/mobot/research/mepp/alphalist.shtml [2009, April 6]. [73559]
  • 17. California Invasive Plant Council. 2006. California invasive plant inventory, [Online]. California Invasive Plant Council (Producer). Available: http://www.cal-ipc.org/ip/inventory/pdf/Inventory2006.pdf [2009, May 6]. [74015]
  • 45. Georgia Exotic Pest Plant Council. 2006. List of non-native invasive plants in Georgia, [Online]. Southeast Exotic Pest Plant Council (Producer). Available: http://www.gaeppc.org/list.cfm [2009, January 5]. [72787]
  • 74. Kentucky Exotic Pest Plant Council. 2008. Invasive exotic plant list, [Online]. Southeast Exotic Pest Plant Council (Producer). Available: http://www.se-eppc.org/ky/list.htm [2009, January 5]. [72785]
  • 96. Mehrhoff, L. J.; Silander, J. A., Jr.; Leicht, S. A.; Mosher, E. S.; Tabak, N. M. 2003. IPANE: Invasive Plant Atlas of New England, [Online]. Storrs, CT: University of Connecticut, Department of Ecology and Evolutionary Biology (Producer). Available: http://nbii-nin.ciesin.columbia.edu/ipane/ [2008, May 28]. [70356]
  • 99. Miller, James H. 2003. Nonnative invasive plants of southern forests: A field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p. Available online: http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/ [2004, December 10]. [50788]
  • 100. Miller, James H.; Chambliss, Erwin B. 2008. Regional maps by acres covered in a county by the NIPS species, [Online]. In: Maps of occupation and estimates of acres covered by nonnative invasive plants in southern forests using SRS FIA data posted on March 15, 2008. Athens, GA: University of Georgia, Bugwood Network; Washington, DC: U.S. Department of Agriculture, Forest Service; Animal and Plant Inspection Service, Plant Protection and Quarantine (Producers). Available: http://www.invasive.org/fiamaps/acres.cfm [2009, October 21]. [76599]
  • 103. Mohlenbrock, Robert H. 1986. [Revised edition]. Guide to the vascular flora of Illinois. Carbondale, IL: Southern Illinois University Press. 507 p. [17383]
  • 106. Native Plant Society of Oregon, Emerald Chapter. 2008. Exotic gardening and landscaping plants invasive in native habitats of the southern Willamette Valley, [Online]. In: Invasive plants--Invasive exotic plants list 2008. Native Plant Society of Oregon (Producer). Available: http://www.emeraldnpso.org/PDFs/Invas_Orn.pdf [2009, June 24]. [74811]
  • 108. NatureServe. 2010. Comprehensive report: Hedera helix--English ivy, [Online]. In: NatureServe Explorer: An online encyclopedia of life. Version 7.1. Arlington, VA: NatureServe (Producer). Available: http://www.natureserve.org/explorer [2010, August 30]. [80478]
  • 113. Oregon Department of Agriculture. 2010. Noxious weeds quarantine, [Online]. In: Quarantines and control area orders--Noxious weed control. Salem, OR: Oregon Department of Agriculture, Plant Division (Producer). Available: http://egov.oregon.gov/ODA/PLANT/603_052_1200.shtml [2010, June 2]. [80192]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 149. Southeast Exotic Pest Plant Council. 2003. Southeast Exotic Pest Plant Council invasive plant manual, [Online]. Southeast Exotic Pest Plant Council (Producer). Available: http://www.invasive.org/eastern/eppc/index.html [2005, August 10]. [54193]
  • 163. Tennessee Exotic Pest Plant Council. 2009. Invasive plants of Tennessee, [Online]. In: TN-EPPC invasive exotic pest plants in Tennessee--December 2009, 2nd edition. Fairview, TN: Tennessee Exotic Pest Plant Council (Producer). Available: http://www.tneppc.org/invasive_plants [2010, June 23]. [80199]
  • 176. U.S. Department of Agriculture, Forest Service, Eastern Region. 2004. Eastern Region invasive plants ranked by degree of invasiveness, [Online]. In: Noxious weeds and non-native invasive plants. Section 3: Invasive plants. Milwaukee, WI: Eastern Region (Producer). Available: http://www.fs.fed.us/r9/wildlife/range/weed/Sec3B.htm [2004, February 16]. [46748]
  • 177. U.S. Department of Agriculture, Forest Service, Southern Region. 2001. Regional invasive exotic plant species list, [Online]. In: Regional Forester's list and ranking structure: invasive exotic plant species of management concern. In: Invasive plants of southern states list. Southeast Exotic Pest Plant Council (Producer). Available: http://www.se-eppc.org/fslist.cfm [2003, August 25]. [44944]
  • 179. U.S. Department of Agriculture, Natural Resources Conservation Service. 2010. PLANTS Database, [Online]. Available: http://plants.usda.gov/. [34262]
  • 186. Wagner, Warren L.; Herbst, Derral R.; Sohmer, S. H., eds. 1999 [Revised edition]. Manual of the flowering plants of Hawai'i. Volume 1. Bishop Museum Special Publication 97. Honolulu, HI: University of Hawai'i Press; Bishop Museum Press. 988 p. [70167]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution in the United States

English ivy has been reported to be invasive in natural areas in 18 states and the District of Columbia.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Native Range

Europe, western Asia, and northern Africa 
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution and Habitat in the United States

English ivy is found throughout the eastern U.S. and in the West where it occurs from Arizona to Washington State. It flourishes under shady to full sun conditions in soils that are moderately fertile and moist but it is intolerant of drought and salinity. Habitats invaded include forest openings and edges, fields, cliffs, steep slopes, and disturbed areas.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Origin

Europe, Western Asia and Northern Africa

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Description

More info for the terms: cover, density, liana, orthotrophic, phase, plagiotrophic, shrub, shrubs, tree, vines

This description covers characteristics that may be relevant to fire ecology and is not meant for identification. Keys for identification are available (e.g., [30,46,60,103,122]).

Aboveground: English ivy is a woody [184], evergreen [30,46,52,60,99,184], trailing or climbing liana [30,92] or shrub [129]. In Europe, English ivy occasionally grows as a tree [97,136].

English ivy has 2 distinct growth phases, the vegetative phase (juvenile) and the sexual reproductive phase (adult) [153].

Comparison of juvenile and adult growth phase of English ivy [153]
Characteristic Juvenile Adult
Growth habit plagiotrophic orthotrophic
Flowers absent present
Leaf arrangement alternate 2/5th spiral
Leaf production 1 leaf/week 2 leaves/week
Shoot growth vigorous slight
Leaf shape lobed entire
Rooting ability good weak
Aerial roots present absent

Individual English ivy plants may have both juvenile and adult stems. The juvenile phase typically forms the ground cover [31,99]. Juvenile English ivy begins to climb when vertical structure is available (e.g., trees, shrubs, buildings, utility poles), and vertical stems transition to the adult phase [97].

As a ground cover, English ivy grows from 6 to 8 inches (10-20 cm) tall [31,99]. Once stems begin climbing, they typically reach 90 feet (30 m) in height [25,31,46,65,99,152,184] but occasionally may climb higher, reaching the tops of 300-foot (90 m) conifers [146]. English ivy climbs with the aid of root-like structures [19,25,31,46,84,152] that exude an adhesive substance [99]. One publication from England indicated that English ivy attaches to substrates by numerous small roots [52]. Branches are typically slender on low-growing plants [99], but climbing and older trailing branches may be 4 [31,135] to 12 inches (10-30 cm) in diameter [25,65,99,146,152], with furrowed bark [31]. Leaves are typically 4 inches (10 cm) long × 2.5 to 5 inches (6.4-13 cm) wide and are 3 to 5 lobed in the juvenile phase and broadly lanceolate and unlobed in the adult phase. Flowers are clustered in umbels on adult stems [99]. There are 8 [182] to 20 [97] flowers/umbel; umbels grow in clusters of 3 [97] to 6 [14]. English ivy fruit is a berry [30,60,104] about 5 [186] to 9 mm long [60,122] and 6 [192] to 9 mm in diameter [145], with an average weight of 281.5 mg [59]. Its fruit contains 2 to 5 seeds [30,31,59,60,145,184] that are about 5.7 × 3.7 mm in size [52].

Belowground: Information from an exotic pest website in the Southeast suggests that English ivy does not form an extensive underground root system [149]. An invasive plant publication from California [126] and a publication suggesting landscaping plants for use in chaparral plant communities to reduce fire hazard [123] suggests that English ivy's roots are generally shallow. In Washington, DC, English ivy root depth ranged from 1 to 4.13 inches (3.0 -10.5 cm) below the soil surface [169]. A study from Spain measured rooting depth for several vines including English ivy and found the average rooting depth for all species was statistically similar (P<0.001); root depth for 100 mg of plant dry mass was 3.8 inches (9.6 cm), and for 1.00 g of plant dry mass it was 6.34 inches (16.1 cm). English ivy roots were highly dissected, and the average root diameter 5 mm from the root tip was 0.45 mm [133].

Stand structure: In woodlands, English ivy frequently forms a dense ground cover that may occupy large areas made up of numerous individuals [97]. In North America, English ivy has been described as forming an "ivy desert" [125]. In the Green River Gorge in North Carolina, English ivy completely covered the ground in a deciduous forest [120]. In floodplain forests along the Rhine River in France, English ivy "carpets" the forest floor until it eventually reaches a tree and begins to ascend [135]. In one study in these forests, average English ivy stem density was 24.5/ha on sites that experience brief annual flooding compared to 61.9/ha on sites where flooding had been excluded. Clumping (more than one English ivy vine/host tree) was common, particularly on trees in the canopy and subcanopy of the forest, largely due to the greater abundance of support in these layers [136]. In another study in the Rhine River floodplain in France, English ivy stem density reached 120 stems/ha in a dense Lombardy poplar (Populus nigra) and English oak forest [135].

Longevity: As of this writing (2010), information pertaining to English ivy's longevity in North America was lacking. In forests along the Rhine River in France, the oldest English ivy vines at 1 site were 50 years old, while the oldest vines at another site were at least 66 years old [136]. There is a report of a 433-year-old stem of English ivy that was over 20 inches (60 cm) in diameter, but it is unclear where it occurred (Schenk 1893 cited in [37]).

  • 30. Diggs, George M., Jr.; Lipscomb, Barney L.; O'Kennon, Robert J. 1999. Illustrated flora of north-central Texas. Sida Botanical Miscellany, No. 16. Fort Worth, TX: Botanical Research Institute of Texas. 1626 p. [35698]
  • 60. Hitchcock, C. Leo; Cronquist, Arthur; Ownbey, Marion; Thompson, J. W. 1961. Vascular plants of the Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. Seattle, WA: University of Washington Press. 614 p. [1167]
  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 14. Bottema, S. 2001. A note on the pollen representation of ivy (Hedera helix L.). Review of Palaeobotany and Palynology. 117(1-3): 159-166. [78760]
  • 19. Carter, Gregory A.; Teramura, Alan H. 1988. Vine photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany. 75(7): 1011-1018. [9317]
  • 31. Dirr, Michael A.; Heuser, Charles W., Jr. 1987. The reference manual of woody plant propagation: From seed to tissue culture. Athens, GA: Varsity Press, Inc. 239 p. [16999]
  • 37. Ewers, Frank W.; Fisher, Jack B.; Fichtner, Klaus. 1991. Water flux and xylem structure in vines. In: Putz, Francis E.; Mooney, Harold A., eds. The biology of vines. New York: Cambridge University Press: 127-160. [79283]
  • 46. Gleason, H. A.; Cronquist, A. 1963. Manual of vascular plants of northeastern United States and adjacent Canada. Princeton, NJ: D. Van Nostrand Company, Inc. 810 p. [7065]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 59. Herrera, Carlos M. 1987. Vertebrate-dispersed plants of the Iberian Peninsula: A study of fruit characteristics. Ecological Monographs. 57(4): 305-331. [74593]
  • 65. Hueze, Patricia; Dupouey, Jean-Luc; Schnitzler, Annik. 2009. Radial growth response of Hedera helix to hydrological changes and climatic variability in the Rhine floodplain. River Research and Applications. 25(4): 393-404. [78040]
  • 84. Lee, David W.; Richards, Jennifer H. 1991. Heteroblastic development in vines. In: Putz, Francis E.; Mooney, Harold A., eds. The biology of vines. New York: Cambridge University Press: 207-244. [79646]
  • 92. Magee, Dennis W.; Ahles, Harry E. 2007. Flora of the Northeast: A manual of the vascular flora of New England and adjacent New York. 2nd ed. Amherst, MA: University of Massachusetts Press. 1214 p. [74293]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 104. Nakanishi, Hiroki. 1996. Fruit color and fruit size of bird-disseminated plants in Japan. Vegetatio. 123(2): 207-218. [75442]
  • 120. Racine, Charles H.; Hardin, James W. 1975. The vascular flora and vegetation in the Green River Gorge, North Carolina. Castanea. 40(4): 319-345. [72119]
  • 122. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606]
  • 123. Radtke, Klaus W. H. 1983. Living more safely in the chaparral-urban interface. Gen. Tech. Rep. PSW-67. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 50 p. [35802]
  • 125. Reichard, Sarah. 1996. Hedera helix--English ivy. In: Randall, John M.; Marinelli, Janet, eds. Invasive plants: Weeds of the global garden. Handbook #149. Brooklyn, NY: Brooklyn Botanic Garden: 93. [73462]
  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 129. Rogler, Charles E.; Hackett, Wesley P. 1975. Phase change in Hedera helix: induction of mature to juvenile phase change by gibberellin A3. Physiologia Plantarum. 34: 141-7. [79539]
  • 133. Sack, Lawren; Grubb, Peter J.; Maranon, Teodoro. 2003. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecology. 168(1): 139-163. [79227]
  • 135. Schnitzler, Annik. 1995. Community ecology of arboreal lianas in gallery forests of the Rhine valley, France. Acta Oecologica. 16: 219-236. [79272]
  • 136. Schnitzler, Annik; Heuze, Patricia. 2006. Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. Forest Ecology and Management. 236(1): 12-17. [78755]
  • 145. Snow, Barbara; Snow, David. 1988. Birds and berries: A study of ecological interaction. Staffordshire, UK: T. & A. D. Poyser. 268 p. [74664]
  • 152. Stavretovic, N. 2007. Biological characteristics of the species Hedera helix L. and its use in controlling erosion in shady places. Archives of Biological Sciences. 59(2): 139-143. [78044]
  • 153. Stein, Otto L.; Fosket, Elizabeth B. 1969. Comparative developmental anatomy of shoots of juvenile and adult Hedera helix. American Journal of Botany. 56(5): 546-551. [78795]
  • 169. Thomas, L. K., Jr. 1998. Topographic alterations, forest structure, and invasion by English ivy (Hedera helix L.) in the Rock Creek floodplain, Washington, D.C. Natural Areas Journal. 18(2): 164-168. [78765]
  • 182. Vezza, Maurizio; Nepi, Massimo; Guarnieri, Massimo; Artese, Daniele; Rascio, Nicoletta; Pacini, Ettore. 2006. Ivy (Hedera helix L.) flower nectar and nectary ecophysiology. International Journal of Plant Sciences. 167(3): 519-527. [78756]
  • 184. Vines, Robert A. 1960. Trees, shrubs, and woody vines of the Southwest. Austin, TX: University of Texas Press. 1104 p. [7707]
  • 192. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 99. Miller, James H. 2003. Nonnative invasive plants of southern forests: A field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p. Available online: http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/ [2004, December 10]. [50788]
  • 103. Mohlenbrock, Robert H. 1986. [Revised edition]. Guide to the vascular flora of Illinois. Carbondale, IL: Southern Illinois University Press. 507 p. [17383]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 149. Southeast Exotic Pest Plant Council. 2003. Southeast Exotic Pest Plant Council invasive plant manual, [Online]. Southeast Exotic Pest Plant Council (Producer). Available: http://www.invasive.org/eastern/eppc/index.html [2005, August 10]. [54193]
  • 186. Wagner, Warren L.; Herbst, Derral R.; Sohmer, S. H., eds. 1999 [Revised edition]. Manual of the flowering plants of Hawai'i. Volume 1. Bishop Museum Special Publication 97. Honolulu, HI: University of Hawai'i Press; Bishop Museum Press. 988 p. [70167]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description

English ivy is an evergreen climbing vine that attaches to the bark of trees, brickwork, and other surfaces by way of small rootlike structures which exude a sticky substance that helps the vines adhere to various surfaces. Older vines have been reported to reach 1 foot in diameter. Leaves are dark green with white veins, waxy to somewhat leathery, and arranged alternately along the stem. Leaf forms include a 3 to 5-lobed leaf (the most common) and an unlobed rounded leaf often found on mature plants in full sun that are ready to flower. Vines may grow for up to ten years before producing flowers. Under sufficient light conditions, terminal clusters of small, pale yellow-green flowers are produced in the fall. The flowers are attractive to flies and bees in search of late season nectar sources. The black-purple fruits have a thin fleshy outer covering, contain one to three hard, stone-like seeds and may persist through the winter if not eaten first.

NOTE: The leaves and berries of English ivy contain the glycoside hederin which could cause toxicosis if ingested. Symptoms include gastrointestinal upset, diarrhea, hyperactivity, breathing difficulty, coma, fever, polydipsia, dilated pupils, muscular weakness, and lack of coordination. This feature also helps ensure effective seed dispersal by birds.

Poison ivy may be confused with English ivy in the winter because they both have hairy stems. However, poison ivy is deciduous and has no leaves during the winter time (English ivy has leaves all year round). During the growing season the three-leaved foliage and clusters of whitish berries help to distinguish poison ivy.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Description and Biology

  • Plant: evergreen perennial climbing vine that attaches to bark of trees, brickwork and other surfaces by root-like structures that exude a glue-like substance to aid in adherence.
  • Leaves: alternate, dark green, waxy, somewhat leathery; extremely variable leaf forms, from unlobed to 3-5 lobed; typically green with whitish veins.
  • Flowers, fruits and seeds: flowering occurs in late summer to early fall, typically under full sun conditions; flowers are small, greenish-yellow and occur in globular starburst type inflorescences at tips of flowering stems; fruits are black with a fleshy outer layer and stone-like seeds.
  • Spreads: vegetatively by vigorous growth at tip of stems; and by seed which is consumed by birds and dispersed to new areas; fruits contain glycosides that may be mildly toxic and cause some birds to regurgitate them; new plants grow easily from cuttings or stem fragments that make contact with the soil.
  • Look-alikes: Irish ivy (Hedera hibernica), Persian ivy (Hedera colchica), Boston ivy (Parthenocissus japonicus) and Virginia creeper (Parthenocissus quinquefolia). Poison ivy (Toxicodendron radicans) may sometimes be confused with English ivy because of its hairy stems but because it is deciduous, it will lack leaves in the winter. In summer, poison ivy can be distinguished easily by its compound leaves of three leaflets and its clusters of creamy white fruits.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat characteristics

More info for the terms: alliance, density, fen, marsh, natural, presence

Climate: In North America and Europe, English ivy occurs in climates of moderate to high annual precipitation ranging from 20 to 100 inches (see table). In western Oregon, presence of English ivy was negatively correlated (R² = -0.64) with summer precipitation [50].

Reported average precipitation ranges for English ivy
Area Precipitation (inches)
Pacific Northwest 42.1 [105] to 100 [174]
Northeast and mid-Atlantic 40.6 [114] to 55.9 [32,53,116,162,194,197]
Southeast >47 [148] to 62.6 [173]
Europe 20 to 30 [22,65]

In the Pacific Northwest—where English ivy is most abundant (see General Distribution)—the climate is maritime, characterized by moderate, wet winters and cool, dry summers. Two localized examples from the Pacific Northwest indicate that English ivy occurs in areas with a mean January temperature of approximately 40 °F (4 °C) [105,174] and a mean August temperature of 59 °F (15 °C) [174].

In northeastern and mid-Atlantic states, English ivy has been found in areas with average minimum temperature ranging from 44 °F (6.6 °C) [162] to 47 °F (8.6 °C) [114,116] and average maximum temperatures ranging from 68.4 °F (20.2 °C) [116] to 69.8 °F (21.0 °C) [114,162]. English ivy occurs in several National Parks in the east with reported mean January temperatures ranging from 24 °F (-4.3 °C) [116] to 32 °F (0 °C) [114,162,197], suggesting that some North American populations of English ivy may be able to tolerate moderately cold winter temperatures. The North American Plant Conservation Alliance considers English ivy cold hardy [160].

In the Southeast, where English ivy is not as common as in other parts of North America (see General Distribution), climates are humid [148] and characterized by warm summers and mild winters [173]. English ivy occurred in the Chauga River Gorge in South Carolina, where midsummer and midwinter temperatures averaged approximately 97 °F (36 °C) and 6.8 °F (-14 °C), respectively [173].

In Europe, English ivy is classified as a southern-temperate species; these are species that are likely to occur in either temperate or Mediterranean climates [118]. It normally develops and fruits where the average temperature in the warmest month is about 55.4 °F (13 °C) but not in areas where the average temperature for the coldest month is 29 °F (-1.5 °C) or less [97]. English ivy is susceptible to low winter temperatures (Godwin 1975 cited in [52]) but may adapt to low winter temperatures by decreasing its metabolic activities  [42]. Based on its elevational range in the Alps (up to about 4,100 feet (1,250 m)), it has been speculated that English ivy's distribution is determined by its limited tolerance to frost. Its northern and eastern distributional limits coincide closely with the -13 °F (-25 °C) minimum-isotherm. At its latitudinal and longitudinal limits, English ivy retains its juvenile form and may be killed by severe frost at -7.6 °F (-22 °C) or less. The adult form of English ivy may be more cold tolerant than the juvenile form [3].

Low temperatures may prevent English ivy from dominating forests in its native range. In northern areas of its native range, temperatures may be low enough to limit photosynthesis and subsequent growth. English ivy’s net photosynthesis increases with warm temperatures [97]. In climates like those of Romania, English ivy stops photosynthesizing for 2 months/yr (Atanasiu 1965 cited in [170]). Seed production may also be limited in cold climates (see Seed production).

Elevation and aspect: English ivy is not common at high elevations. In California, English ivy occurs from sea level to about 3,300 feet (1,000 m) [104,126]. In western Oregon, English ivy became less frequent with increasing elevation [50]. A flora from Utah indicates English ivy occurs at low elevations in that state [192]. In Virginia and North Carolina, English ivy occurs in several National Parks that occur from 49 feet (15 m) [162] to 869 feet (265 m) [116,194] in elevation. In the United Kingdom, English ivy is infrequent at high elevations [145]. Publications from English ivy’s European native range report elevations for English ivy ranging from 300 feet (80 m) (Macleod 1983 cited in [145]) to 2,020 feet (615 m) [52,79,97]. In the Alps, English ivy seldom surpasses 4,100 feet (1,250 m) in elevation [3].

One report from the United Kingdom indicated that English ivy may be slightly more frequent and abundant on north-facing slopes than on other aspects [52].

General habitat: In North America, English ivy commonly occurs in deciduous forest and occasionally in conifer forest ([194], Waggy 2000 personal observation [185]), particularly in the Pacific Northwest (Waggy 2000 personal observation [185]). English ivy occurs in both riparian [86,93,94,119,128,147,157,170] and upland forests and woodlands ([125,137,170], Waggy 2000 personal observation [185]), on forest edges [154,190], roadsides [154], and rocky sites [83,190]. In California, English ivy occurs in wetlands [35] and in valley grasslands and foothill oak woodlands [137]. In the mid-Atlantic states, it occurs in coastal areas, salt marsh edges, and fields in addition to other habitats listed above [159]. Its occurrence is often associated with natural or anthropogenic disturbance [43,104,127,130,160,169,170,197,198], buildings and gardens [30,93,143,170,184,192,197], and urban forests ([50,86,170,183], Waggy 2000 personal observation [185]). Researchers studied the effects of logging on 10 sites in 9 coastal redwood riparian forests in California. Time since last harvest ranged from 10 years to over 100. English ivy was more common on sites logged relatively recently compared to sites that had been logged decades ago [130].

Moisture: In North America, English ivy tolerates a wide range of moisture regimes, from uplands ([125,170], Waggy 2000 personal observation [185]) to floodplains [58,86,169,170,187]. In the mediterranean climate region of California, English ivy was classified as flood tolerant. In this region, English ivy may withstand flooding for most of one growing season and may produce limited root development when flooded [187]. In another study in California, one English ivy plant survived 37 days of flooding at water up to 0.5 foot (0.2 m) deep [58]. In Washington, DC, "excessive" moisture in the root zone did not appear to limit the spread of English ivy in flat portions of a floodplain [169], but on another site in Washington, DC, English ivy's growth in the moist floodplain was slower than on upland sites [170]. Little has been reported on English ivy's tolerance to drought in North American populations, but in Arizona, English ivy was recommended for landscaping based on its low evapotranspiration rate (Pittenger 1990, 1992 cited in [39]).

A literature review from the United Kingdom states that English ivy is tolerant of all but the most water-logged or very dry soils and is favored by moist soils ranging from fairly dry to slightly damp [52,97], although short periods of flooding may favor English ivy germination. In France, the mean stem density of English ivy was significantly (P<0.05) higher on an unflooded site (61.9/ha) compared to a site that received periodic flooding (29.4/ha) [136]. In a fen in England, English ivy was rare on sites saturated for 227 days/year, uncommon (5% of the total dry weight of the vegetation) on sites saturated for 54 days, and dominated sites (77% of the total dry weight of the vegetation) that were saturated for 13 days [73]. Because the relative growth rate for potted English ivy seedlings was not significantly reduced when water was limited, researchers concluded that English ivy was tolerant of drought. Others have described English ivy as a xerophyte (Mittmeyer 1931 cited in [170]). English ivy persists through months of drought in the understories of deeply shaded evergreen forest in the Mediterranean Basin [131,132]. Researchers speculated that English ivy may be favored in the Mediterranean Basin over other woodland species if climates become drier [132]. English ivy may not be as drought tolerant in all parts of the Mediterranean, and summer drought may influence its distribution in that region of the world (Huntley and Birks 1983 cited in [97]).

Substrate: English ivy occurs on a variety of soil types and textures in North America [146,151] and Europe [133,145,188,189]. In the Willamette Valley in Oregon, English ivy occurred in a conifer-deciduous mixed forest in silt loam [66]. In the United Kingdom, it may be abundant on heavy clay soils in low-lying areas [145]. In France, English ivy grows best in sandy soils (Beekman 1984 cited in [135]). In Spain, English ivy seedlings grew on 2 sites in mixed sand, clay, and silt. One site was nearly 50% clay, while the other site was a near-even mixture of the 3 soil textures [133]. In England [38] and the Czech Republic [63], English ivy occurs on limestone and in England [188] and France [135], it occurs on calcareous soil.

One report indicates that English ivy grows well in both acid and basic soils in North America [126]. A Plant Conservation Alliance [160] fact sheet suggests it prefers slightly acid soil (pH 6). A publication recommending species for highway planting in Nevada suggests that English ivy tolerates alkaline and saline soils [151]. In the United Kingdom, English ivy is tolerant of all but extremely acid soil, seldom occurring at pH below 4.0 [52,97], and may be most frequent in soils with pH above 6.0 [52]. In southern England, English ivy occurred on a site with pH of 5.24 or less [102] and in southern Spain, English ivy seedlings occurred in soils with pH of 6.5 and 7.2 [133].

  • 30. Diggs, George M., Jr.; Lipscomb, Barney L.; O'Kennon, Robert J. 1999. Illustrated flora of north-central Texas. Sida Botanical Miscellany, No. 16. Fort Worth, TX: Botanical Research Institute of Texas. 1626 p. [35698]
  • 22. Chaideftou, Evgenia; Thanos, Costas A.; Bergmeier, Erwin; Kallimanis, Athanasios; Dimopoulos, Panayotis. 2009. Seed bank composition and above-ground vegetation in response to grazing in sub-Mediterranean oak forests (NW Greece). Plant Ecology. 201: 255-265. [73402]
  • 43. Fleming, Peggy; Kanal, Raclare. 1995. Annotated list of vascular plants of Rock Creek Park, National Park Service, Washington, DC. Castanea. 60(4): 283-316. [71991]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 63. Hofmeister, Jenyk; Hosek, Jan; Modry, Martin; Rolecek, Jan. 2009. The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecology. 205: 57-75. [77027]
  • 65. Hueze, Patricia; Dupouey, Jean-Luc; Schnitzler, Annik. 2009. Radial growth response of Hedera helix to hydrological changes and climatic variability in the Rhine floodplain. River Research and Applications. 25(4): 393-404. [78040]
  • 66. Ingham, Claudia S.; Borman, Michael M. 2010. English ivy (Hedera spp., Araliaceae) response to goat browsing. Invasive Plant Science and Management. 3: 178-181. [79900]
  • 73. Kassas, M. 1952. Studies in the ecology of Chippenham fen. III. The Forty Acre Wood. Journal of Ecology. 40(1): 50-61. [79566]
  • 79. Kubicek, Ferdinand; Jurko, Anton. 1975. Estimation of the above-ground biomass of the herb layer in forest communities. Folia Geobotanica & Phytotaxonomica. 10(2): 113-129. [76307]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 104. Nakanishi, Hiroki. 1996. Fruit color and fruit size of bird-disseminated plants in Japan. Vegetatio. 123(2): 207-218. [75442]
  • 114. Patterson, Karen D. 2008. Vegetation classification and mapping at Colonial National Historical Park, Virginia. Technical Report NPS/NER/NRTR--2008/129. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 369 p. [79670]
  • 116. Patterson, Karen D. 2008. Vegetation classification and mapping at Petersburg National Battlefield, Virginia. Technical Report NPS/NER/NRTR--2008/127. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 235 p. [79673]
  • 119. Pyle, Laura L. 1995. Effects of disturbance on herbaceous exotic plant species on the floodplain of the Potomac River. The American Midland Naturalist. 134: 244-253. [26182]
  • 125. Reichard, Sarah. 1996. Hedera helix--English ivy. In: Randall, John M.; Marinelli, Janet, eds. Invasive plants: Weeds of the global garden. Handbook #149. Brooklyn, NY: Brooklyn Botanic Garden: 93. [73462]
  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 133. Sack, Lawren; Grubb, Peter J.; Maranon, Teodoro. 2003. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecology. 168(1): 139-163. [79227]
  • 135. Schnitzler, Annik. 1995. Community ecology of arboreal lianas in gallery forests of the Rhine valley, France. Acta Oecologica. 16: 219-236. [79272]
  • 136. Schnitzler, Annik; Heuze, Patricia. 2006. Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. Forest Ecology and Management. 236(1): 12-17. [78755]
  • 137. Schwartz, Mark W.; Porter, Daniel J.; Randall, John M.; Lyons, Kelly E. 1996. Impact of nonindigenous plants. In: Status of the Sierra Nevada. Sierra Nevada Ecosystem Project: Final report to Congress. Volume II: Assessments and scientific basis for management options. Wildland Resources Center Report No. 37. Davis, CA: University of California, Centers for Water and Wildland Resources: 1203-1218. [28977]
  • 145. Snow, Barbara; Snow, David. 1988. Birds and berries: A study of ecological interaction. Staffordshire, UK: T. & A. D. Poyser. 268 p. [74664]
  • 157. Stromberg, Laurence P.; Katibah, Edwin F. 1984. An application of the spatial-aggregation method to the description of riparian vegetation. In: Warner, Richard E.; Hendrix, Kathleen M., eds. California riparian systems: Ecology, conservation, and productive management: Proceedings of a conference; 1981 September 17-19; Davis, CA. Berkeley, CA: University of California Press: 347-355. [5839]
  • 162. Taverna, Kristin. 2008. Vegetation classification and mapping at Fredericksburg and Spotsylvania National Military Park. Technical Report NPS/NER/NRTR--2008/126. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 277 p. [79671]
  • 169. Thomas, L. K., Jr. 1998. Topographic alterations, forest structure, and invasion by English ivy (Hedera helix L.) in the Rock Creek floodplain, Washington, D.C. Natural Areas Journal. 18(2): 164-168. [78765]
  • 170. Thomas, Lindsey Kay, Jr. 1980. The impact of three exotic plant species on a Potomac island. National Park Service Scientific Monograph Series No. 13. Washington, DC: U.S. Department of the Interior, National Park Service. 179 p. [41748]
  • 173. Tobe, John D.; Fairey, John E., III; Gaddy, L. L. 1992. Flora of the Chauga River gorge, Oconee County, South Carolina. Castanea. 57(2): 77-109. [72019]
  • 183. Vidra, Rebecca L.; Shear, Theodore H.; Wentworth, Thomas R. 2006. Testing the paradigms of exotic species invasion in urban riparian forests. Natural Areas Journal. 26(4): 339-350. [65080]
  • 184. Vines, Robert A. 1960. Trees, shrubs, and woody vines of the Southwest. Austin, TX: University of Texas Press. 1104 p. [7707]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 192. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 194. White, Rickie D., Jr.; Pyne, Milo. 2003. Vascular plant inventory and plant community classification for Guilford Courthouse National Military Park. NatureServe Technical Report: Cooperative Agreement H 5028 01 0435. Durham, NC: NatureServe. 121 p. [79630]
  • 198. Zomlefer, Wendy B.; Giannasi, David E.; Bettinger, Kelly A.; Echols, S. Lee; Kruse, Lisa M. 2008. Vascular plant survey of Cumberland Island National Seashore, Camden County, Georgia. Castanea. 73(4): 251-282. [75096]
  • 32. Douglas-Smith, Angela. 2006. Control of Ailanthus altissima (Mill.) Swingle, Albizia julibrissin Durazzini, Hedera helix L. and Paulowina tomentosa (Thunb.) Seib & Zucc. Ex Steud. in three Tidewater Virginia area parks. Newport News, VA: Christopher Newport University. 60 p. Thesis. [72016]
  • 127. Ringold, Paul L.; Magee, Teresa K.; Peck, David V. 2008. Twelve invasive plant taxa in US western riparian ecosystems. Journal of the North American Benthological Society. 27(4): 949-966. [73064]
  • 3. Andergassen, Sigrid; Bauer, Helmut. 2002. Frost hardiness in the juvenile and adult life phase of ivy (Hedera helix L.). Plant Ecology. 161(2): 207-213. [78759]
  • 38. Faegri, K.; van der Pijl, L. 1979. The principles of pollination ecology. 3rd ed. Oxford, UK: Pergamon Press. 242 p. [79305]
  • 39. Feldman, William R.; Carter, Steven A.; Stone, Kim W. 1997. Water requirements of arid-adapted groundcover and subshrub species for landscape use in Arizona. Desert Plants. 13(1): 18-24. [28501]
  • 42. Fisher, A.; Feller, U. 1994. Seasonal changes in the pattern of assimilatory enzymes and the proteolytic activities in leaves of juvenile ivy. Annals of Botany. 74: 389-396. [79301]
  • 50. Gray, Andrew N. 2005. Eight nonnative plants in western Oregon forests: associations with environment and management. Environmental Monitoring and Assessment. 100(1-3): 109-127. [63196]
  • 53. Groffman, Peter M.; Pouyat, Richard V.; Cadenasso, Mary L.; Zipperer, Wayne C.; Szlavecz, Katalin; Yesilonis, Ian D.; Band, Lawrence E.; Brush, Grace S. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management. 236(2-3): 177-192. [72487]
  • 58. Harris, Richard W.; Leiser, Andrew T.; Fissell, Robert E. 1975. Plant tolerance to flooding. Summary report -- 1971-1975. Grant Contract No. A 5fs-16565; RWH-200-7/1/75. Davis, CA: University of California, Department of Environmental Horticulture. 30 p. In cooperation with: U.S. Army Corps of Engineers; U.S. Department of Agriculture, Forest Service. [76584]
  • 83. Leck, Mary Allessio; Leck, Charles F. 2005. Vascular plants of a Delaware River tidal freshwater wetland and adjacent terrestrial areas: seed bank and vegetation comparisons of reference and constructed marshes and annotated species list. Journal of the Torrey Botanical Society. 132(2): 323-354. [60627]
  • 86. Loewenstein, Nancy J.; Loewenstein, Edward F. 2005. Non-native plants in the understory of riparian forests across a land use gradient in the Southeast. Urban Ecosystems. 8(1): 79-91. [75882]
  • 93. Marshall, Judy; Balda, Russell P. 1974. The breeding ecology of the painted redstart. The Condor. 76(1): 89-101. [73942]
  • 102. Mitchell, R. J.; Marrs, R. H.; Le Duc, M. G.; Auld, M. H. D. 1997. A study of succession on lowland heaths in Dorset, southern England: changes in vegetation and soil chemical properties. Journal of Applied Ecology. 34(6): 1426-1444. [60997]
  • 118. Preston, Christopher D.; Hill, Mark O. 1997. The geographical relationships of British and Irish flora. Botanical Journal of the Linnean Society. 124: 1-120. [79977]
  • 128. Roberts, Warren G.; Howe, J. Greg; Major, Jack. 1980. A survey of riparian forest flora and fauna in California. In: Sands, Anne, ed. Riparian forests in California: Their ecology and conservation: Symposium proceedings; 1977 May 14; Davis, CA. Institute of Ecology Publication No. 15. Davis, CA: University of California, Division of Agricultural Sciences: 3-19. [5271]
  • 130. Russell, Will. 2009. The influence of timber harvest on the structure and composition of riparian forests in the coastal redwood region. Forest Ecology and Management. 257(5): 1427-1433. [73792]
  • 131. Sack, Lawren. 2004. Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation? Oikos. 107: 101-127. [79295]
  • 132. Sack, Lawren; Grubb, Peter J. 2002. The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia. 131(2): 175-185. [78830]
  • 143. Simmons, Mark P.; Ware, Donna M. E.; Hayden, W. John. 1995. The vascular flora of the Potomac River watershed of King George County, Virginia. Castanea. 60(3): 179-209. [73734]
  • 147. Soll, Jonathan; Kreuzer, Doug; Dumont, Jason; Matthews, Ian; Hoeh, Merrit. 2008. Sandy River Riparian Habitat Protection Project report 2008. Portland, OR: The Nature Conservancy in Oregon. 50 p. [74016]
  • 148. Sorrie, Bruce A.; Gray, Janet Bracey; Crutchfield, Philip J. 2006. The vascular flora of the longleaf pine ecosystem of Fort Bragg and Weymouth Woods, North Carolina. Castanea. 71(2): 129-161. [71947]
  • 151. Stark, N. 1966. Review of highway planting information appropriate to Nevada. Bulletin No. B-7. Reno, NV: University of Nevada, College of Agriculture, Desert Research Institute. 209 p. In cooperation with: Nevada State Highway Department. [47]
  • 154. Steury, Brent W; Davis, Charles A. 2003. The vascular flora of Piscataway and Fort Washington National Parks, Prince Georges and Charles Counties, Maryland. Castanea. 68(4): 271-299. [73054]
  • 174. Tyler, Marnie W.; Peterson, David L. 2006. Vascular plant species diversity in low elevation coniferous forests of the western Olympic Peninsula: a legacy of land use. Northwest Science. 80(3): 224-238. [65488]
  • 187. Walters, M. Alice; Teskey, Robert O.; Hinckley, Thomas M. 1980. Impact of water level changes on woody riparian and wetland communities. Volume 7: Mediterranean region, western arid and semi-arid region. FWS/OBS-78/93. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service, Biological Services Program. 84 p. [52899]
  • 188. Watt, A. S. 1924. The scrub associes. In: On the ecology of British beechwoods with special reference to their regeneration. Part II. The development and structure of beech communities on the Sussex Downs. The Journal of Ecology. 12(2): 154-160. [72535]
  • 189. Watt, A. S. 1934. The vegetation of the Chiltern Hills, with special reference to the beechwoods and their seral relationships. Journal of Ecology. 22(2): 445-507. [79209]
  • 197. Yost, Susan E.; Antenen, Susan; Harvigsen, Gregg. 1991. The vegetation of the Wave Hill Natural Area, Bronx, New York. Torreya. 118(3): 312-325. [16546]
  • 35. Dudley, Tom; Collins, Beth. 1995. Biological invasions in California wetlands: The impacts and control of non-indigenous species in natural areas. Oakland, CA: Pacific Institute for Studies in Development, Environment, and Security. 59 p. [+ appendices]. [47513]
  • 94. McCain, Cindy; Christy, John A. 2005. Field guide to riparian plant communities in northwestern Oregon. Tech. Pap. R6-NR-ECOL-TP-01-05. [Portland, OR]: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 357 p. [63114]
  • 105. National Oceanic and Atmospheric Administration. 2010. Portland (airport to downtown) precipitation data--Downtown data is 1871 - July 2009, while airport is October 1840 - July 2009, [Online]. In: Local climate data from Portland Airport. Portland, OR: NOAA's National Weather Service (Producer). Available: http://www.wrh.noaa.gov/pqr/pdxclimate/index.php [2010, June 10]. [80205]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 159. Swearingen, J.; Reshetiloff, K.; Slattery, B.; Zwicker, S. 2002. Plant invaders of mid-Atlantic natural areas. [Washington, DC]: U.S. Department of the Interior, National Park Service; Fish and Wildlife Service. 82 p. Available online: http://www.invasive.org/eastern/midatlantic/index.html [2009, November 19]. [54192]
  • 160. Swearingen, Jill M.; Diedrich, Sandra. 2006. Fact sheet: English ivy--Hedera helix L., [Online]. In: Weeds gone wild: Alien plant invaders of natural areas--Fact sheets. Plant Conservation Alliance's Alien Plant Working Group (Producer). Available: http://www.nps.gov/plants/alien/fact/hehe1.htm [2010, June 1]. [80193]
  • 185. Waggy, Melissa. 2010. [Personal observation]. Regarding English ivy distribution in Portland, OR area. Missoula, MT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, FEIS. On file with: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT; FEIS files. [80207]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Key Plant Community Associations

More info for the terms: association, hardwood, nonnative species, phase, swamp, vines

In North America, English ivy frequently occurs in upland ([125,137,170]) and riparian [43,119,157,169,183]
deciduous forest communities of variable species assemblages. It occasionally occurs in conifer forests or savannas [134,140,156], in conifer-deciduous mixed forests [66,173,194], and in thickets and shrublands [114]. In North America, English ivy is widespread in urban and disturbed forests and is commonly associated with other nonnative species [107,114,116,117,162,170,183,194]. Forests containing English ivy may have a diverse assemblage of plant species but may become less diverse as English ivy spreads (see Potential successional stage and Impacts).

Pacific Northwest and California:
In the Pacific Northwest, English ivy occurs in deciduous or conifer-deciduous mixed forests with bigleaf maple (Acer macrophyllum) [66], red alder (Alnus rubra), Oregon ash (Fraxinus latifolia), black cottonwood (Populus balsamifera subsp. trichocarpa), and Oregon white oak (Quercus garryana) [66,111]. It is considered a threat to nearly all forest types in the Pacific Northwest coastal area below 3,000 feet (900 m) [4]. In Oregon, it occurred in a dense conifer-deciduous mixed forest with Douglas-fir (Pseudotsuga menziesii), western redcedar (Thuja plicata), and bigleaf maple ([66],Waggy 2000 personal observation [185]). It is particularly common in forests near populated areas ([4], Waggy 2000 personal observation [185]). In California, it occurs in redwood (Sequoia sempervirens) forests [134,140] and riparian forests dominated by Fremont cottonwood (Populus fremontii), white alder (Alnus rhombifolia), and willow (Salix spp.) [157].
Southwest:
Available information at the time of this writing (2010) indicated that English ivy may not be common in native plant communities in the Southwest. Floras from Texas [30] and Utah [192] indicate English ivy typically occurs as an ornamental around homesites, but it may occasionally escape to wooded areas [30].
Mid-Atlantic and southeastern states:
In this portion of North America, English ivy occurs with many species of deciduous trees and does not appear to be closely associated with any specific forest type. Canopy dominants commonly occurring with English ivy include maple (Acer spp.), hickory (Carya spp.), American beech (Fagus grandifolia), ash (Fraxinus spp.), oak (Quercus spp.), sweetgum (Liquidambar styraciflua), yellow-poplar (Liriodendron tulipifera), sycamore (Platanus occidentalis), and American elm (Ulmus americana) [12,43,107,114,116,117,119,156,162,194]. In the southeastern United States, English ivy occurs in pine (Pinus spp.) savanna, tropical hardwood, and baldcypress (Taxodium distichum) communities [156]. In Florida [196] and Georgia [198], English ivy occasionally occurs in disturbed hammocks [196].
In the mid-Atlantic and southeastern United States, English ivy occasionally occurs in plant communities that have been disturbed or may not contain native assemblages. On one site in North Carolina, English ivy occurred in a transitional loblolly pine (Pinus taeda) forest that was likely planted [194]. On a disturbed terrace in South Carolina, English ivy occurred in a forest that contained a mix of deciduous and conifer trees that included river birch (Betula nigra), water oak (Quercus nigra), and Virginia pine (Pinus virginiana) [173]. In Rock Creek Park in Washington, DC, English ivy occurs in an Allegheny blackberry (Rubus allegheniensis) shrubland codominated by nonnative vines including porcelainberry (Ampelopsis brevipedunculata).

Northeast, Great Lakes area, and Canada: At the time of this writing (2010), information pertaining to common plant associates of English ivy in these areas of North America was lacking.
European range:
In Europe, English ivy occurs in plant communities similar to those described for North America. It occurs in deciduous forests dominated by maple (Acer spp.), birch (Betula spp.), European beech (Fagus sylvatica), European ash (Fraxinus excelsior), oak (Quercus spp.), littleleaf (Tilia cordata), and wych elm (Ulmus glabra) [22,27,63,65,68,73,75,79,144,170]. English ivy was the dominant groundlayer species in a forest that contained young European ash and sycamore maple (Acer pseudoplatanus) and a mix of old trees including European ash, wych elm, European beech, Norway pine (Abies excelsa), European larch (Larix europaea), spruce (Picea sp.), Scots pine (Pinus sylvestris), European aspen (Populus tremula), and English yew (Taxus baccata) [73]. In France, English ivy was common in an oak and European hornbeam (Carpinus betulus) forest [168]. One study from Great Britain indicated that English ivy was more common in beech than ash forests [36], and a study from France indicated it favored European ash and English oak (Quercus robur) forest over other forest types [136].
The following table is a list of North American plant communities where English ivy occurs.

Vegetation classifications from North America where English ivy is a dominant, characteristic, or common species
Vegetation ClassificationLocationDominant plants and other features
Mid-Atlantic states
yellow-poplar/northern spicebush (Lindera benzoin)/Jack-in-the-pulpit (Arisaema triphyllum) forest;
coastal plain and Piedmont small-stream floodplain forest
historical sites, Virginia Canopy dominants include sweetgum, yellow-poplar, and red maple (Acer rubrum).
English ivy occurs in the disturbed and fragmented phase of this
association [107,114,116,117,162].
disturbed calcareous forestPetersburg National Battle Field, VirginiaThis occurs on forested bluff with open canopy of large yellow-poplar, hackberry (Celtis occidentalis), black walnut (Juglans nigra),
and American elm. The understory and herb layer is dominated by nonnative species including English ivy [116].
sycamore-green ash

(
Fraxinus pennsylvanica) forest
Rock Creek Park, Washington, DCThe canopy is dominated by sycamore and boxelder (Acer negundo). English ivy is a frequent associate.
Allegheny blackberry/porcelainberry shrublandRock Creek Park, Washington, DCAllegheny blackberry, greenbrier (Smilax spp.) and various nonnative species dominate this community.
English ivy is a common nonnative species in this community [167].
disturbed seepage swamp forested wetland Colonial National Historical Park, VirginiaRed maple dominates the canopy. English ivy is a characteristic species in this association.
successional mixed scrubColonial National Historical Park, VirginiaSpecies composition and dominance vary greatly from site to site. On some sites English ivy may form a thicket with other nonnative and native vines [114].
successional yellow-poplar forestFredericksburg and Spotsylvania National Park, VirginiaYellow-poplar, red maple, and sweetgum association. English ivy is common in this association [162].
Southeast
yellow-poplar/northern spicebush/Jack-in-the-pulpit forest coastal plain and Piedmont small-stream floodplain forestGuilford Courthouse National Military Park, North CarolinaCanopy dominants include sweetgum, yellow-poplar, and red maple. English ivy occurs in the disturbed and fragmented version of this association.
successional loblolly pine-sweetgum forestGuilford Courthouse National Military Park, North CarolinaLoblolly pine, Virginia pine and sweetgum dominate these forests. This is a human-modified community that is easily invaded by nonnative species including
English ivy [194].

  • 30. Diggs, George M., Jr.; Lipscomb, Barney L.; O'Kennon, Robert J. 1999. Illustrated flora of north-central Texas. Sida Botanical Miscellany, No. 16. Fort Worth, TX: Botanical Research Institute of Texas. 1626 p. [35698]
  • 4. Anzinger, Dawn; Radosevich, Steven R. 2008. Fire and nonnative invasive plants in the Northwest Coastal bioregion. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 197-224. [70906]
  • 12. Biggerstaff, Matthew S.; Beck, Christopher. 2007. Effects of English ivy (Hedera helix) on seed bank formation and germination. The American Midland Naturalist. 157(2): 250-257. [70399]
  • 22. Chaideftou, Evgenia; Thanos, Costas A.; Bergmeier, Erwin; Kallimanis, Athanasios; Dimopoulos, Panayotis. 2009. Seed bank composition and above-ground vegetation in response to grazing in sub-Mediterranean oak forests (NW Greece). Plant Ecology. 201: 255-265. [73402]
  • 27. Debussche, M.; Isenmann, P. 1994. Bird-dispersed seed rain and seedling establishment in patchy Mediterranean vegetation. Oikos. 69(3): 414-426. [79194]
  • 36. Elliot, C. 1995. The ivy debate. Horticulture. 73(3): 21-23. [79233]
  • 43. Fleming, Peggy; Kanal, Raclare. 1995. Annotated list of vascular plants of Rock Creek Park, National Park Service, Washington, DC. Castanea. 60(4): 283-316. [71991]
  • 63. Hofmeister, Jenyk; Hosek, Jan; Modry, Martin; Rolecek, Jan. 2009. The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecology. 205: 57-75. [77027]
  • 65. Hueze, Patricia; Dupouey, Jean-Luc; Schnitzler, Annik. 2009. Radial growth response of Hedera helix to hydrological changes and climatic variability in the Rhine floodplain. River Research and Applications. 25(4): 393-404. [78040]
  • 66. Ingham, Claudia S.; Borman, Michael M. 2010. English ivy (Hedera spp., Araliaceae) response to goat browsing. Invasive Plant Science and Management. 3: 178-181. [79900]
  • 68. Jackson, G.; Sheldon, J. 1949. The vegetation of magnesian limestone cliffs at Markland Grips near Sheffield. The Journal of Ecology. 37(1): 38-50. [72536]
  • 73. Kassas, M. 1952. Studies in the ecology of Chippenham fen. III. The Forty Acre Wood. Journal of Ecology. 40(1): 50-61. [79566]
  • 75. Kjellson, Gosta. 1992. Seed banks in Danish deciduous forests: species composition, seed influx and distribution pattern in soil. Ecography. 15: 86-100. [74170]
  • 79. Kubicek, Ferdinand; Jurko, Anton. 1975. Estimation of the above-ground biomass of the herb layer in forest communities. Folia Geobotanica & Phytotaxonomica. 10(2): 113-129. [76307]
  • 114. Patterson, Karen D. 2008. Vegetation classification and mapping at Colonial National Historical Park, Virginia. Technical Report NPS/NER/NRTR--2008/129. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 369 p. [79670]
  • 116. Patterson, Karen D. 2008. Vegetation classification and mapping at Petersburg National Battlefield, Virginia. Technical Report NPS/NER/NRTR--2008/127. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 235 p. [79673]
  • 117. Patterson, Karen D. 2008. Vegetation classification and mapping at Richmond National Battlefield Park, Virginia. Technical Report NPS/NER/NRTR--2008/128. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 244 p. [79674]
  • 119. Pyle, Laura L. 1995. Effects of disturbance on herbaceous exotic plant species on the floodplain of the Potomac River. The American Midland Naturalist. 134: 244-253. [26182]
  • 125. Reichard, Sarah. 1996. Hedera helix--English ivy. In: Randall, John M.; Marinelli, Janet, eds. Invasive plants: Weeds of the global garden. Handbook #149. Brooklyn, NY: Brooklyn Botanic Garden: 93. [73462]
  • 134. Sawyer, John O.; Sillett, Stephen C.; Popenoe, James H.; LaBanca, Anthony; Sholars, Teresa; Largent, David L.; Euphrat, Fred; Noss, Reed F.; Van Pelt, Robert. 2000. Characteristics of redwood forests. In: Noss, Reed F., ed. The redwood forest: History, ecology, and conservation of the coast redwoods. Washington, DC: Island Press: 39-79. [40464]
  • 136. Schnitzler, Annik; Heuze, Patricia. 2006. Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. Forest Ecology and Management. 236(1): 12-17. [78755]
  • 137. Schwartz, Mark W.; Porter, Daniel J.; Randall, John M.; Lyons, Kelly E. 1996. Impact of nonindigenous plants. In: Status of the Sierra Nevada. Sierra Nevada Ecosystem Project: Final report to Congress. Volume II: Assessments and scientific basis for management options. Wildland Resources Center Report No. 37. Davis, CA: University of California, Centers for Water and Wildland Resources: 1203-1218. [28977]
  • 140. Sholars, Teresa; Golec, Clare. 2007. Rare plants of the redwood forest and forest management effects. In: Standiford, Richard B.; Giusti, Gregory A.; Valachovic, Yana; Zielinski, William J.; Furniss, Michale J., tech. eds. Proceedings of the redwood region forest science symposium: What does the future hold; 2004 March 15-17; Rohnert Park, CA. Gen. Tech. Rep. RSW-GTR-194. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 185-199. [71159]
  • 144. Slade, Andrew J.; Hutchings, Michael J. 1989. Within- and between-population variation in ramet behaviour in the gynodioecious clonal herb, Glechoma hederacea (Labiatae). Canadian Journal of Botany. 67(3): 633-639. [71829]
  • 156. Stocker, Randall; Hupp, Karen V. S. 2008. Fire and nonnative invasive plants in the Southeast bioregion. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 91-112. [70903]
  • 157. Stromberg, Laurence P.; Katibah, Edwin F. 1984. An application of the spatial-aggregation method to the description of riparian vegetation. In: Warner, Richard E.; Hendrix, Kathleen M., eds. California riparian systems: Ecology, conservation, and productive management: Proceedings of a conference; 1981 September 17-19; Davis, CA. Berkeley, CA: University of California Press: 347-355. [5839]
  • 162. Taverna, Kristin. 2008. Vegetation classification and mapping at Fredericksburg and Spotsylvania National Military Park. Technical Report NPS/NER/NRTR--2008/126. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Northeast Region. 277 p. [79671]
  • 168. Thimonier, A.; Dupouey, J. L.; Timbal, J. 1992. Floristic changes in the herb-layer vegetation of a deciduous forest in the Lorraine Plain under the influence of atomospheric deposition. Forest Ecology and Management. 55: 149-167. [20845]
  • 169. Thomas, L. K., Jr. 1998. Topographic alterations, forest structure, and invasion by English ivy (Hedera helix L.) in the Rock Creek floodplain, Washington, D.C. Natural Areas Journal. 18(2): 164-168. [78765]
  • 170. Thomas, Lindsey Kay, Jr. 1980. The impact of three exotic plant species on a Potomac island. National Park Service Scientific Monograph Series No. 13. Washington, DC: U.S. Department of the Interior, National Park Service. 179 p. [41748]
  • 173. Tobe, John D.; Fairey, John E., III; Gaddy, L. L. 1992. Flora of the Chauga River gorge, Oconee County, South Carolina. Castanea. 57(2): 77-109. [72019]
  • 183. Vidra, Rebecca L.; Shear, Theodore H.; Wentworth, Thomas R. 2006. Testing the paradigms of exotic species invasion in urban riparian forests. Natural Areas Journal. 26(4): 339-350. [65080]
  • 192. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
  • 194. White, Rickie D., Jr.; Pyne, Milo. 2003. Vascular plant inventory and plant community classification for Guilford Courthouse National Military Park. NatureServe Technical Report: Cooperative Agreement H 5028 01 0435. Durham, NC: NatureServe. 121 p. [79630]
  • 196. Wunderlin, Richard P.; Hansen, Bruce F. 2003. Guide to the vascular plants of Florida. 2nd edition. Gainesville, FL: The University of Florida Press. 787 p. [69433]
  • 198. Zomlefer, Wendy B.; Giannasi, David E.; Bettinger, Kelly A.; Echols, S. Lee; Kruse, Lisa M. 2008. Vascular plant survey of Cumberland Island National Seashore, Camden County, Georgia. Castanea. 73(4): 251-282. [75096]
  • 107. NatureServe. 2004. International Ecological Classification Standard: terrestrial ecological classifications--Uwharrie National Forest final report, [Online]. Subset of NatureServe central databases. 89 p. In: Publications--library. Arlington, VA: NatureServe (Producer). Available: http://www.natureserve.org/library/uwharrieNF.pdf [2010, August 20]. [79632]
  • 111. Okerman, Anne. 2000. Combating the "ivy desert": The invasion of Hedera helix (English ivy) in the Pacific Northwest United States, [Online]. In: Restoration and Reclamation Review--Student Online Journal. Volume 6.4--Fall 2000: Invasive species of the forest ground plane. St. Paul, MN: University of Minnesota--Twin Cities, Department of Horticultural Science (Producer). Available: http://purl.umn.edu/59738 [2010, March 23]. [80191]
  • 167. The Nature Conservancy. 1998. Vegetation classification of Rock Creek Park. NBS/NPS Vegetation Mapping Program. Arlington, VA: The Nature Conservancy. 50 p. Available online: http://biology.usgs.gov/npsveg/rocr/rocrrpt.pdf [2010, January 25]. [78028]
  • 185. Waggy, Melissa. 2010. [Personal observation]. Regarding English ivy distribution in Portland, OR area. Missoula, MT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, FEIS. On file with: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT; FEIS files. [80207]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat in the United States

English ivy infests woodlands, forest edges, fields, hedgerows, coastal areas, salt marsh edges, and other upland areas, especially where some soil moisture is present. It does not grow well in extremely wet conditions and tolerates a wide range of soil pH but prefers slightly acid (pH=6.5). English Ivy is often associated with some form of land disturbance, either human-caused or natural.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

In Great Britain and/or Ireland:
Foodplant / internal feeder
Acalles misellus feeds within small branch? of Hedera helix

Foodplant / internal feeder
larva of Anobium inexspectatum feeds within wood of Hedera helix

Foodplant / visitor
imago of Apiloscatopse flavicollis visits for nectar and/or pollen flower of Hedera helix

Foodplant / visitor
imago of Apiloscatopse picea visits for nectar and/or pollen flower of Hedera helix

Foodplant / visitor
imago of Apiloscatopse scutellata visits for nectar and/or pollen flower of Hedera helix

Foodplant / open feeder
epiphyllous, colonial Bryobia grazes on live leaf of Hedera helix

Foodplant / saprobe
fruitbody of Calocera viscosa is saprobic on decayed wood of Hedera helix
Remarks: Other: uncertain

Plant / associate
imago of Choragus sheppardi is associated with dead Hedera helix

Foodplant / open feeder
adult of Chrysolina polita grazes on live leaf of Hedera helix
Remarks: season: (1-)5-7(-12)

Plant / associate
Clitostethus arcuatus is associated with Hedera helix

Foodplant / collects
adult of Colletes hederae collects pollen of Hedera helix

Foodplant / spot causer
acervulus of Colletotrichum coelomycetous anamorph of Colletotrichum trichellum causes spots on live leaf of Hedera helix

Foodplant / saprobe
fruitbody of Coniophora arida is saprobic on decayed runner of Hedera helix
Other: unusual host/prey

Plant / resting place / on
female of Dendrothrips eastopi may be found on live Hedera helix

Foodplant / sap sucker
nymph of Derephysia foliacea sucks sap of Hedera helix

Foodplant / saprobe
perithecium of Diaporthe pulla is saprobic on dead twig of Hedera helix
Remarks: season: 4-8

Foodplant / saprobe
fruitbody of Exidia nucleata is saprobic on dead, fallen, usually decorticate wood of Hedera helix
Other: minor host/prey

Foodplant / saprobe
fruitbody of Exidia thuretiana is saprobic on dead, fallen wood of Hedera helix
Other: minor host/prey

Foodplant / saprobe
fruitbody of Flammulina velutipes var. velutipes is saprobic on dead wood of Hedera helix
Remarks: season: mainly winter

Plant / associate
fruitbody of Inocybe griseolilacina is associated with Hedera helix
Other: minor host/prey

Foodplant / internal feeder
larva of Kissophagus hederae feeds within cambium of Hedera helix

Foodplant / visitor
adult of Leopoldius signatus visits for nectar and/or pollen flowers of Hedera helix

Plant / associate
imago of Liophloeus tessulatus is associated with Hedera helix

Foodplant / saprobe
fruitbody of Marasmius epiphylloides is saprobic on dead, fallen, decayed leaf of Hedera helix
Other: sole host/prey

Foodplant / saprobe
acervulus of Melanconium coelomycetous anamorph of Melanconium hederae is saprobic on dead twig of Hedera helix
Remarks: season: 1-12

Foodplant / spot causer
epiphyllous, gregarious, opaque then black pycnidium of Septoria coelomycetous anamorph of Mycosphaerella hedericola causes spots on live leaf of Hedera helix
Remarks: season: 4-11
Other: major host/prey

Plant / associate
Nephus quadrimaculatus is associated with Hedera helix

Foodplant / internal feeder
larva of Ochina ptinoides feeds within wood of Hedera helix

Plant / resting place / among
cased larva of Oomorphus concolor may be found among litter of Hedera helix

Foodplant / parasite
underground tuber of Orobanche hederae parasitises root of Hedera helix
Other: sole host/prey

Foodplant / feeds on
epiphyllous pycnidium of Phyllosticta coelomycetous anamorph of Phoma hedericola feeds on live leaf of Hedera helix
Remarks: season: 1-12

Plant / epiphyte
epiphyllous thallus of Phycopeltis arundinacea grows on live leaf of Hedera helix

Plant / epiphyte
epiphyllous thallus of Phycopeltis epiphyton grows on live leaf of Hedera helix

Foodplant / parasite
hypophyllous Phyllactinia guttata parasitises live leaf of Hedera helix

Foodplant / saprobe
scattered pycnidium of Phyllosticta coelomycetous anamorph of Phyllosticta hederacea is saprobic on dead leaf of Hedera helix

Foodplant / spot causer
more or less epiphyllous, gregarious pycnidium of Phyllosticta coelomycetous anamorph of Phyllosticta hederae causes spots on live leaf of Hedera helix
Remarks: season: 7

Foodplant / saprobe
fruitbody of Physalacria stilboidea is saprobic on dead, fallen, decayed, locally blackened leaf of Hedera helix
Remarks: Other: uncertain

Foodplant / internal feeder
larva of Pogonocherus hispidus feeds within dead branch of Hedera helix
Other: major host/prey

Foodplant / visitor
imago of Scatopse notata visits for nectar and/or pollen flower of Hedera helix
Other: minor host/prey

Foodplant / saprobe
effuse colony of Subulispora dematiaceous anamorph of Subulispora britannica is saprobic on dead, fallen leaf of Hedera helix

Foodplant / feeds on
adult of Turdus viscivorus feeds on berry of Hedera helix

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Plant / epiphyte
Lejeunea ulicina grows on live leaf of Hedera helix 'Hibernica'

In Great Britain and/or Ireland:
Plant / epiphyte
Metzgeria fruticulosa s.s. grows on live leaf of Hedera helix 'Hibernica'

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Fire Management Considerations

More info for the terms: fire suppression, fuel, invasive species, prescribed fire, restoration, shrubs

Preventing postfire establishment and spread: English ivy may establish after fire by seed on sites where it did not previously occur (see Plant response to fire). Preventing its establishment in burned areas is the most effective and least costly management method of control. This may be accomplished through early detection and eradication, careful monitoring and follow-up, and limiting dispersal of its seed into burned areas. General recommendations for preventing postfire establishment and spread of invasive plants include:

  • Incorporate cost of weed prevention and management into fire rehabilitation plans
  • Acquire restoration funding
  • Include weed prevention education in fire training
  • Minimize soil disturbance and vegetation removal during fire suppression and rehabilitation activities
  • Minimize the use of retardants that may alter soil nutrient availability, such as those containing nitrogen and phosphorus
  • Avoid areas dominated by high priority invasive plants when locating firelines, monitoring camps, staging areas, and helibases
  • Clean equipment and vehicles prior to entering burned areas
  • Regulate or prevent human and livestock entry into burned areas until desirable site vegetation has recovered sufficiently to resist invasion by undesirable vegetation
  • Monitor burned areas and areas of significant disturbance or traffic from management activity
  • Detect weeds early and eradicate before vegetative spread and/or seed dispersal
  • Eradicate small patches and contain or control large infestations within or adjacent to the burned area
  • Reestablish vegetation on bare ground as soon as possible
  • Avoid use of fertilizers in postfire rehabilitation and restoration
  • Use only certified weed-free seed mixes when revegetation is necessary
For more detailed information on these topics, see the following publications: [6,15,47,178].

Use of prescribed fire as a control agent: As of this writing (2010), no information was available on the use of prescribed fire to control English ivy. Several invasive species publications indicated that repeat burning with a blowtorch at regular intervals has had some success in controlling English ivy; however, no examples using this method were described [25,125,190]. Although blowtorching may not directly kill English ivy, it may deplete its energy reserves by causing it to continually sprout, which may eventually kill it [125]. Reichard [125] cautioned that this approach requires considerable care. This approach also seems infeasible for large populations of English ivy.

Altered fuel characteristics: Researchers in the northeastern United States speculate that English ivy may alter fuel characteristics by acting as ladder fuel (see Fuels) or by killing the trees and shrubs on which it climbs [29].
  • 15. Brooks, Matthew L. 2008. Effects of fire suppression and postfire management activities on plant invasions. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: Fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 269-280. [70909]
  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 125. Reichard, Sarah. 1996. Hedera helix--English ivy. In: Randall, John M.; Marinelli, Janet, eds. Invasive plants: Weeds of the global garden. Handbook #149. Brooklyn, NY: Brooklyn Botanic Garden: 93. [73462]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 6. Asher, Jerry; Dewey, Steven; Olivarez, Jim; Johnson, Curt. 1998. Minimizing weed spread following wildland fires. Proceedings, Western Society of Weed Science. 51: 49. Abstract. [40409]
  • 29. Dibble, Alison C.; Zouhar, Kristin; Smith, Jane Kapler. 2008. Fire and nonnative invasive plants in the Northeast bioregion. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 61-90. [70902]
  • 47. Goodwin, Kim; Sheley, Roger; Clark, Janet. 2002. Integrated noxious weed management after wildfires. EB-160. Bozeman, MT: Montana State University, Extension Service. 46 p. Available online: http://www.montana.edu/wwwpb/pubs/eb160.html [2003, October 1]. [45303]
  • 178. U.S. Department of Agriculture, Forest Service. 2001. Guide to noxious weed prevention practices. Washington, DC: U.S. Department of Agriculture, Forest Service. 25 p. Available online: http://www.fs.fed.us/invasivespecies/documents/FS_WeedBMP_2001.pdf [2009, November 19]. [37889]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Regimes

More info for the terms: fire frequency, fire intensity, fire regime, frequency, fuel, severity

In its nonnative range in North America, English ivy occurs in plant communities with variable FIRE REGIMES, but at the time of this writing (2010), no information was available on how it responds to or influences FIRE REGIMES in these communities. Land managers in the Pacific Northwest speculated that English ivy may influence riparian FIRE REGIMES; however, the magnitude and direction of its effects on fuel characteristics and FIRE REGIMES is unknown. In moist forests where English ivy occurs, extreme fire weather may be a more important driving force of fire intensity and severity than fuel characteristics [1]; therefore, even if English ivy causes marked changes in fuel characteristics, it may have little or no influence on local FIRE REGIMES [4].

Studies from Europe indicate that English ivy occurs in communities with variable fire frequency. On the Iberian Peninsula in Spain, English ivy is associated with plant communities occurring in warm, dry Mediterranean climates that are subject to high fire frequency and montane vegetation in subhumid climates where fires are rare [181]. In southern Switzerland, English ivy occurred in forest types that had mean fire-return intervals ranging from 7 to more than 100 years, but its frequency was generally lower in areas with greater fire frequency (see Plant response to fire).

See the Fire Regime Table for further information on FIRE REGIMES of vegetation communities in which English ivy may occur.

  • 4. Anzinger, Dawn; Radosevich, Steven R. 2008. Fire and nonnative invasive plants in the Northwest Coastal bioregion. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 197-224. [70906]
  • 1. Agee, James K. 1997. The severe weather wildfire--too hot to handle? Northwest Science. 71(1): 153-156. [27553]
  • 181. Verdu, M.; Pausas, J. G. 2007. Fire drives phylogenetic clustering in Mediterranean basin woody plant communities. Journal of Ecology. 95(6): 1316-1323. [78828]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fuels

More info for the terms: fuel, fuel loading, ladder fuels, shrubs, vines

As of this writing (2010), information pertaining to English ivy's fuel characteristics was limited to anecdotal evidence and inference. Given English ivy's abundance near populated areas, further research on its fuel characteristics may be warranted [4].

Because English ivy is evergreen and has a relatively high water content (230 g of water/100 g dry leaf mass (65-70% wet mass)), it may not readily ignite and may burn slowly. Planting English ivy has been recommended to reduce fire risk in seasonally dry areas such as in Utah [80,97], and in chaparral-urban interfaces in California [123].

While dense populations of English ivy clearly affect the structure of surface and crown fuels (see Stand structure), their impact on fire behavior has not been documented. Researchers in the northeastern United States speculated that English ivy may contribute to ladder fuels [29]. A state forester in Delaware also suggested English ivy contributes to ladder fuels and considered it a serious fire hazard near urban communities [166]. Conversely, an ecologist in Portland, Oregon, speculated that English ivy does not contribute to ladder fuels because of its high moisture content. One researcher in that area attempted to burn English ivy that was growing on cliffs with various grasses. The grasses burned but the English ivy did not, presumably because it was "too green" (personal communication [40]). It has been speculated that English ivy may increase fuel loading and continuity by growing up and over supporting vines, shrubs, and trees and by killing the vegetation beneath it [29].

  • 4. Anzinger, Dawn; Radosevich, Steven R. 2008. Fire and nonnative invasive plants in the Northwest Coastal bioregion. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 197-224. [70906]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 123. Radtke, Klaus W. H. 1983. Living more safely in the chaparral-urban interface. Gen. Tech. Rep. PSW-67. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 50 p. [35802]
  • 29. Dibble, Alison C.; Zouhar, Kristin; Smith, Jane Kapler. 2008. Fire and nonnative invasive plants in the Northeast bioregion. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 61-90. [70902]
  • 40. Felice, Rachel. 2010. [Email to Melissa Waggy]. June 5. Regarding English ivy. Portland, OR: City Nature West. On file with: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT; FEIS files. [80189]
  • 80. Kuhns, Mike. 2010. Firewise plants for Utah landscapes. Utah Forest Facts--Fact Sheet NR/FF/002. Logan, UT: Utah State University, Forestry Extension. 4 p. Available: http://extension.usu.edu/files/publications/publication/NR_FF_002.pdf [2010, March 26]. [80146]
  • 166. The Ardens of Delaware. 2010. Why we are removing ivy, [Online]. In: Weed-in-walk tasks--ivy. In: Weed-n-walk in the Ardens. TheArdens.com (Producer). Available: http://www.theardens.com/weedEnglishIvy.htm [2010, June 25]. [80145]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire adaptations and plant response to fire

More info for the terms: fire exclusion, fire frequency, frequency, invasive species, vines

Fire adaptations: As of this writing (2010), it was unclear how well English ivy is adapted to fire. Based on inferences made from its known botanical characteristics, English ivy may reproduce after fire through vegetative regeneration or seedling establishment.

Because English ivy sprouts when cut and roots from stem fragments (see Vegetative regeneration), it may do so if aboveground vines are damaged or killed by fire.

English ivy does not form a persistent seed bank (see Seed banking). Researchers in Spain studied the postfire recruitment of several woody species from the soil seed bank. Based on English ivy's postfire germination rate and its response to experimental smoke and heat treatments, researchers inferred that English ivy seed is not protected from the heat of fire (e.g., lacks hardcoated seed) [181]. Conversely, one invasive species publication indicated that English ivy has a hard seedcoat [126] but provided no evidence in support of this claim.

Inferences based on English ivy's morphology and regeneration suggest some ways in which fire could favor its spread. There is potential for English ivy to establish after fire from off-site seed if there are populations of fruiting English ivy nearby. English ivy seed may be dispersed to burned sites by birds; however, the farther away the source the less likely dispersal is to occur, especially if the source is greater than 3,000 feet (1,000 m) away (see Seed dispersal). A literature review from Great Britain indicated that English ivy seedlings establish on disturbed or open sites [97], suggesting that fire could create conditions favorable for its establishment. However, it may not establish well on sites that experience frequent fire (see Plant response to fire and FIRE REGIMES). English ivy seedlings grow more rapidly on open sites than in shade (see Shade tolerance), suggesting that canopy openings resulting from fire could facilitate rapid growth of English ivy seedlings if they establish on burned sites.

Plant response to fire: Based on its abilities to regenerate vegetatively, adjust to variable light levels, establish on open disturbed sites, and disperse seed over a large area, English ivy may respond favorably to fire. However, the limited available evidence suggests otherwise.

One paleoecological study suggests English ivy may not be favored by fire. Researchers in Switzerland reconstructed historic fire records based on a charcoal and pollen analysis of 2 lakes. Peaks in charcoal particle abundance—presumed to be associated with fire events—were significantly correlated (P=0.05) with repeated declines in the abundance of English ivy pollen [172].

In southern Switzerland, researchers studied historic fire records to evaluate the effects of increasing fire frequency on vegetation. English ivy frequency was greatest on sites with average fire-return intervals of >100 years, declined for sites with average fire-return intervals from 25 to 100 years, and was nearly absent from sites with average fire-return intervals of <25 years. English ivy's frequency generally increased with increasing time since the last fire [28], suggesting that fire exclusion may favor its spread.

English ivy frequency in forests in southern Switzerland with varied fire frequency [28]
Average fire frequency (years) 7-25 25-50 50-100 >100
Years since last fire 0-3 4-15 16-100 0-3 4-15 16-100 0-3 4-15 16-100 >100
English ivy frequency (%) 0 1-10 0 1-10 0 11-20 1-10 1-10 11-20 31-40
Number of samples 10 70 48 10 11 36 21 11 36 11
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 28. Delarze, R.; Caldelari, D.; Hainard, P. 1992. Effects of fire on forest dynamics in southern Switzerland. Journal of Vegetation Science. 3(1): 55-60. [71411]
  • 172. Tinner, Willy; Hubschmid, Priska; Wehrli, Michael; Ammann, Brigitta; Conedera, Marco. 1999. Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology. 87: 273-289. [30005]
  • 181. Verdu, M.; Pausas, J. G. 2007. Fire drives phylogenetic clustering in Mediterranean basin woody plant communities. Journal of Ecology. 95(6): 1316-1323. [78828]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Post-fire Regeneration

More info for the terms: adventitious, initial off-site colonizer, liana, rhizome, root crown, secondary colonizer

POSTFIRE REGENERATION STRATEGY
(adapted from [155]):
Prostrate woody plant, stem growing in organic soil
Surface rhizome and/or a chamaephytic root crown in organic soil or on soil surface
Liana, adventitious buds and/or a sprouting root crown
Initial off-site colonizer (off site, initial community)
Secondary colonizer (on- or off-site seed sources)
  • 155. Stickney, Peter F. 1989. Seral origin of species comprising secondary plant succession in Northern Rocky Mountain forests. FEIS workshop: Postfire regeneration. Unpublished draft on file at: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT. 10 p. [20090]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Immediate Effect of Fire

More info for the term: surface fire

As of this writing (2010), information pertaining to the immediate fire effects on English ivy was limited. One literature review indicated English ivy may have low tolerance to fire [97]. Based on its ability to sprout when cut [25,159], English ivy may sprout from fire-damaged stumps; however, its root system may be too shallow to survive surface fire (see Botanical Description). Because English ivy seed is short-lived (see Seed banking), there may be little opportunity for postfire germination from the seed bank. Researchers in Spain found no evidence of rapid postfire establishment of English ivy from the seed bank [181].
  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 181. Verdu, M.; Pausas, J. G. 2007. Fire drives phylogenetic clustering in Mediterranean basin woody plant communities. Journal of Ecology. 95(6): 1316-1323. [78828]
  • 159. Swearingen, J.; Reshetiloff, K.; Slattery, B.; Zwicker, S. 2002. Plant invaders of mid-Atlantic natural areas. [Washington, DC]: U.S. Department of the Interior, National Park Service; Fish and Wildlife Service. 82 p. Available online: http://www.invasive.org/eastern/midatlantic/index.html [2009, November 19]. [54192]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Successional Status

More info on this topic.

More info for the terms: cover, frequency, phase, shrub, succession, tree

Shade tolerance: Several studies [32,49,62,132,136,150], reviews [51,97], and invasive plant publications [99,190] indicate that English ivy grows in a wide range of light conditions, from full shade to full sunlight. In general, the juvenile form of English ivy most often occurs in the shade [62,97], while the adult form occurs in full sun [32,99]. English ivy's tolerance to shade [32,51,99] has been described by one propagation manual as "legendary" [31]. English ivy's tolerance to full sun may vary and depend on the cultivar or site conditions [150,158]. English ivy's ability to adjust its photosynthetic capacity under variable light regimes may explain its tolerance to a wide range of light levels [62].

English ivy's photosynthetic capacity adjusts for variable light levels; to what degree may be determined by the life phase (juvenile or adult) of the plant [10,62,110]. In general, adult leaves have a greater photosynthetic capacity than juvenile leaves, even on the same plant [62,97]. Under experimental conditions, juvenile English ivy's capacity to accumulate light was not as well developed as its adult phase. Juvenile leaves, however, tolerated light and were not damaged by increased light [62]. English Ivy may respond quickly to changes in light level by temporarily increasing or decreasing photosynthetic rates. English ivy growing in the shade may undergo brief periods of photoinhibition in the winter when leaves of deciduous trees are shed. For English ivy growing in constant light, photoinhibition may be facilitated by low temperatures [110]. Grime [51] speculated that for juvenile English ivy growing in the shade, carbohydrate availability may depend more on energy conservation than accumulation efficiency.

In some locations, English ivy may reach its greatest abundance in shade. In France, English ivy reached its highest frequency in a floodplain forest on "dark" plots with less than 2.5% light transmission [142]. In experimental plots, English ivy cover grown in 60% shade ranged from about 10% to 70% during a 1-year period. During that same time, English ivy cover failed to reach 20% during any time of the year for plants grown in full sun [150].

Potential successional stage: English ivy's tolerance to a wide range of light levels suggests it may establish and/or persist throughout most successional stages. Information pertaining to English ivy's successional role in its North American range is limited. In forests that had been previously clearcut in western Oregon, English ivy was not present in seedling or sapling stands but occurred in mature stands (frequency <2%; cover ~2%) with large-diameter trees. Thinning mature stands had little effect on English ivy frequency (<1%) compared to unthinned stands (<1%), however, its cover was less in thinned stands (1.5%) than in unthinned stands (3.5%). English ivy frequency generally increased with increased tree canopy cover [50]. In Washington, DC, English ivy occurred in a deciduous forest that had not been logged for 102 years [43]. In a secondary piedmont forest in Georgia, English ivy persisted for at least 30 years (Carter personal communication cited in [11]). In a forest along the Bronx River Parkway in New York, it persisted for at least 25 years [44]. In another secondary piedmont forest in Washington, DC, English ivy displaced the groundlayer vegetation, previously dominated by Virginia springbeauty (Claytonia virginica), within 10 years of its establishment [170].

Several studies and publications from Europe describe English ivy's successional role in parts of its native range [38,56,76,121,135,168]. One long-term study from the United Kingdom indicates that English ivy's successional role may be highly variable. Researchers observed successional changes over 100 years in 2 secondary woodlands where English ivy occurred. The woodlands established on previously cultivated land that had been abandoned for about 20 years. Site 1 consisted of woodland and meadow plant communities and was first surveyed in 1886. English ivy was first observed in the woodland community on Site 1 in 1903. Over the next 53 years English ivy continued to spread, and by 1998 it formed a "dense carpet" in the woodland. In the meadow portion of Site 1, English ivy established in 1913 but was absent by 1945. While it was present during the 1951 and 1965 surveys, it was once again absent from the meadow in 1998. On Site 2, which was primarily a grassland with a few woody species, English ivy was not observed there until 1957, approximately 60 years after surveying began. While it persisted on Site 2 throughout the remainder of the study (1998), it did not dominate [56].

Other studies from Europe indicate that English ivy occurs in early to midsuccession; however, its abundance at any given stage may vary [38,76,121,135,168]. In England, English ivy is typically uncommon in woods except around edges. It establishes during the early stages of succession and may persist for centuries [38,121]. In a previously cultivated hay meadow in England that had been abandoned for 20 to 30 years, English ivy established during the "building phase" (average plant age 15-50 years) of plant community development [76]. In the Chiltern Hills in England, English ivy occurs in various stages of succession, but it is more frequent in early stages of oak woodland succession and in developing woodland [189]. In an oak forest in France, English ivy's frequency increased by 10% within 19 years [168]. In the United Kingdom, English ivy established in a field about 15 years after cultivation ceased and dominated the ground flora of a secondary woodland within 50 years [56]. Because English ivy seedlings establish and grow in both sun and shade (see Shade tolerance), it seems able to establish during early to midstages of succession.

Studies from Europe suggest that English ivy may persist into late succession. One literature review indicated that populations of English ivy that established in northern Eurasia during a global cooling period that ended about 5,000 years ago have persisted through vegetative reproduction [97]. In England, English ivy occurred in a woodland that had undergone selective logging but still contained 200-year-old trees [144]. Based on vegetation surveys in the Rhine Forest in France, researchers classified English ivy as a species adapted to highly fragmented, mid- to end-successional stages [135].

On sites where English ivy becomes dominant, it may influence succession. English ivy may inhibit regeneration of the understory, resulting in an English ivy- dominated community with few if any woody plants getting tall enough to form a shrub layer [170]. Because English ivy facilitates tree fall (see Impacts) and accelerates forest gaps [136,170], it may influence succession by creating canopy gaps.
  • 31. Dirr, Michael A.; Heuser, Charles W., Jr. 1987. The reference manual of woody plant propagation: From seed to tissue culture. Athens, GA: Varsity Press, Inc. 239 p. [16999]
  • 43. Fleming, Peggy; Kanal, Raclare. 1995. Annotated list of vascular plants of Rock Creek Park, National Park Service, Washington, DC. Castanea. 60(4): 283-316. [71991]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 135. Schnitzler, Annik. 1995. Community ecology of arboreal lianas in gallery forests of the Rhine valley, France. Acta Oecologica. 16: 219-236. [79272]
  • 136. Schnitzler, Annik; Heuze, Patricia. 2006. Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. Forest Ecology and Management. 236(1): 12-17. [78755]
  • 144. Slade, Andrew J.; Hutchings, Michael J. 1989. Within- and between-population variation in ramet behaviour in the gynodioecious clonal herb, Glechoma hederacea (Labiatae). Canadian Journal of Botany. 67(3): 633-639. [71829]
  • 168. Thimonier, A.; Dupouey, J. L.; Timbal, J. 1992. Floristic changes in the herb-layer vegetation of a deciduous forest in the Lorraine Plain under the influence of atomospheric deposition. Forest Ecology and Management. 55: 149-167. [20845]
  • 170. Thomas, Lindsey Kay, Jr. 1980. The impact of three exotic plant species on a Potomac island. National Park Service Scientific Monograph Series No. 13. Washington, DC: U.S. Department of the Interior, National Park Service. 179 p. [41748]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 32. Douglas-Smith, Angela. 2006. Control of Ailanthus altissima (Mill.) Swingle, Albizia julibrissin Durazzini, Hedera helix L. and Paulowina tomentosa (Thunb.) Seib & Zucc. Ex Steud. in three Tidewater Virginia area parks. Newport News, VA: Christopher Newport University. 60 p. Thesis. [72016]
  • 56. Harmer, Ralph; Peterken, George; Kerr, Gary; Poulton, Paul. 2001. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biological Conservation. 101: 291-304. [79678]
  • 150. Stafne, R. A.; Einert, A. E.; Klingaman, G. L. 2005. Fertilizer applications on establishment and growth of three groundcover species in sun and shade. Journal of Environmental Horticulture. 23(3): 157-161. [71717]
  • 158. Sulgrove, Sabina Mueller. 1987. Six hardy ground covers from the American Ivy Society. American Nurseryman. 165: 116-129. [79754]
  • 10. Bauer, Helmut; Thoni, Wolfgang. 1988. Photosynthetic light acclimation in fully-developed leaves of the juvenile and adult life phases of Hedera helix. Physiologia Plantarum. 73(1): 31-37. [78773]
  • 11. Biggerstaff, Matthew S.; Beck, Christopher W. 2007. Effects of method of English ivy removal and seed addition on regeneration of vegetation in a southeastern Piedmont forest. The American Midland Naturalist. 158(1): 206-220. [67890]
  • 38. Faegri, K.; van der Pijl, L. 1979. The principles of pollination ecology. 3rd ed. Oxford, UK: Pergamon Press. 242 p. [79305]
  • 44. Frankel, Edward. 1999. A floristic survey of vascular plants of the Bronx River Parkway Reservation in Westchester, New York: compilation 1973-1998. Journal of the Torrey Botanical Society. 126(4): 359-366. [37376]
  • 49. Grasovsky, Amihud. 1929. Some aspects of light in the forest. School of Forestry Bulletin No. 23. New Haven, CT: Yale University. 53 p. [79563]
  • 50. Gray, Andrew N. 2005. Eight nonnative plants in western Oregon forests: associations with environment and management. Environmental Monitoring and Assessment. 100(1-3): 109-127. [63196]
  • 51. Grime, J. P. 1965. Shade tolerance in flowering plants. Nature. 28(5006): 161-163. [46122]
  • 62. Hoflacher, Hans; Bauer, Helmut. 1982. Light acclimation in leaves of the juvenile and adult life phases of ivy (Hedera helix). Physiolgia Plantarum. 56: 177-82. [79538]
  • 76. Kollmann, Johannes. 1995. Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience. 2(3): 213-222. [69004]
  • 110. Oberhuber, Walter; Bauer, Helmut. 1991. Photoinhibition of photosynthesis under natural conditions in ivy (Hedera helix L.) growing in an understory of deciduous trees. Planta. 185(4): 545-553. [78766]
  • 132. Sack, Lawren; Grubb, Peter J. 2002. The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia. 131(2): 175-185. [78830]
  • 142. Siebel, Henk N.; Bouwma, Irene M. 1998. The occurrence of herbs and woody juveniles in a hardwood floodplain forest in relation to flooding and light. Journal of Vegetation Science. 9(5): 623-630. [73525]
  • 189. Watt, A. S. 1934. The vegetation of the Chiltern Hills, with special reference to the beechwoods and their seral relationships. Journal of Ecology. 22(2): 445-507. [79209]
  • 99. Miller, James H. 2003. Nonnative invasive plants of southern forests: A field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p. Available online: http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/ [2004, December 10]. [50788]
  • 121. Rackham, Oliver. 1990. [Revised edition]. Trees and woodland in the British landscape. London: J. M. Dent & Sons. 256 p. [79278]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seed banking

More info for the terms: presence, shrub

Publications from the United Kingdom indicate that English ivy seed is short-lived and does not form a persistent seed bank [52,97]. Because English ivy's flowering and fruiting is limited by shade (see Pollination and breeding system), accumulation of English ivy seed in woodlands may be an "expensive luxury" [171]. Under experimental conditions, English ivy seed planted in various size containers and soil types continued to germinate for 1 year after planting; however, germination and seedling survival generally declined over time, particularly for seed buried 5 months or longer [152].

English ivy's presence in the aboveground vegetation may not indicate its presence in the seed bank. In deciduous forests in northwestern Greece [22] and Denmark [75], English ivy occasionally occurred in the aboveground vegetation but its seed was not found in the soil seed bank. In a deciduous forest in Spain, English ivy was 1 of 4 dominant shrub species in the understory (3% aboveground cover) but did not appear in the seed bank at samplings depths of up to 4 inches (10 cm) [112].

  • 22. Chaideftou, Evgenia; Thanos, Costas A.; Bergmeier, Erwin; Kallimanis, Athanasios; Dimopoulos, Panayotis. 2009. Seed bank composition and above-ground vegetation in response to grazing in sub-Mediterranean oak forests (NW Greece). Plant Ecology. 201: 255-265. [73402]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 75. Kjellson, Gosta. 1992. Seed banks in Danish deciduous forests: species composition, seed influx and distribution pattern in soil. Ecography. 15: 86-100. [74170]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 152. Stavretovic, N. 2007. Biological characteristics of the species Hedera helix L. and its use in controlling erosion in shady places. Archives of Biological Sciences. 59(2): 139-143. [78044]
  • 112. Olano, J. M.; Caballero, I.; Laskurain, N. A.; Loidi, J.; Escudero, A. 2002. Seed bank spatial pattern in a temperate secondary forest. Journal of Vegetation Science. 13(6): 775-778. [79907]
  • 171. Thompson, K. 1978. The occurrence of buried viable seeds in relation to environmental gradients. Journal of Biogeography. 5: 425-430. [19769]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seed dispersal

More info for the term: phenology

English ivy seed is dispersed by birds [25,60,99,146,159]. In North America, birds that distribute English ivy seed included European starling, cedar waxwing, American robin, Steller's jay, mockingbird, and house sparrow [160]. Snow and Snow [145] provide a list of birds that may act as potential dispersers of English ivy seed in the United Kingdom (see IMPORTANCE TO LIVESTOCK AND WILDLIFE). After digesting the fruit, birds may regurgitate English ivy seed one at a time [23]. One literature review suggested that English ivy seed is deposited in bird droppings as well as regurgitated [97]; however, a seed germination study found no evidence that English ivy seed is defecated by birds [23]. Researchers in the Netherlands speculated that English ivy has an 80% chance of being dispersed to a forest if there is a seed source 3 feet (1 m) or less away, but at 3,000 feet (1,000 m) away, the probability decreases to nearly 0% [48].

English ivy phenology may vary for different locations and influence the dates when seed becomes available for dispersal [145]. In the United Kingdom, English ivy seeds are dispersed in early winter (November and December), but early flowering plants likely have their fruit taken sooner [97,145]. In Germany, English ivy seed was dispersed in later spring (Kollman 1994 cited in [76]).

  • 60. Hitchcock, C. Leo; Cronquist, Arthur; Ownbey, Marion; Thompson, J. W. 1961. Vascular plants of the Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. Seattle, WA: University of Washington Press. 614 p. [1167]
  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 145. Snow, Barbara; Snow, David. 1988. Birds and berries: A study of ecological interaction. Staffordshire, UK: T. & A. D. Poyser. 268 p. [74664]
  • 23. Clergeau, Philippe. 1992. The effect of birds on seed germination of fleshy-fruited plants in temperate farmland. Acta Oecologica. 13(6): 679-686. [79234]
  • 48. Grashof-Bokdam, C. J.; Geertsema, W. 1998. The effect of isolation and history on colonization patterns of plant species in secondary woodland. Journal of Biogeography. 25(5): 837-846. [73922]
  • 76. Kollmann, Johannes. 1995. Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience. 2(3): 213-222. [69004]
  • 99. Miller, James H. 2003. Nonnative invasive plants of southern forests: A field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p. Available online: http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/ [2004, December 10]. [50788]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 159. Swearingen, J.; Reshetiloff, K.; Slattery, B.; Zwicker, S. 2002. Plant invaders of mid-Atlantic natural areas. [Washington, DC]: U.S. Department of the Interior, National Park Service; Fish and Wildlife Service. 82 p. Available online: http://www.invasive.org/eastern/midatlantic/index.html [2009, November 19]. [54192]
  • 160. Swearingen, Jill M.; Diedrich, Sandra. 2006. Fact sheet: English ivy--Hedera helix L., [Online]. In: Weeds gone wild: Alien plant invaders of natural areas--Fact sheets. Plant Conservation Alliance's Alien Plant Working Group (Producer). Available: http://www.nps.gov/plants/alien/fact/hehe1.htm [2010, June 1]. [80193]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Pollination and breeding system

More info for the terms: bisexual, protandrous

Sexual reproduction typically occurs in climbing adult plants that reach sufficient light, but trailing plants may occasionally produce fruit, especially if they are growing in full sunlight [146]. English ivy flowers are bisexual [122,126], protandrous, and cross-pollinated by a wide variety of insects [52,97,182]. Faegri and van der Pijl [38] speculated that plants that flower late in the year, like English ivy, may be completely dependent on flies for pollination because numerous other insects like bumblebees and bees are not present during that time of year.

In the Netherlands, pollen counts collected from various sampling sites (e.g., water trough, roof tiles, moss on a thatched roof) in October determined that one large, profusely flowering English ivy produced several billion pollen grains annually [14].

  • 14. Bottema, S. 2001. A note on the pollen representation of ivy (Hedera helix L.). Review of Palaeobotany and Palynology. 117(1-3): 159-166. [78760]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 122. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606]
  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 182. Vezza, Maurizio; Nepi, Massimo; Guarnieri, Massimo; Artese, Daniele; Rascio, Nicoletta; Pacini, Ettore. 2006. Ivy (Hedera helix L.) flower nectar and nectary ecophysiology. International Journal of Plant Sciences. 167(3): 519-527. [78756]
  • 38. Faegri, K.; van der Pijl, L. 1979. The principles of pollination ecology. 3rd ed. Oxford, UK: Pergamon Press. 242 p. [79305]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Vegetative regeneration

More info for the term: adventitious

Several invasive plant publications [25,126,159,160,190] and one study from North America [13] indicate that English ivy sprouts from stem fragments and cut stumps. Stems [66,146] and stem fragments root easily when they are in contact with the soil [160,190], and plants spread from adventitious roots that develop along the stem [126]. Fragmented roots left in the soil may sprout a new stem [146]. In the United Kingdom, English ivy spreads extensively by vegetative regeneration; establishment from seed may be infrequent [52,97].
  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 66. Ingham, Claudia S.; Borman, Michael M. 2010. English ivy (Hedera spp., Araliaceae) response to goat browsing. Invasive Plant Science and Management. 3: 178-181. [79900]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 13. Biggerstaff, Matthew; Beck, Christopher. 2002. Effects of English ivy (Hedera helix L.) and differences in its removal on regeneration of native vegetation in a southeastern piedmont forest, [Online]. In: SURE (Summer Undergraduate Research Program at Emory): Past programs--Web posters from SURE 2002. Atlanta, GA: Emory University, ScienceNET (Producer). Available: http://www.cse.emory.edu/sciencenet/undergrad/SURE/Posters/2002_biggerstaff.html [2010, May 25]. [79713]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 159. Swearingen, J.; Reshetiloff, K.; Slattery, B.; Zwicker, S. 2002. Plant invaders of mid-Atlantic natural areas. [Washington, DC]: U.S. Department of the Interior, National Park Service; Fish and Wildlife Service. 82 p. Available online: http://www.invasive.org/eastern/midatlantic/index.html [2009, November 19]. [54192]
  • 160. Swearingen, Jill M.; Diedrich, Sandra. 2006. Fact sheet: English ivy--Hedera helix L., [Online]. In: Weeds gone wild: Alien plant invaders of natural areas--Fact sheets. Plant Conservation Alliance's Alien Plant Working Group (Producer). Available: http://www.nps.gov/plants/alien/fact/hehe1.htm [2010, June 1]. [80193]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regeneration Processes

More info for the term: breeding system

English ivy fruit.

English ivy spreads vegetatively, either by rooting from stems and stem fragments that contact the soil [66,126,146,159,160,190] or from fragmented roots [146]. English ivy reproduces sexually by seed [25,52,77,97,126,146], typically in open or disturbed habitat [97]. In some locations, establishment from seed may be infrequent [16,52].

  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 66. Ingham, Claudia S.; Borman, Michael M. 2010. English ivy (Hedera spp., Araliaceae) response to goat browsing. Invasive Plant Science and Management. 3: 178-181. [79900]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 16. Buckley, G. P.; Howell, R.; Anderson, M. A. 1997. Vegetation succession following ride edge management in lowland plantations and woods. 2. The seed bank resource. Biological Conservation. 82: 305-316. [79690]
  • 77. Kollmann, Johannes; Grubb, Peter J. 1999. Recruitment of fleshy-fruited species under different shrub species: control by under-canopy environment. Ecological Research. 14(1): 9-21. [72620]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 159. Swearingen, J.; Reshetiloff, K.; Slattery, B.; Zwicker, S. 2002. Plant invaders of mid-Atlantic natural areas. [Washington, DC]: U.S. Department of the Interior, National Park Service; Fish and Wildlife Service. 82 p. Available online: http://www.invasive.org/eastern/midatlantic/index.html [2009, November 19]. [54192]
  • 160. Swearingen, Jill M.; Diedrich, Sandra. 2006. Fact sheet: English ivy--Hedera helix L., [Online]. In: Weeds gone wild: Alien plant invaders of natural areas--Fact sheets. Plant Conservation Alliance's Alien Plant Working Group (Producer). Available: http://www.nps.gov/plants/alien/fact/hehe1.htm [2010, June 1]. [80193]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Growth Form (according to Raunkiær Life-form classification)

More info on this topic.

More info for the term: chamaephyte

Raunkiaer [124] life form:
Chamaephyte
  • 124. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Form

More info for the terms: liana, shrub, vine

Vine-liana
Shrub

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Regime Table

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seed production

In France, 741 English ivy seeds were collected in a 427.9 foot² (39.75 m²) plot from December 1981 to May 1983 on a site where English ivy was common in the aboveground vegetation [27]. English ivy's seed production may be limited in cooler climates. Based on an analysis by local researchers, Michigan's Invasive Plant Council does not consider English ivy invasive in the Great Lakes region because seed production may be inconsistent [98]. In Europe, cold weather may prevent early fruit crops from ripening so that no viable seed is produced [145]. In climates like those of the Czech Republic and Slovakia, fruits may not produce seed every year [85]. English ivy fruit size or production may be limited for plants growing above 869 feet (265 m) in elevation (Macleod 1983 cited in [145]).
  • 27. Debussche, M.; Isenmann, P. 1994. Bird-dispersed seed rain and seedling establishment in patchy Mediterranean vegetation. Oikos. 69(3): 414-426. [79194]
  • 145. Snow, Barbara; Snow, David. 1988. Birds and berries: A study of ecological interaction. Staffordshire, UK: T. & A. D. Poyser. 268 p. [74664]
  • 85. Lhotska, Marie. 1974. The after-ripening of embryos on the mother plant. Folia Geobotanica & Phytotaxonomica. 9(3): 231-240. [79217]
  • 98. Michigan Invasive Plant Council. 2008. Summary statement: Hedera helix--English ivy, [Online]. In: Michigan Plant Invasiveness Assessment System--Assessed plants. East Lansing, MI: Michigan Invasive Plant Council (Producer). Available: http://invasiveplantsmi.org/ [2010, June 25]. [80188]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution ecology

Ivy is native to Europe and western Asia, occurring in woods, hedges and rocky areas. It grows up any suitable surface or creeps along the ground.It thrives on all but the driest, most water-logged or very acid soils and is very tolerant of shade.It has been introduced to many countries, notably the USA and Australia.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Natural History Museum, London

Partner Web Site: Natural History Museum

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Behavior

Behaviour

There has been considerable discussion and controversy, about ivy’s effect on trees, buildings and other structures:
  • clinging roots are thought to penetrate walls causing physical damage to the structure and allowing ingress of water
  • some say it literally strangles trees as the ivy stems become thicker with age
  • heavy growth of ivy on buildings and trees is believed to increase the risk of windthrow - damage caused by the resistance of the foliage to high winds
However, these views have been challenged:
  • well-maintained brickwork is now thought to be relatively unaffected by ivy and even to benefit from the protection the plant covering offers
  • evidence for damage to trees is also disputed
  • good growth of ivy on buildings certainly offers shelter for other wildlife
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Natural History Museum, London

Partner Web Site: Natural History Museum

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Cyclicity

Phenology

More info on this topic.

More info for the terms: cover, phenology

English ivy is evergreen. Leaf initiation occurs primarily from April to May, although leaves may be produced almost continuously from March to October (Metcalfe and Sack unpublished data cited in [97]). The main period of litterfall occurs in late spring [7]. Leaves are long-lived (3-4 years) but show seasonal changes in leaf chlorophyll content, with concentration dipping in mature leaves in early April with the onset of leaf initiation and recovering back to "normal" levels within 3 to 4 weeks (Metcalfe and Sack unpublished data cited in [97]). When grown in shade, English ivy percent canopy cover increased gradually in the spring and summer, peaked in the fall, and declined slightly during the winter. Development was similar for plants grown in the sun, with peaks occurring in the fall; however, percent canopy cover was much less for plants grown in sun [150].

English ivy's flowering period in North America is variable; reports range from late spring to fall (see Table). As of this writing (2010), little had been reported on its fruiting period in North America. One report from the Pacific Northwest indicated that English ivy flowers in the fall and fruits in the spring [146]; however, a local flora for that area gives a flowering period of May through June [60]. In the southeastern United States, English ivy fruits from October to May [99].

Reported flowering periods for English ivy in North America by geographic area
Area Flowering period
Florida Summer [196]
Illinois June-September [103]
Blue Ridge Province June-July [195]
Northeastern United States and adjacent Canada September [46]
Pacific Northwest May-June [60]
Southeast June-October [99]

Available evidence suggests that in its European range, English ivy generally flowers in the fall, and fruit ripens over the winter from December to early spring.

Reported phenology for English Ivy in parts of its European range
Area Event
The former Czechoslovakia fruit ripens in winter [14]
Italy flowers from mid-September to early November [182]
United Kingdom Most plants begins to flower in the fall [52,97,145]; flowering may extend from late August through late November [97,145]. Fruit generally ripens from March-April of the next year; ripening may extend from December (for early-flowering plants) to May (for late-flowering plants) [145]
  • 60. Hitchcock, C. Leo; Cronquist, Arthur; Ownbey, Marion; Thompson, J. W. 1961. Vascular plants of the Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. Seattle, WA: University of Washington Press. 614 p. [1167]
  • 14. Bottema, S. 2001. A note on the pollen representation of ivy (Hedera helix L.). Review of Palaeobotany and Palynology. 117(1-3): 159-166. [78760]
  • 46. Gleason, H. A.; Cronquist, A. 1963. Manual of vascular plants of northeastern United States and adjacent Canada. Princeton, NJ: D. Van Nostrand Company, Inc. 810 p. [7065]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 145. Snow, Barbara; Snow, David. 1988. Birds and berries: A study of ecological interaction. Staffordshire, UK: T. & A. D. Poyser. 268 p. [74664]
  • 182. Vezza, Maurizio; Nepi, Massimo; Guarnieri, Massimo; Artese, Daniele; Rascio, Nicoletta; Pacini, Ettore. 2006. Ivy (Hedera helix L.) flower nectar and nectary ecophysiology. International Journal of Plant Sciences. 167(3): 519-527. [78756]
  • 195. Wofford, B. Eugene. 1989. Guide to the vascular plants of the Blue Ridge. Athens, GA: The University of Georgia Press. 384 p. [12908]
  • 196. Wunderlin, Richard P.; Hansen, Bruce F. 2003. Guide to the vascular plants of Florida. 2nd edition. Gainesville, FL: The University of Florida Press. 787 p. [69433]
  • 150. Stafne, R. A.; Einert, A. E.; Klingaman, G. L. 2005. Fertilizer applications on establishment and growth of three groundcover species in sun and shade. Journal of Environmental Horticulture. 23(3): 157-161. [71717]
  • 7. Badre, Bouchra; Nobelis, Photis; Tremolieres, Michele. 1998. Quantitative study and modelling of the litter decomposition in a European alluvial forest. Is there an influence of overstorey tree species on the decomposition of ivy litter (Hedera helix L.)? Acta Oecologica. 19(6): 491-500. [78763]
  • 99. Miller, James H. 2003. Nonnative invasive plants of southern forests: A field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p. Available online: http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/ [2004, December 10]. [50788]
  • 103. Mohlenbrock, Robert H. 1986. [Revised edition]. Guide to the vascular flora of Illinois. Carbondale, IL: Southern Illinois University Press. 507 p. [17383]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reproduction

Biology and Spread

English ivy spreads locally through vegetative growth and new plants can grow from cut or broken pieces of stems that are able to root in the soil. It disperses longer distances via seed which is carried to new areas by frugivorous birds including the Cedar Waxwing, Northern Robin, Stellar Jay, Mockingbird, European Starling, and House Sparrow.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Evolution and Systematics

Functional Adaptations

Functional adaptation

Nanoparticles block UV light: English ivy
 

Organic nanoparticles secreted by English ivy rootlets absorb and scatter ultraviolet light thanks to large surface-to-volume ratio and uniformity.

   
  "The concern for the biosafety and health risk for the metal-based and engineered nanoparticles in sunscreens has led to the search for alternative replacement nanoparticles. In this study, naturally occurring ivy nanoparticles were investigated to replace TiO2 and ZnO that are currently widely used in sunscreen products. Based on experimental data, we have demonstrated that ivy nanoparticles have the potential levels of UV protection necessary to warrant further investigation for uses in cosmetics. The cell toxicity of ivy nanoparticles was next tested and it was determined that ivy nanoparticles exhibited much less toxicity than widely used TiO2 nanoparticles. Without obtaining the proper marker for experimental determination, a mathematical model was used to analyze the diffusion dynamics in the human skin, especially in the SC layer. Through this analysis, we found ivy nanoparticles with a diameter of 65.3 nm will not reach the bottom of SC layer in normal conditions for short periods of time after application. The biodegradability of these ivy nanoparticles further eliminates concerns regarding environmental contamination and in the case of entry into the body. All of the above studies demonstrated that naturally occurring ivy nanoparticles could be a promising alternative for UV protection in cosmetics, especially with concerns regarding the safety of metal-based nanoparticles. With increased dangers associated with more UV passing through the atmosphere [56], the need to protect human from skin cancer elicits the need for safe and effective UV protective agents. The promising application of these ivy nanoparticles thus provides a better chance to help protect people from UV radiation." (Xia et al. 2010)
  Learn more about this functional adaptation.
  • Xia L; Lenaghan SC; Zhang M; Zhang Z; Li Q. 2010. Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection. Journal of Nanobiotechnology. 8(12):
  • 2010. UT researchers: English ivy may give sunblock a makeover. EurekAlert! [Internet],
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Functional adaptation

Roots attach firmly: English ivy
 

Roots of English ivy can attach to nearly any surface using a multi-step attachment strategy involving glue and shape-changing root hairs.

   
  "English ivy (Hedera helix L.) is able to grow on vertical  substrates such as trees, rocks and house plaster, thereby attaching so   firmly to the surface that when removed by force  typically whole pieces of the climbing substrate are torn off. The  structural details of the attachment process are  not yet entirely understood. We studied the attachment process of  English ivy in detail and suggest a four-phase  process to describe the attachment strategy: (i) initial physical  contact, (ii) form closure of the root with the substrate,   (iii) chemical adhesion [glue], and (iv) shape changes of the root  hairs and form-closure with the substrate [root hairs dry and scrunch  into a spiral shape that locks them into place]. These four phases and  their variations play an important role in the  attachment to differently structured surfaces. We demonstrate that, in  English ivy, different mechanisms work together to  allow the plant's attachment to various climbing substrates and reveal  the importance of micro-fibril orientation in the  root hairs for the attachment based on structural changes at the  subcellular level." (Melzer et al. 2010)

  Learn more about this functional adaptation.
  • Attenborough, D. 1995. The Private Life of Plants: A Natural History of Plant Behavior. London: BBC Books. 320 p.
  • Melzer B; Steinbrecher T; Seidel R; Kraft O; Schwaiger R; Speck T. 2010. The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels. J R Soc Interface.
  • Bourton J. 2010. English ivy's climbing secrets revealed by scientists. BBC Earth News [Internet],
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© The Biomimicry Institute

Source: AskNature

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Molecular Biology

Barcode data: Hedera helix

The following is a representative barcode sequence, the centroid of all available sequences for this species.


Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Hedera helix

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 29
Specimens with Barcodes: 50
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

Canada

Rounded National Status Rank: NNA - Not Applicable

United States

Rounded National Status Rank: NNA - Not Applicable

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: GNR - Not Yet Ranked

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Information on state-level noxious weed status of plants in the United States is available at Plants Database.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Impacts and Control

More info for the terms: alliance, cover, fire management, frequency, hardwood, invasive species, litter, nonnative species, prescribed fire, presence, tree, vine, vines

Impacts: Reports on English ivy's impacts within its North American range are variable. English ivy threatens native plant communities and wildlands in Oregon [106,113], California [17,35], Washington D.C. [169], Kentucky [74], Georgia [45], and Alabama [2]. It is a potential threat in the upper Great Lakes areas [25], Missouri [101], and Tennessee [163]. English ivy is a particularly serious threat to native plant communities in the coastal Pacific Northwest states [106] and was placed on Oregon's list of quarantine species in 2010 [113]. A 1988 publication indicated that English ivy was not widespread in the southeastern United States [19]; however, a more recent review (2007) indicates that English ivy is rapidly invading forests in this area [12]. English ivy impacts may be less in the northeastern United States [33,176] and Canada [20,193].

NatureServe [107] has given English ivy a ranking of medium for its ecological impacts; its impacts to community structure are of greatest concern. The Plant Conservation Alliance [160] considers English ivy a "vigorous" vine that may impact all strata of a forest. In general, English ivy primarily impacts ecological communities by displacing native ground flora, weakening and/or killing host trees and providing opportunity for invasion by other nonnative species [160].

In locations where it is most invasive, English ivy may form near monocultures in the understory [106,160] and suppress growth of ground flora [4,18,24,26,106,146,170]. On Potomac Island in Washington, DC, English ivy suppressed herbs and may have suppressed woody species on upland sites. Because upland sites are not subject to flooding, Thomas [170] speculated that English ivy's impacts may be greater on upland than riparian sites. Thomas further speculated that English ivy's ability to photosynthesize year-round may improve its capacity to suppress the growth of other plants that photosynthesize seasonally [170]. As it spreads, English ivy may eventually displace [140] or inhibit the regeneration of native species [125,190]. Increased shade produced by English ivy may make it difficult for native species to establish in the understory [26]. Because English ivy displaces native plants, wildlife that utilize native plants for forage or cover may also be impacted.

Trees hosting English ivy may be susceptible to windfall during storms [97,125,136,146,160] especially if they are weak [97] or when they are supporting several English ivy stems [136]. Reichard [126] speculated that the additional weight of water or ice on the evergreen leaves of English ivy may increase storm damage to trees. Invasive plant publications suggested that English ivy decreases "vigor" in host trees [99,146], and a study from Oklahoma suggests that English ivy may inhibit development of top and root mass of host trees, particularly maples [141]. Anecdotal information suggests that as English ivy climbs, it covers and kills supporting tree branches by blocking sunlight. The host tree may eventually die from steady weakening [160,170]. American elm trees may be particularly susceptible to weakening by English ivy. In a riparian forest in Washington, DC, 13% of fallen American elm trees had supported English ivy, whereas only 9% of all the other fallen trees species supported English ivy [170].

In a North Carolina riparian forest, English ivy was associated with several other exotic species, and its occurrence was negatively correlated with native species richness (r²= -0.42). Researchers speculate that only the most "aggressive species" were able to coexist with English ivy and that English ivy's presence may promote invasion by other nonnative species because it spreads fast and displaces most native species [183].

Several other ecological impacts of English ivy invasion have been described in the literature, although most have not been well documented. One report from the Pacific Northwest suggested that English ivy may decrease water quality and increase erosion. Researchers have identified English ivy as a host for bacterial leaf scorch (Xylella fastidiosa), a plant pathogen that harms native trees including elms, oaks, and maples [95]. There is some concern that leaf litter from English ivy increases soil nitrogen, which may negatively impact native plant species that grow best in low nutrient conditions (Tremolieres and others 1988 cited in [126]). Based on stream surveys in California, North Dakota, and South Dakota, microinvertebrate frequency was reduced on sites where English ivy occurred in the riparian vegetation compared to sites where it did not occur; however, the difference was not significant [127].

Invasion by English ivy may have societal impacts as well. Trees susceptible to windfall may create a hazard if near roads, walkways, homes, or other developed areas [160]. Loss of shade trees, increased erosion, decreased water quality, and a loss of forest production due to the invasion of English ivy may be costly for public agencies as well as private land owners [146]. In Mediterranean Italy, English ivy growing on old buildings was detrimental to the preservation of an archaeological site [21].

Control: Control of English ivy has received little attention or research. Past research has focused on establishing new cultivars rather than controlling or eliminating the plant [126]. Complicating matters, English ivy continues to be sold at nurseries for landscaping [32,57,150,159], and the American Ivy Society promotes its use in gardens [165].

Fire: For information on the use of prescribed fire to control this species, see Fire Management Considerations.

Prevention: It is commonly argued that the most cost-efficient and effective method of managing invasive species is to prevent their establishment and spread by maintaining "healthy" native communities [91,139] (e.g., avoid road building in wildlands [175]) and by monitoring several times each year [69]. Managing to maintain the integrity of the native plant community and mitigate the factors enhancing ecosystem invasibility is likely to be more effective than managing solely to control the invader [61].

English ivy's escape from cultivation may be slowed or prevented if native species are substituted in landscaping projects. In an attempt to slow English ivy's spread in Oregon, officials have placed English ivy on the list of quarantined species, making it illegal to propagate, transport, purchase, or sell English ivy in that state [113]. It has been suggested that the best way to prevent English ivy invasion is to avoid growing it near forests [25]; however, since its seeds are dispersed by birds (see Seed dispersal), this may not prevent its invasion entirely. One study from the Netherlands suggests that the frequency of English ivy may decrease with increasing size of "woodlot" perimeter [180], so limiting forest fragmentation may reduce English ivy invasion. Thomas [169] suggested that anthropogenic ground disturbance that alters topographic relief may promote invasion by English ivy and other nonnative species and recommended that original topography be restored to sites to preclude or slow English ivy's spread.

Weed prevention and control can be incorporated into many types of management plans, including those for logging and site preparation, grazing allotments, recreation management, research projects, road building and maintenance, and fire management [178]. See the Guide to noxious weed prevention practices [178] for specific guidelines in preventing the spread of weed seeds and propagules under different management conditions.

Cultural control: See Integrated management.

Physical or mechanical control: Several invasive species publications recommend hand removal to control English ivy. Vines may be cut and then pulled down from trees and off the forest floor [25,125,159,190]. Alternatively, English ivy may be pulled up from its roots; however, this method may disturb soil and promote erosion or compaction of the soil [13]. Soil disturbance may facilitate reinvasion by English ivy and/or the establishment of other invasive plants [25,126]. It may be necessary to follow hand removal with additional types of treatments (see Integrated management). Soll [146] cautions that hand removal of English ivy may be costly. In the Pacific Northwest, 2002 cost estimates ranged from $2,000 to $8,000 per acre when paying minimum wage [146].

Researchers in the United Kingdom suggested early thinning of English ivy to help prevent monocultures from forming [56].

Biological control: There are no biological control agents for English ivy. Because English ivy is an important landscape plant and has strong support from the horticultural community, it is extremely unlikely that one will be developed [146]. A study from Oregon evaluated the use of domestic goat browsing to control English ivy in a mixed-deciduous forest where English ivy formed a near monoculture in the groundlayer vegetation. English ivy's average cover declined significantly (P=0.0002) in plots that were browsed by domestic goats compared to unbrowsed plots. Average cover of English ivy was reduced to 23% on sites browsed for 1 year and to 4% on plots browsed for 2 years [66]. In the Netherlands, English ivy invaded a forest and began to climb trees soon after domestic sheep browsing was discontinued [14].

Chemical control: Information pertaining to the chemical control of English ivy is inconsistent. An invasive species report indicated that at best, chemicals offer incomplete control of English ivy [146]. English ivy may be tolerant of preemergent herbicides (Derr 1993 cited in [126]), and its waxy leaves make effective application of postemergent herbicide difficult [190] even when a surfactant is added [126]. Researchers in Portland, Oregon, suggest the under some circumstances, herbicides may provide safe and effective control of English ivy, even during the winter. English ivy's response to chemical control may be influenced by the type of herbicide used, herbicide concentration, and application timing. Herbicide may be most effective when used as a part of an integrated management plan.

Researchers evaluating various chemicals for English ivy control have obtained variable results [13,97,109,161]. For information on using herbicides to control English ivy, see these publications [13,25,109,146,161].

Integrated management: If hand removal is used, follow-up with other types of treatments may improve control. Sprouts from the stumps of cut vines may be treated with herbicide [25,159] or cut repeatedly until sprouting stops [159]. A follow-up planting with native species may help prevent other undesirable plants from becoming established [13,125].

In a Southeastern hardwood forest infested with English ivy, researchers compared the effectiveness of herbicide versus hand-pulling on the establishment of native plants from seed after treatment. In one plot, vines were sprayed with glyphosate (30%) after having their leaves removed. In a 2nd plot, vines were pulled manually from their roots; in a 3rd plot, vines were untreated. Plots were then split; one half was seeded with native seeds, while the other half received no seed additions. Although both treatments reduced English ivy compared to untreated plots, hand-pulling resulted in more native seedlings, increased species richness, and higher species diversity than did spraying. Researchers speculated that ground disturbance from hand-pulling may have facilitated native seedling establishment [13].

  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 4. Anzinger, Dawn; Radosevich, Steven R. 2008. Fire and nonnative invasive plants in the Northwest Coastal bioregion. In: Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L., eds. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 197-224. [70906]
  • 12. Biggerstaff, Matthew S.; Beck, Christopher. 2007. Effects of English ivy (Hedera helix) on seed bank formation and germination. The American Midland Naturalist. 157(2): 250-257. [70399]
  • 14. Bottema, S. 2001. A note on the pollen representation of ivy (Hedera helix L.). Review of Palaeobotany and Palynology. 117(1-3): 159-166. [78760]
  • 19. Carter, Gregory A.; Teramura, Alan H. 1988. Vine photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany. 75(7): 1011-1018. [9317]
  • 61. Hobbs, Richard J.; Humphries, Stella E. 1995. An integrated approach to the ecology and management of plant invasions. Conservation Biology. 9(4): 761-770. [44463]
  • 66. Ingham, Claudia S.; Borman, Michael M. 2010. English ivy (Hedera spp., Araliaceae) response to goat browsing. Invasive Plant Science and Management. 3: 178-181. [79900]
  • 97. Metcalfe, Daniel L. 2005. Biological flora of the British Isles: Hedera helix L. Journal of Ecology. 93(3): 632-648. [78757]
  • 125. Reichard, Sarah. 1996. Hedera helix--English ivy. In: Randall, John M.; Marinelli, Janet, eds. Invasive plants: Weeds of the global garden. Handbook #149. Brooklyn, NY: Brooklyn Botanic Garden: 93. [73462]
  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 136. Schnitzler, Annik; Heuze, Patricia. 2006. Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. Forest Ecology and Management. 236(1): 12-17. [78755]
  • 140. Sholars, Teresa; Golec, Clare. 2007. Rare plants of the redwood forest and forest management effects. In: Standiford, Richard B.; Giusti, Gregory A.; Valachovic, Yana; Zielinski, William J.; Furniss, Michale J., tech. eds. Proceedings of the redwood region forest science symposium: What does the future hold; 2004 March 15-17; Rohnert Park, CA. Gen. Tech. Rep. RSW-GTR-194. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 185-199. [71159]
  • 169. Thomas, L. K., Jr. 1998. Topographic alterations, forest structure, and invasion by English ivy (Hedera helix L.) in the Rock Creek floodplain, Washington, D.C. Natural Areas Journal. 18(2): 164-168. [78765]
  • 170. Thomas, Lindsey Kay, Jr. 1980. The impact of three exotic plant species on a Potomac island. National Park Service Scientific Monograph Series No. 13. Washington, DC: U.S. Department of the Interior, National Park Service. 179 p. [41748]
  • 183. Vidra, Rebecca L.; Shear, Theodore H.; Wentworth, Thomas R. 2006. Testing the paradigms of exotic species invasion in urban riparian forests. Natural Areas Journal. 26(4): 339-350. [65080]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 193. White, David J.; Haber, Erich; Keddy, Cathy. 1993. Invasive plants of natural habitats in Canada: An integrated review of wetland and upland species and legislation governing their control. Ottawa, ON: Canadian Wildlife Service. 121 p. [71462]
  • 139. Sheley, Roger; Manoukian, Mark; Marks, Gerald. 1999. Preventing noxious weed invasion. In: Sheley, Roger L.; Petroff, Janet K., eds. Biology and management of noxious rangeland weeds. Corvallis, OR: Oregon State University Press: 69-72. [35711]
  • 18. Carey, Andrew B. 2002. Globalization of flora: inviting worldwide ecosystem disaster. Renewable Resources Journal. 20(1): 13-17. [45885]
  • 20. Catling, Paul; Mitrow, Gisele. 2005. A prioritized list of the invasive alien plants of natural habitats in Canada. Canadian Botanical Association Bulletin. 38(4): 55-57. [71460]
  • 21. Celesti-Grapow, Laura; Blasi, Carlo. 2004. The role of alien and native weeds in the deterioration of archaeological remains in Italy. Weed Technology. 18: 1508-1513. [79800]
  • 26. D'Antonio, Carla M.; Haubensak, Karen. 1998. Community and ecosystem impacts of introduced species. Fremontia. 26(4): 13-18. [47114]
  • 32. Douglas-Smith, Angela. 2006. Control of Ailanthus altissima (Mill.) Swingle, Albizia julibrissin Durazzini, Hedera helix L. and Paulowina tomentosa (Thunb.) Seib & Zucc. Ex Steud. in three Tidewater Virginia area parks. Newport News, VA: Christopher Newport University. 60 p. Thesis. [72016]
  • 33. Dowhan, Joseph J.; Rozsa, Ron. 1989. Flora of Fire Island, Suffolk County, New York. Bulletin of the Torrey Botanical Club. 116(3): 265-282. [22041]
  • 56. Harmer, Ralph; Peterken, George; Kerr, Gary; Poulton, Paul. 2001. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biological Conservation. 101: 291-304. [79678]
  • 57. Harris, Courtney; Jiang, Hao; Liu, Dongjiao; Brian, Zachary; He, Kate. 2009. Testing the roles of species native origin and family membership in intentional plant introductions using nursery data across the state of Kentucky. Journal of the Torrey Botanical Society. 136(1): 122-127. [79204]
  • 69. Johnson, Douglas E. 1999. Surveying, mapping, and monitoring noxious weeds on rangelands. In: Sheley, Roger L.; Petroff, Janet K., eds. Biology and management of noxious rangeland weeds. Corvallis, OR: Oregon State University Press: 19-36. [35707]
  • 91. Mack, Richard N.; Simberloff, Daniel; Lonsdale, W. Mark; Evans, Harry; Clout, Michael; Bazzaz, Fakhri A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications. 10(3): 689-710. [48324]
  • 95. McElrone, Andrew J.; Sherald, James L.; Pooler, Margaret R. 1999. Identification of alternative hosts of Xylella fastidiosa in the Washington, D.C., area using nested polymerase chain reaction (PCR). Journal of Arboriculture. 25(5): 258-263. [49781]
  • 109. Neal, J. C.; Skroch, W. A. 1985. Effects of timing and rate of glyphosate application on toxicity to selected woody ornamentals. Journal of American Society of Horticultural Scientists. 110: 860-864. [79560]
  • 127. Ringold, Paul L.; Magee, Teresa K.; Peck, David V. 2008. Twelve invasive plant taxa in US western riparian ecosystems. Journal of the North American Benthological Society. 27(4): 949-966. [73064]
  • 150. Stafne, R. A.; Einert, A. E.; Klingaman, G. L. 2005. Fertilizer applications on establishment and growth of three groundcover species in sun and shade. Journal of Environmental Horticulture. 23(3): 157-161. [71717]
  • 161. Talbert, R. E.; Saunders, P. A.; Wallinder, C. J.; Klingman, G. L. 1980. Evaluation of herbicides in field-grown ornamental crops, 1979. Mimeograph Series 277. Fayetteville, AR: University of Arkansas, Division of Agriculture, Agricultural Experiment Station. 15 p. [73900]
  • 175. Tyser, Robin W.; Worley, Christopher A. 1992. Alien flora in grasslands adjacent to road and trail corridors in Glacier National Park, Montana (U.S.A.). Conservation Biology. 6(2): 253-262. [19435]
  • 180. van Ruremonde, R. H. A. C.; Kalkhoven, J. T. R. 1991. Effects of woodlot isolation on the dispersion of plants with fleshy fruits. Journal of Vegetation Science. 2(3): 377-384. [18112]
  • 101. Missouri Botanical Garden. 2002. Missouri exotic pest plants: A list of non-native plants that threaten Missouri's native biodiversity, [Online]. In: MO projects--North America. St. Louis, MO: Missouri Botanical Garden (Producer). Available: http://www.mobot.org/mobot/research/mepp/alphalist.shtml [2009, April 6]. [73559]
  • 2. Alabama Invasive Plant Council. 2007. List of Alabama's invasive plants by land-use and water-use sectors. Alabama Invasive Plant Council (Producer). Available: http://www.se-eppc.org/alabama/2007plantlist.pdf [2009, January 5]. [72714]
  • 13. Biggerstaff, Matthew; Beck, Christopher. 2002. Effects of English ivy (Hedera helix L.) and differences in its removal on regeneration of native vegetation in a southeastern piedmont forest, [Online]. In: SURE (Summer Undergraduate Research Program at Emory): Past programs--Web posters from SURE 2002. Atlanta, GA: Emory University, ScienceNET (Producer). Available: http://www.cse.emory.edu/sciencenet/undergrad/SURE/Posters/2002_biggerstaff.html [2010, May 25]. [79713]
  • 17. California Invasive Plant Council. 2006. California invasive plant inventory, [Online]. California Invasive Plant Council (Producer). Available: http://www.cal-ipc.org/ip/inventory/pdf/Inventory2006.pdf [2009, May 6]. [74015]
  • 24. Csurches, S.; Edwards, R. 1998. Potential environmental weeds in Australia: Candidate species for preventative control. Canberra, ACT: Biodiversity Group, Environment Australia. 202 p. Available online: http://www.weeds.gov.au/publications/books/pubs/potential.pdf [2009, January 9]. [72764]
  • 35. Dudley, Tom; Collins, Beth. 1995. Biological invasions in California wetlands: The impacts and control of non-indigenous species in natural areas. Oakland, CA: Pacific Institute for Studies in Development, Environment, and Security. 59 p. [+ appendices]. [47513]
  • 45. Georgia Exotic Pest Plant Council. 2006. List of non-native invasive plants in Georgia, [Online]. Southeast Exotic Pest Plant Council (Producer). Available: http://www.gaeppc.org/list.cfm [2009, January 5]. [72787]
  • 74. Kentucky Exotic Pest Plant Council. 2008. Invasive exotic plant list, [Online]. Southeast Exotic Pest Plant Council (Producer). Available: http://www.se-eppc.org/ky/list.htm [2009, January 5]. [72785]
  • 99. Miller, James H. 2003. Nonnative invasive plants of southern forests: A field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p. Available online: http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/ [2004, December 10]. [50788]
  • 106. Native Plant Society of Oregon, Emerald Chapter. 2008. Exotic gardening and landscaping plants invasive in native habitats of the southern Willamette Valley, [Online]. In: Invasive plants--Invasive exotic plants list 2008. Native Plant Society of Oregon (Producer). Available: http://www.emeraldnpso.org/PDFs/Invas_Orn.pdf [2009, June 24]. [74811]
  • 107. NatureServe. 2004. International Ecological Classification Standard: terrestrial ecological classifications--Uwharrie National Forest final report, [Online]. Subset of NatureServe central databases. 89 p. In: Publications--library. Arlington, VA: NatureServe (Producer). Available: http://www.natureserve.org/library/uwharrieNF.pdf [2010, August 20]. [79632]
  • 113. Oregon Department of Agriculture. 2010. Noxious weeds quarantine, [Online]. In: Quarantines and control area orders--Noxious weed control. Salem, OR: Oregon Department of Agriculture, Plant Division (Producer). Available: http://egov.oregon.gov/ODA/PLANT/603_052_1200.shtml [2010, June 2]. [80192]
  • 141. Shoup, Steve; Whitcomb, Carl E. 1979. Interactions between trees and ground covers. In: Res. Rep. 791--Report No. 5. [Stillwater, OK]; Oklahoma State University, Agricultural Experiment Station: 56-57. [22579]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 159. Swearingen, J.; Reshetiloff, K.; Slattery, B.; Zwicker, S. 2002. Plant invaders of mid-Atlantic natural areas. [Washington, DC]: U.S. Department of the Interior, National Park Service; Fish and Wildlife Service. 82 p. Available online: http://www.invasive.org/eastern/midatlantic/index.html [2009, November 19]. [54192]
  • 160. Swearingen, Jill M.; Diedrich, Sandra. 2006. Fact sheet: English ivy--Hedera helix L., [Online]. In: Weeds gone wild: Alien plant invaders of natural areas--Fact sheets. Plant Conservation Alliance's Alien Plant Working Group (Producer). Available: http://www.nps.gov/plants/alien/fact/hehe1.htm [2010, June 1]. [80193]
  • 163. Tennessee Exotic Pest Plant Council. 2009. Invasive plants of Tennessee, [Online]. In: TN-EPPC invasive exotic pest plants in Tennessee--December 2009, 2nd edition. Fairview, TN: Tennessee Exotic Pest Plant Council (Producer). Available: http://www.tneppc.org/invasive_plants [2010, June 23]. [80199]
  • 165. The American Ivy Society. 2010. Ivy galleries, [Online]. Silver Spring, MD: The American Ivy Society (Producer). Available: http://www.ivy.org/index.html [2010, May 28]. [80144]
  • 176. U.S. Department of Agriculture, Forest Service, Eastern Region. 2004. Eastern Region invasive plants ranked by degree of invasiveness, [Online]. In: Noxious weeds and non-native invasive plants. Section 3: Invasive plants. Milwaukee, WI: Eastern Region (Producer). Available: http://www.fs.fed.us/r9/wildlife/range/weed/Sec3B.htm [2004, February 16]. [46748]
  • 178. U.S. Department of Agriculture, Forest Service. 2001. Guide to noxious weed prevention practices. Washington, DC: U.S. Department of Agriculture, Forest Service. 25 p. Available online: http://www.fs.fed.us/invasivespecies/documents/FS_WeedBMP_2001.pdf [2009, November 19]. [37889]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Prevention and Control

Do not plant English ivy including invasive cultivars. Individual vines can be pulled by hand when soil is moist. Vines covering the ground can be uprooted and gathered using a heavy-duty rake, then close to the ground with pruning snips, Swedish brush axe or other cutting tool. Gathered vines can be piled up and allowed to desiccate and rot which will occur quickly, in a matter of days. If needed, material can be bagged and disposed of in normal trash. Vines climbing up trees can be cut a few feet from the ground, for convenience, to kill upper portions and then apply systemic herbicide to lower cut portions.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Other uses and values

More info for the term: cover

English ivy is sold as an ornamental plant by nurseries in the United States [32,57,159]. It is widely planted in landscapes because of its evergreen foliage and dependability as a year-round ground cover [32,87,150,159]. English ivy is planted for erosion control in parts of the United States [126] and Serbia [152]. The America Ivy League was formed to promote the propagation and use of English ivy in landscaping and indoor gardening [165]. It is occasionally recommended for landscaping to reduce fire hazard in seasonally dry areas (see Fuels).

Historically, English ivy was used as a topical agent for its antifungal and antimicrobial properties [70].

  • 126. Reichard, Sarah. 2000. Hedera helix. In: Bossard, Carla C.; Randall, John M.; Hoshovsky, Marc C., eds. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 212-216. [79542]
  • 152. Stavretovic, N. 2007. Biological characteristics of the species Hedera helix L. and its use in controlling erosion in shady places. Archives of Biological Sciences. 59(2): 139-143. [78044]
  • 32. Douglas-Smith, Angela. 2006. Control of Ailanthus altissima (Mill.) Swingle, Albizia julibrissin Durazzini, Hedera helix L. and Paulowina tomentosa (Thunb.) Seib & Zucc. Ex Steud. in three Tidewater Virginia area parks. Newport News, VA: Christopher Newport University. 60 p. Thesis. [72016]
  • 57. Harris, Courtney; Jiang, Hao; Liu, Dongjiao; Brian, Zachary; He, Kate. 2009. Testing the roles of species native origin and family membership in intentional plant introductions using nursery data across the state of Kentucky. Journal of the Torrey Botanical Society. 136(1): 122-127. [79204]
  • 70. Jones, J. M.; White, I. R.; White, J. M. L.; McFadden, J. P. 2009. Allergic contact dermatitis to English ivy (Hedera helix)--a case series. Contact Dermatitis. 60(3): 180-180. [78041]
  • 150. Stafne, R. A.; Einert, A. E.; Klingaman, G. L. 2005. Fertilizer applications on establishment and growth of three groundcover species in sun and shade. Journal of Environmental Horticulture. 23(3): 157-161. [71717]
  • 87. Lorenz, David G.; Sharp, W. Curtis.; Ruffner, Joseph D. 1991. Conservation plants for the Northeast. Program Aid 1154. [Washington, DC]: U.S. Department of Agriculture, Soil Conservation Service. 43 p. [47719]
  • 159. Swearingen, J.; Reshetiloff, K.; Slattery, B.; Zwicker, S. 2002. Plant invaders of mid-Atlantic natural areas. [Washington, DC]: U.S. Department of the Interior, National Park Service; Fish and Wildlife Service. 82 p. Available online: http://www.invasive.org/eastern/midatlantic/index.html [2009, November 19]. [54192]
  • 165. The American Ivy Society. 2010. Ivy galleries, [Online]. Silver Spring, MD: The American Ivy Society (Producer). Available: http://www.ivy.org/index.html [2010, May 28]. [80144]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Importance to Livestock and Wildlife

More info for the terms: coma, cover, invasive species

Several invasive species publications indicate that English ivy is of little value to wildlife native to North America [25,125,146,190]. Although some native birds eat the berries (see Seed dispersal), English ivy fruit is preferred primarily by European starlings [146,190]. In the Pacific Northwest, sites dominated by English ivy have lower diversity of mammals, birds, and amphibians compared to uninvaded sites, and appear to be good habitat only for rats [146]. In California, English ivy is unused by most herbivores except nonnative rats [34]. In South Carolina, the leaves of English ivy were important forage for white-tailed deer during the summer [55].

In various parts of its European range, English ivy fruit is eaten by numerous native birds including blackcap, European robin, thrushes, and European starling [14,145]. Wood pigeons are the only know predator of English ivy seed [145]. English ivy foliage is subject to extremely low rates of herbivory in Great Britain [52]. In Denmark, farm animals including cattle, domestic sheep, geese, and peafowl eat the juvenile form of English ivy [14].

Palatability and/or nutritional value: English ivy berries are mildly toxic if overconsumed [8,78,99,145,160]. If ingested, English ivy leaves and berries may cause gastrointestinal upset, diarrhea, hyperactivity, breathing difficulty, coma, fever, dilated pupils, muscular weakness, and lack of coordination [160]. English ivy contains allergens that may affect humans [70].

In Britain, English ivy has one of the most nutritious fruits available to birds. Its fruit contains an especially high fat content [145].

Cover value: In Great Britain, English ivy provides excellent cover for some early-nesting birds [52].

  • 25. Czarapata, Elizabeth J. 2005. Invasive plants of the Upper Midwest: An illustrated guide to their identification and control. Madison, WI: The University of Wisconsin Press. 215 p. [71442]
  • 14. Bottema, S. 2001. A note on the pollen representation of ivy (Hedera helix L.). Review of Palaeobotany and Palynology. 117(1-3): 159-166. [78760]
  • 34. Dudley, Tom. 1998. Exotic plant invasions in California riparian areas and wetlands. Fremontia. 26(4): 24-29. [47116]
  • 52. Grime, J. P.; Hodgson, J. G.; Hunt, R. 1988. Comparative plant ecology: A functional approach to common British species. Boston: Allen & Unwin. 752 p. [79296]
  • 55. Harlow, Richard F.; Urbston, David F.; Williams, James G., Jr. 1979. Forages eaten by deer in two habitats at the Savannah River Plant. Res. Note SE-275. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 4 p. [41846]
  • 125. Reichard, Sarah. 1996. Hedera helix--English ivy. In: Randall, John M.; Marinelli, Janet, eds. Invasive plants: Weeds of the global garden. Handbook #149. Brooklyn, NY: Brooklyn Botanic Garden: 93. [73462]
  • 145. Snow, Barbara; Snow, David. 1988. Birds and berries: A study of ecological interaction. Staffordshire, UK: T. & A. D. Poyser. 268 p. [74664]
  • 190. Weber, Ewald. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Cambridge, MA: CABI Publishing. 548 p. [71904]
  • 8. Barnea, Anat; Harborne, Jeffrey B.; Pannell, C. 1993. What part of fleshy fruits contain secondary components toxic to birds and why? Biochemical Systematics and Ecology. 21(4): 421-429. [79753]
  • 70. Jones, J. M.; White, I. R.; White, J. M. L.; McFadden, J. P. 2009. Allergic contact dermatitis to English ivy (Hedera helix)--a case series. Contact Dermatitis. 60(3): 180-180. [78041]
  • 78. Krochmal, A.; Lavrentiades, G. 1955. Poisonous plants of Greece. Economic Botany. 9(2): 175-189. [71618]
  • 99. Miller, James H. 2003. Nonnative invasive plants of southern forests: A field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p. Available online: http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/ [2004, December 10]. [50788]
  • 146. Soll, Jonathan. 2005. Controlling English ivy (Hedera helix) in the Pacific Northwest, [Online]. In: Control methods--Invasive plant management. In: GIST (Global Invasive Species Team). Arlington, VA: The Nature Conservancy (Producer). Available: http://www.invasive.org/gist/moredocs/hedhel02.pdf [2010, May 27]. [80194]
  • 160. Swearingen, Jill M.; Diedrich, Sandra. 2006. Fact sheet: English ivy--Hedera helix L., [Online]. In: Weeds gone wild: Alien plant invaders of natural areas--Fact sheets. Plant Conservation Alliance's Alien Plant Working Group (Producer). Available: http://www.nps.gov/plants/alien/fact/hehe1.htm [2010, June 1]. [80193]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Risks

Ecological Threat in the United States

English ivy is a vigorous growing vine that impacts all levels of disturbed and undisturbed forested areas, growing both as a ground cover and a climbing vine. As the ivy climbs in search of increased light, it engulfs and kills branches by blocking light from reaching the host tree’s leaves. Branch dieback proceeds from the lower to upper branches, often leaving the tree with just a small green “broccoli head.” The host tree eventually succumbs entirely from this insidious and steady weakening. In addition, the added weight of the vines makes infested trees much more susceptible to blow-over during high rain and wind events and heavy snowfalls. Trees heavily draped with ivy can be hazardous if near roads, walkways, homes and other peopled areas. On the ground, English ivy forms dense and extensive monocultures that exclude native plants. English ivy also serves as a reservoir for Bacterial Leaf Scorch (Xylella fastidiosa), a plant pathogen that is harmful to elms, oaks, maples and other native plants.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

U.S. National Park Service Weeds Gone Wild website

Source: U.S. National Park Service

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecological Threat in the United States

English ivy is an aggressive invader that threatens all vegetation levels of forested and open areas, growing along the ground as well as into the forest canopy. Vines climbing up tree trunks spread out and envelop branches and twigs, blocking sunlight from reaching the host tree’s foliage, thereby impeding photosynthesis. An infested tree will exhibit decline for several to many years before it dies. The added weight of vines also makes trees susceptible to blowing over during storms. English ivy has been confirmed as a reservoir for bacterial leaf scorch (Xylella fastidiosa), a harmful plant pathogen that affects a wide variety of native and ornamental trees such as elms, oaks and maples.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Hedera helix

Hedera helix (common ivy, English ivy, European ivy, or just ivy) is a species of flowering plant in the family Araliaceae, native to most of Europe and western Asia. A rampant, clinging evergreen vine, it is a familiar sight in gardens, waste spaces, on house walls, tree trunks and in wild areas across its native habitat. It is labeled as an invasive species in a number of areas where it has been introduced.

Etymology[edit]

Hedera is the generic term for ivy. The specific epithet helix derives from Ancient Greek "twist, turn" (see: Helix).[1]

Synonyms[edit]

Synonyms include Hedera acuta, Hedera arborea ("tree ivy"),[2] Hedera baccifera, Hedera grandifolia,[3] English Ivy, Bindwood, and Lovestone.

Description[edit]

Ivy growing on a granite crag, Czech Republic.
Stems showing the rootlets used to cling to walls and tree trunks.

Hedera helix is an evergreen climbing plant, growing to 20–30 m (66–98 ft) high where suitable surfaces (trees, cliffs, walls) are available, and also growing as groundcover where there are no vertical surfaces. It climbs by means of aerial rootlets with matted pads which cling strongly to the substrate.

The leaves are alternate, 50–100 mm long, with a 15–20 mm petiole; they are of two types, with palmately five-lobed juvenile leaves on creeping and climbing stems, and unlobed cordate adult leaves on fertile flowering stems exposed to full sun, usually high in the crowns of trees or the top of rock faces.
The flowers are produced from late summer until late autumn, individually small, in 3–5 cm diameter umbels, greenish-yellow, and very rich in nectar, an important late autumn food source for bees and other insects.
The fruit are purple-black to orange-yellow berries 6–8 mm diameter, ripening in late winter,[4] and are an important food for many birds, though somewhat poisonous to humans.

There are one to five seeds in each berry, which are dispersed by birds eating the berries.[5][6][7]

There are three subspecies:[5][8]

  • Hedera helix subsp. helix.
        Central, northern and western Europe. Plants without rhizomes. Purple-black ripe fruit.
  • Hedera helix subsp. poetarum Nyman (syn. Hedera chrysocarpa Walsh).
        Southeast Europe and southwest Asia (Italy, Balkans, Turkey). Plants without rhizomes. Orange-yellow ripe fruit.
  • Hedera helix subsp. rhizomatifera
        McAllister. Southeast Spain. Plants rhizomatiferous. Purple-black ripe fruit.

The closely related species Hedera canariensis and Hedera hibernica are also often treated as subspecies of H. helix,[7][9] though they differ in chromosome number so do not hybridise readily.[6] H. helix can be best distinguished by the shape and colour of its leaf trichomes, usually smaller and slightly more deeply lobed leaves and somewhat less vigorous growth, though identification is often not easy.[7][10]

Range[edit]

Common ivy clinging on a London plane tree in Agde.

It ranges from Ireland northeast to southern Scandinavia, south to Portugal, and east to Ukraine and Iran and northern Turkey.
The northern and eastern limits are at about the −2°C winter isotherm, while to the west and southwest, it is replaced by other species of ivy.[5][6][7][8][9][11]

Cultivation and uses[edit]

Ivy-covered entrance to Malbork Castle.

It is widely cultivated as an ornamental plant. Within its native range, the species is greatly valued for attracting wildlife. The flowers are visited by over 70 species of nectar-feeding insects, and the berries eaten by at least 16 species of birds. The foliage provides dense evergreen shelter, and is also browsed by deer.[5][12]

The species can become a nuisance in gardens, rapidly colonising hedges, trees and borders if not kept in check. It can even invade neglected lawns. Over 30 cultivars have been selected for such traits as yellow, white, variegated (e.g. 'Glacier'), and/or deeply lobed leaves (e.g. 'Sagittifolia'), purple stems, and slow, dwarfed growth.[13]

The following cultivars have gained the Royal Horticultural Society's Award of Garden Merit:-

  • 'Glacier'[18]
  • 'Goldchild'[19]
  • 'Manda's Crested'[20]      

Ethnomedical uses[edit]

In the past, the leaves and berries were taken orally as an expectorant to treat cough and bronchitis.[24] In 1597, the British herbalist John Gerard recommended water infused with ivy leaves as a wash for sore or watering eyes.[25] The leaves can cause severe contact dermatitis in some people.[26][27] People who have this allergy (strictly a Type IV hypersensitivity) are also likely to react to carrots and other members of the Apiaceae as they contain the same allergen, falcarinol.

Invasive species[edit]

Like other exotic species, Ivy has predominantly been spread to areas by human action. H. helix is labeled as an invasive species in many parts of the United States, and its sale or import is banned in the state of Oregon.[28]

Laurus nobilis and Ilex aquifolium are widespread relicts of the laurisilva forests that originally covered much of the Mediterranean Basin when the climate of the region was more humid during the tertiary era. Having disappeared during the glaciation, Ivy is believed to have been spread back across the continent by birds once the continent warmed up again.[29] With a great capacity for adaptation, Ivy will grow wherever development conditions and habitat similar to that of its European origins exist, occurring as opportunistic species across a wide distribution with close vicariant relatives and few species, indicating recent speciation.

Australia[edit]

It is considered a noxious weed across southern, particularly south-eastern, Australia and local councils provide free information and limited services for removal. In some councils it is illegal to sell the plant. It is a weed in the Australian state of Victoria.[30]

New Zealand[edit]

H. helix has been listed as an "environmental weed" by the Department of Conservation since 1990.[31]

United States[edit]

In the United States, H. helix is considered weedy or invasive in a number of regions and is on the official noxious weed lists in Oregon and Washington.[32] Like other invasive vines such as kudzu, H. helix can grow to choke out other plants and create "ivy deserts". State- and county-sponsored efforts are encouraging the destruction of ivy in forests of the Pacific Northwest and the Southern United States.[33][34] Its sale or import is banned in Oregon.[35] Ivy can easily escape from cultivated gardens and invade nearby parks, forests and other natural areas. Ivy can climb into the canopy of trees in such density that the trees fall over from the weight,[34] a problem which does not normally occur in its native range.[5] For this reason, it is especially important to remove ivy from trees, creating "survival rings". In its mature form, dense ivy can destroy habitat for native wildlife and creates large sections of solid ivy where no other plants can develop.[34]

Damage to buildings[edit]

Ivy covering the walls of an old building is a familiar and often attractive sight. It may have insulating benefits, but can be problematic if not managed correctly. Ivy, and especially European ivy (H. helix) grows extremely rapidly and clings by means of fibrous roots which develop along the entire length of the stems. These are difficult to remove, leaving an unsightly "footprint" on walls, and possibly resulting in expensive resurfacing work. Additionally, ivy can quickly invade gutters and roofspaces, lifting tiles and causing blockages. It also harbours mice and other unwelcome creatures. The plants have to be cut off at the base, and the stumps dug out or killed to prevent regrowth.[36]

References[edit]

  1. ^ Harrison, Lorraine (2012). RHS Latin for gardeners. United Kingdom: Mitchell Beazley. p. 224. ISBN 978-1-84533-731-5. 
  2. ^ Bean, W. J. (1978) Trees and Shrubs Hardy in the British Isles Volume 2.
  3. ^ International Plant Names Index
  4. ^ RHS A-Z encyclopedia of garden plants. United Kingdom: Dorling Kindersley. 2008. p. 1136. ISBN 1-4053-3296-4. 
  5. ^ a b c d e Metcalfe, D. J. (2005). Biological Flora of the British Isles no. 268 Hedera helix L. Journal of Ecology 93: 632–648.
  6. ^ a b c McAllister, H. (1982). New work on ivies. Int. Dendrol. Soc. Yearbook 1981: 106-109.
  7. ^ a b c d Flora of NW Europe
  8. ^ a b Ackerfield, J. & Wen, J. (2002). A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia sér. 3, 24 (2): 197-212.
  9. ^ a b Flora Europaea: Hedera helix
  10. ^ The Holly and the Ivy. Shropshire Botanical Society Newsletter Autumn 2000: page 14
  11. ^ Stace, C. A. & Thompson, H. (1997). New Flora of the British Isles. Cambridge University Press ISBN 0-521-58935-5
  12. ^ Plant for Wildlife: Common Ivy (Hedera helix)
  13. ^ NCCPG Plant Heritage: The common ivy
  14. ^ "RHS Plant Selector - Hedera helix 'Angularis aurea'". Retrieved 21 June 2013. 
  15. ^ "RHS Plant Selector - Hedera helix 'Caecilia'". Retrieved 21 June 2013. 
  16. ^ "RHS Plant Selector - Hedera helix 'Congesta'". Retrieved 21 June 2013. 
  17. ^ "RHS Plant Selector - Hedera helix 'Duckfoot'". Retrieved 21 June 2013. 
  18. ^ "RHS Plant Selector - Hedera helix 'Glacier'". Retrieved 21 June 2013. 
  19. ^ "RHS Plant Selector - Hedera helix 'Goldchild'". Retrieved 21 June 2013. 
  20. ^ "RHS Plant Selector - Hedera helix 'Manda's Crested'". Retrieved 21 June 2013. 
  21. ^ "RHS Plant Selector - Hedera helix 'Midas Touch'". Retrieved 21 June 2013. 
  22. ^ "RHS Plant Selector - Hedera helix 'Parsley Crested'". Retrieved 21 June 2013. 
  23. ^ "RHS Plant Selector - Hedera helix 'Spetchley'". Retrieved 21 June 2013. 
  24. ^ Bown. D. (1995). Encyclopaedia of Herbs and their Uses. Dorling Kindersley, London. ISBN 0-7513-0203-1
  25. ^ Gerard, John; Woodward, Marcus (ed.) (1985). Gerard's Herbal: The History of Plants. New York: Crescent Books. ISBN 0-517-46470-5 
  26. ^ Jøhnke, H & Bjarnason, B. (1994). Contact dermatitis allergy to common ivy (Hedera helix L.). Ugeskr. Laeger 156 (25): 3778–3779. Abstract
  27. ^ Boyle, J. & Harman, R. M. H. (2006). Contact dermatitis to Hedera helix (Common Ivy). Contact Dermatitis 12 (2): 111–112. doi:10.1111/j.1600-0536.1985.tb01067.x
  28. ^ Oregon bans sale of English ivy, butterfly bushes
  29. ^ http://www.invasive.org/browse/subinfo.cfm?sub=3027
  30. ^ "English Ivy (Hedera helix)". The State of Victoria. Retrieved 17 September 2010. 
  31. ^ Howell, Clayson (May 2008). Consolidated list of environmental weeds in New Zealand. DRDS292. Wellington: Department of Conservation. ISBN 978-0-478-14413-0. Retrieved 2009-05-06. 
  32. ^ USDA Plants Profile: Hedera helix
  33. ^ Ivy chasers in a league of their own
  34. ^ a b c Controlling English Ivy Arlington County, Virginia Department of Parks, Recreation and Community Resources.
  35. ^ Controlling English Ivy. Northwest Coalition for Alternatives to Pesticides.
  36. ^ "Ivy on buildings". Royal Horticultural Society. Retrieved 21 June 2013. 
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy

The scientific name of English ivy is Hedera helix L. (Araliaceae) [20,60,72,92,103,122,138]. Surveys conducted in 2006 of invasive populations of English ivy
in British Columbia, Washington, and Oregon suggest that most populations in those areas may be H. hibernica rather than H. helix [66]. The
North American range of H. hibernica was previously thought to be limited to North Carolina and South Carolina [179]. This change, however, has not been acknowledged by North American taxonomic sources as of this writing (2010) [67,72,179]. H. hibernica is not listed in regional floras for that area [60,138] and will not be further considered in this review.

Two subspecies of English ivy are recognized in Europe [70]:
H. helix L. subsp. canariensis (Willd.) Cout.

H. helix L. subsp. helix
English ivy has numerous cultivars [30,31,89,186]. The American Ivy League indicates there are 400 distinct cultivars developed in North America and other countries that are distinguished primarily by their morphology, growth rate, and hardiness to adverse growing conditions (e.g., full sun, cold temperatures) [158].
  • 30. Diggs, George M., Jr.; Lipscomb, Barney L.; O'Kennon, Robert J. 1999. Illustrated flora of north-central Texas. Sida Botanical Miscellany, No. 16. Fort Worth, TX: Botanical Research Institute of Texas. 1626 p. [35698]
  • 60. Hitchcock, C. Leo; Cronquist, Arthur; Ownbey, Marion; Thompson, J. W. 1961. Vascular plants of the Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. Seattle, WA: University of Washington Press. 614 p. [1167]
  • 31. Dirr, Michael A.; Heuser, Charles W., Jr. 1987. The reference manual of woody plant propagation: From seed to tissue culture. Athens, GA: Varsity Press, Inc. 239 p. [16999]
  • 66. Ingham, Claudia S.; Borman, Michael M. 2010. English ivy (Hedera spp., Araliaceae) response to goat browsing. Invasive Plant Science and Management. 3: 178-181. [79900]
  • 92. Magee, Dennis W.; Ahles, Harry E. 2007. Flora of the Northeast: A manual of the vascular flora of New England and adjacent New York. 2nd ed. Amherst, MA: University of Massachusetts Press. 1214 p. [74293]
  • 122. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606]
  • 138. Scoggan, H. J. 1978. The flora of Canada. Part 4: Dicotyledoneae (Dictoyledonceae to Compositae). National Museum of Natural Sciences: Publications in Botany, No. 7(4). Ottawa: National Museums of Canada. 1711 p. [78054]
  • 20. Catling, Paul; Mitrow, Gisele. 2005. A prioritized list of the invasive alien plants of natural habitats in Canada. Canadian Botanical Association Bulletin. 38(4): 55-57. [71460]
  • 70. Jones, J. M.; White, I. R.; White, J. M. L.; McFadden, J. P. 2009. Allergic contact dermatitis to English ivy (Hedera helix)--a case series. Contact Dermatitis. 60(3): 180-180. [78041]
  • 89. Mack, James A.; Swasey, James E. 1988. Evaluation of selected Hedera helix cultivars. HortScience. 23(3): 801. Abstract. [78770]
  • 158. Sulgrove, Sabina Mueller. 1987. Six hardy ground covers from the American Ivy Society. American Nurseryman. 165: 116-129. [79754]
  • 72. Kartesz, John T. 1999. A synonymized checklist and atlas with biological attributes for the vascular flora of the United States, Canada, and Greenland. 1st ed. In: Kartesz, John T.; Meacham, Christopher A. Synthesis of the North American flora (Windows Version 1.0), [CD-ROM]. Chapel Hill, NC: North Carolina Botanical Garden (Producer). In cooperation with: The Nature Conservancy; U.S. Department of Agriculture, Natural Resources Conservation Service; U.S. Department of the Interior, Fish and Wildlife Service. [36715]
  • 67. ITIS Database. 2010. Integrated taxonomic information system, [Online]. Available: http://www.itis.gov/index.html. [51763]
  • 103. Mohlenbrock, Robert H. 1986. [Revised edition]. Guide to the vascular flora of Illinois. Carbondale, IL: Southern Illinois University Press. 507 p. [17383]
  • 179. U.S. Department of Agriculture, Natural Resources Conservation Service. 2010. PLANTS Database, [Online]. Available: http://plants.usda.gov/. [34262]
  • 186. Wagner, Warren L.; Herbst, Derral R.; Sohmer, S. H., eds. 1999 [Revised edition]. Manual of the flowering plants of Hawai'i. Volume 1. Bishop Museum Special Publication 97. Honolulu, HI: University of Hawai'i Press; Bishop Museum Press. 988 p. [70167]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Common Names

English ivy

common ivy

ivy

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!