Articles on this page are available in 1 other language: Spanish (1) (learn more)

Overview

Brief Summary

Pinaceae -- Pine family

    Barton M. Blum

    Red spruce (Picea rubens), also known as yellow spruce, West  Virginia spruce, eastern spruce, and he-balsam, is one of the more  important conifers in the northeastern United States and adjacent Canada.  It is a medium-size tree that may grow to be more than 400 years old. The  wood of red spruce is light in color and weight, straight grained, and  resilient. It is used for making paper, for construction lumber, and for  musical stringed instruments. Its many uses rival those of eastern white  pine (Pinus strobus) (21).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Picea rubens, generally called red spruce, is one of the more important coniferous trees in the northeastern United States and adjacent Canada. Also called yellow spruce, West Virginia spruce, eastern spruce, and he-balsam, it is a medium-size tree that may grow to be more than 400 years old. Red spruce wood is used for making paper, for construction lumber, and for musical stringed instruments. Its many uses rival those of eastern white pine (Pinus strobus).

The range of red spruce extends from the Maritime Provinces of Canada west to Maine, southern Quebec, and southeastern Ontario, and south into central New York, eastern Pennsylvania, northern New Jersey, and Massachusetts. It also grows south along the Appalachian Mountains in extreme western Maryland, and eastern West Virginia, and north and west in Virginia, western North Carolina, and eastern Tennessee.

Red spruce sometimes occurs in pure stands, and is a major component of several forest types, or it may be found mixed with other conifers and hardwoods. Its shallow root system, thin bark, and flammable needles make trees of all ages very susceptible to fire damage. The acreage of red spruce originally present in the southern Appalachians has been reduced to a fraction of what it once was by fire and clear cutting; it is also susceptible to damage from acid rain.

The most important insect enemy of red spruce is the spruce budworm, Choristoneura fumiferana. Although red spruce is much less vulnerable to damage than balsam fir or white spruce, largely due to later bud flushing in the spring, much damage and mortality occur in stands containing large quantities of mature balsam fir.

Red spruce wood is light in color and weight, straight-grained, and resilient. The wood of red spruce, white spruce (Picea glauca), and black spruce (Picea mariana) cannot be distinguished with certainty by either gross characteristics or minute anatomy, and all three are usually marketed simply as eastern spruce. Chief uses are for lumber and pulpwood, with limited amounts going into poles piling, boatbuilding stock, and cooperage stock. Flakeboard and plywood have been made from spruce in recent years. It is also the preferred wood for piano sounding boards, guitars, mandolins, organ pipes, and violin bellies. A unique use of red spruce was spruce gum, an exudate that accumulates on trunk wounds. This was the raw material for a flourishing chewing-gum industry in Maine during the last half of the 19th century and early years of this century.

Forests with red spruce support diverse wildlife, including many songbirds, ruffed grouse, snowshoe hare, and woodcock, and provide important winter cover for deer and moose. Bird, porcupines, bears, deer, yellow-bellied sapsuckers, and red squirrels all browse or eat various parts of the trees, included twigs, foliage, and vegetative and reproductive buds. Mice and voles consume and store significant amounts of spruce seeds in preference to those of balsam fir, suggesting one reason for the low ratio of spruce to fir seedlings commonly found in naturally regenerated stands.

Excerpted and edited from Blum 1990.

Public Domain

Barton M. Blum

Supplier: Jacqueline Courteau

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Comprehensive Description

Description

Red spruce reaches heights of 60 to 80 feet with trunk diameters of nearly two feet. Larger sizes are attained in the southern Appalachians. Needles are four sided, dark, shiny, yellow-green, and about 1/2 inch long, growing singly from all sides of the twigs and branches. The slender new twigs have a reddish coat of down through the first year. This, together with the short incurved needles, help distinguish red spruce from most other spruces. There are about 139,000 seeds per pound.

Public Domain

USDA NRCS Plant Materials Program

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

National Distribution

Canada

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

United States

Origin: Native

Regularity: Regularly occurring

Currently: Present

Confidence: Confident

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Red spruce occurs from Cape Breton Island, Nova Scotia, and New
Brunswick, west to Maine, southern Quebec, and southeastern Ontario, and
south to central New York, northeastern Pennsylvania, northern New
Jersey, and northeastern Massachusetts. Its range extends south in the
Appalachian Mountains of extreme western Maryland, eastern West
Virginia, northern and western Virginia, western North Carolina, and
eastern Tennessee [48].
  • 48. Little, Elbert L., Jr. 1979. Checklist of United States trees (native and naturalized). Agric. Handb. 541. Washington, DC: U.S. Department of Agriculture, Forest Service. 375 p. [2952]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Occurrence in North America

CT ME MD MA NH NJ NY NC PA TN
VT VA WV NB NS PE PQ

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

The range of red spruce extends from the Maritime Provinces of Canada  west to Maine, southern Quebec, and southeastern Ontario, and south into  central New York, eastern Pennsylvania, northern New Jersey, and  Massachusetts. It also grows south along the Appalachian Mountains in  extreme western Maryland, and eastern West Virginia, and north and west in  Virginia, western North Carolina, and eastern Tennessee. Discontinuous  stands may also be found in Haliburton Township, in Algonquin Provincial  Park, and near Sturgeon Falls in Nippising Township, and in the  southwestern Parry Sound District in Ontario, Canada.

     
- The native range of red spruce.

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution and adaptation

In northern New England it is found mainly on shallow till soils that average about 18 inches deep to a compact layer. At higher elevations it often grows in organic soils overlying rocks. On poorly drained soils, lack of aeration limits its growth. In the northern part of its range, red spruce grows at elevations from near sea level to about 4,500 feet. In the southern Appalachians it is limited to slopes and mountain tops above 3,500 feet in West Virginia and above 4,500 feet in Tennessee and North Carolina.

Unfortunately, red spruce is showing damage from air pollution throughout its range, particularly at the higher elevations.

For a current distribution map, please consult the Plant Profile page for this species on the PLANTS Website.

Public Domain

USDA NRCS Plant Materials Program

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Morphology

Description

Trees to 40m; trunk to 1m diam.; crown narrowly conic. Bark gray-brown to reddish brown. Branches horizontally spreading; twigs not pendent, rather stout, yellow-brown, densely pubescent to glabrate. Buds reddish brown, 5--8mm, apex acute. Leaves 0.8--2.5(--3)cm, 4-angled in cross section, somewhat flexuous, yellow-green to dark green, not glaucous, bearing stomates on all surfaces, apex mostly acute to sharp-pointed. Seed cones 2.3--4.5(--5)cm; scales broadly fan-shaped, broadest near apex, 8--12 ´ 8--12mm, stiff, margin at apex entire to irregularly toothed. 2 n =24.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 1 person

Average rating: 3.0 of 5

Description

More info for the terms: duff, tree

Red spruce is a native, evergreen conifer. It is a medium-sized tree,
attaining a maximum height of 115 feet (35 m); the average mature height
is 60 to 75 feet (18-23 m). The ovulate cones are 1.3 to 1.5 inches
(3-4 cm) long, with rigid rounded scales that are often slightly toothed
on the edges. Red spruce is very shallow rooted; most of the feeding
roots occur in the duff and top few centimeters of soil. In Maine, the
average depth of roots was 13 inches (33 cm), with a maximum depth of 22
inches (56 cm) [9]. Red spruce is long-lived, often achieving ages
greater than 350 years [1].
  • 1. A. D. Revill Associates. 1978. Ecological eff. of fire and its mgmt. in Canada's national parks: a synthesis of the literature. Vols 1&2. Lit. Rev. & Annot. Bibliography. Ottawa, ON: Parks Canada, National Parks Branch, Natural Resources Division. 345 p. [3416]
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Physical Description

Tree, Evergreen, Monoecious, Habit erect, Trees without or rarely having knees, Tree with bark rough or scaly, Young shoots 3-dimensional, Buds resinous, Buds not resinous, Leaves needle-like, Leaves alternate, Needle-like leaf margins entire (use magnification), Leaf apex acute, Leaves < 5 cm long, Leaves < 10 cm long, Leaves yellow-green above, Leaves yellow-green below, Leaves not blue-green, Needle-like leaves 4-angled, Needle-like leaves not twisted, Needle-like leaf habit erect, Needle-like leaf habit drooping, Needle-like leaves per fascicle mostly 1, Needle-like leaf sheath early deciduous, Needle-like leaf sheath persistent, Twigs pubescent, Twigs densely pubescent, Twigs viscid, Twigs not viscid, Twigs with peg-like projections or large fascicles after needles fall, Berry-like cones orange, Woody seed cones < 5 cm long, Bracts of seed cone included, Seeds brown, Seeds winged, Seeds unequally winged, Seed wings prominent, Seed wings equal to or broader than body.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

Stephen C. Meyers

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Diagnostic Description

Synonym

Picea australis Small; P. nigra (Aiton) Link var. rubra (DuRoi) Engelmann; P. rubra (DuRoi) Link 1831, not A.Dietrich 1824
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Habitat and Ecology
Picea rubens occurs from near sea level on the coasts of the maritime provinces of Canada, to the higher slopes of the Appalachian Mountains (1,100 m to 1,500 m a.s.l.). In the NE lowland areas the species grows mainly on acid soils (pH 4-5.5) of alluvial origin, in the mountains also on acidic, peaty or rocky soils generally unfavorable for most of the other tree species of NE North America. It is climatically restricted to areas with a cool, moist oceanic climate, with annual precipitation between 875 mm and 2,000 mm (increasing with elevation). It is commonly mixed with Picea glauca or Abies balsamea, more rarely with Picea mariana, which occupies swamps and bogs but may extend to drier sites. Rare or local associated conifers are Abies fraseri, Tsuga canadensis, Pinus strobus, and Chamaecyparis thyoides. Broad-leaved trees can be common or dominant, especially on better soils.

Systems
  • Terrestrial
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat characteristics

More info for the term: cover

Red spruce grows in climates with cool, moist summers and cold winters
[74]. In the northeastern United States, the mean annual precipitation
ranges from 36 to 52 inches (910-1,320 mm) and is often higher in the
mountainous terrain where red spruce occurs, due to fog drip. Snow
cover averages 80 to 160 inches (203-406 cm), with 100 to 140 days of
snow cover per year [9].

Most of the soils on which red spruce occurs are developed from glacial
deposits. The most productive soils are derived from parent materials
of unsorted glacial drift and till deposited on the midslopes of hills
and mountains. Soils on red spruce sites are usually acid Spodosols,
Inceptisols, and sometimes Histosols with thick mor humus and a
well-defined A2 horizon. Soil pH ranges from 4.0 to 5.5. Red spruce is
often found on sites that are unfavorable for other species, such as
organic soils overlying rocks in mountainous locales, on steep rocky
slopes with thin soils, and in wet bottomlands [9].

In the northern part of its range, red spruce occurs at elevations
ranging from sea level to 4,500 feet (0-1,370 m), above which it is
usually replaced by balsam fir (Abies balsamea). The elevational
zonation of species is defined as follows [67]:

up to 1,485 feet (450 m) northern hardwoods (hemlock phase)
1,486 to 2,508 feet (451- 760 m) northern hardwoods (spruce phase)
2,508 to 4,026 feet (761-1,220 m) subalpine (spruce-fir phase)
4,027 to 4,785 feet (1,221-1,450 m) subalpine (fir phase)

In the southern Appalachian Mountains, red spruce occurs at elevations
from about 3,200 feet to 6,200 feet (980-1,890 m); above 6,200 feet
(1,890 m), red spruce tends is usually replaced by Fraser fir (Abies
fraseri) [59].
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]
  • 59. Oosting, H. J.; Billings, W. D. 1951. A comparison of virgin spruce-fir forest in the northern and southern Appalachian system. Ecology. 32(1): 84-103. [11236]
  • 67. Reiners, William A,; Lang, Gerald E. 1979. Vegetational patterns and processes in the balsam fir zone, White Mountains, New Hampshire. Ecology. 60(2): 403-417. [14869]
  • 74. Saunders, Paul R.; Smathers, Garrett A.; Ramseur, George S. 1983. Secondary succession of a spruce-fir burn in the Plott Balsam Mountains, North Carolina. Castanea. 48(1): 41-47. [8658]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Key Plant Community Associations

More info for the terms: bryophytes, codominant, cover, fern, lichens, natural, tree

Red spruce is a common dominant or codominant in the red spruce and the
spruce-fir forests of the northeastern United States and adjacent
Canada.

Shrub associates of red spruce in the Adirondack Mountains of New York
include red raspberry (Rubus idaeus), dwarfed blackberry (R. pubescens),
hobblebush (Viburnum alnifolium), Canada yew (Taxus canadensis), and
American fly honeysuckle (Lonicera canadensis). Ground layer herbs
include wild sarsaparilla (Aralia nudicaulis), Aster acuminatus, yellow
beadlily (Clintonia borealis), and common wood-sorrel (Oxalis montana).
Common bryophytes found in old-growth red spruce forests in the
Adirondacks include Brotherella recurvans, Schreber's moss (Pleurozium
schreberi), Polytrichum ohioense, mountain fern moss (Hylocomium
splendens), Bazzania trilobata, ptilium (Ptilium crista-castrensis),
Drepanocladus uncinatus, Dicranum scoparium, and D. montanum [47].

In the southern Appalachian Mountains, arboreal associates include
Fraser fir (Abies fraseri), yellow buckeye (Aesculus octandra), sweet
birch (Betula lenta), and black cherry (Prunus serotina) in addition to
those found in the northern part of its range [59,79,87]. Understory
associates in openings include rhododendrons (Rhododendron spp.),
American mountain-ash (Sorbus americana), and wild raisin (Viburnum
cassinoides). Other understory associates include highbush cranberry
(Viburnum edule), mountain holly (Ilex montana), mountain laurel (Kalmia
latifolia), speckled alder (Alnus rugosa), pin cherry (Prunus
pensylvanica), serviceberry (Amelanchier spp.), raspberries (Rubus
spp.), and blueberries and huckleberries (Vaccinium spp.). In closed
red spruce stands, mosses, lichens, and clubmosses predominate in the
understory along with wood sorrel (Oxalis spp.), trillium (Trillium
spp.), and checkerberry wintergreen (Gaultheria procumbens) [79].

Publications describing habitat or cover types in which red spruce is
dominant or codominant include:

(1) Proceedings of the Region 9 Land Systems conference on the White
Mountain National Forest [5]
(2) The Hubbard Brook ecosystem study: composition and dynamics of the
tree stratum [11]
(3) Ground vegetation patterns of the spruce-fir area of the Great
Smoky Mountains National Park [14]
(4) Spruce-fir forests of the coast of Maine [16]
(5) Forest type studies in the Adirondack region [31]
(6) The classification and evaluation of site for forestry [33]
(7) The identification and description of forest sites [34]
(8) Old-growth forests of Adirondack Park, New York [47]
(9) Vegetation-environment relationships in virgin, middle elevation
forests in the Adirondack Mountains, New York [68]
(10) Natural ecological communities of New York State [71]
  • 87. Wright, Henry A.; Bailey, Arthur W. 1982. Fire ecology: United States and southern Canada. New York: John Wiley & Sons. 501 p. [2620]
  • 5. Fay, Stephen C.; Alvis, Richard. 1993. White Mountain landscapes. Laconia, NH: U.S. Department of Agriculture, Forest Service, Region 9, White Mountain National Forest. 76 p. Working draft. [21663]
  • 11. Bormann, F. H.; Siccama, T. G.; Likens, G. E.; Whittaker, R. H. 1970. The Hubbard Brook ecosystem study: composition and dynamics of the tree stratum. Ecological Monographs. 40(4): 373-388. [21173]
  • 14. Crandall, Dorothy L. 1958. Ground vegetation patterns of the spruce-fir area of the Great Smoky Mountains National Park. Ecological Monographs. 28(4): 337-360. [11226]
  • 16. Davis, Ronald B. 1966. Spruce-fir forests of the coast of Maine. Ecological Monographs. 36(2): 79-94. [8228]
  • 31. Heimburger, Carl C. 1934. Forest-type studies in the Adirondack Region. Memoir 165. Ithaca, NY: Cornell University, Agricultural Experiment Station. 122 p. [21495]
  • 33. Hills, G. A. 1952. The classification and evaluation of site for forestry. Res. Rep. No. 24. Toronto, ON: Ontario Department of Lands and Forests, Division of Research. 41 p. [21494]
  • 34. Hills, G. A. 1954. Field methods for investigating site: A. The detailed site description form. (Part IV of Bulletin "The forest sites of Ontario). Site Research Manual No. 4. Toronto, ON: Department of Lands and Forests, Research Division. 104 p. [21889]
  • 47. Leopold, Donald J.; Reschke, Carol; Smith, Daniel S. 1988. Old-growth forests of Adirondack Park, New York. Natural Areas Journal. 8(3): 166-189. [13998]
  • 59. Oosting, H. J.; Billings, W. D. 1951. A comparison of virgin spruce-fir forest in the northern and southern Appalachian system. Ecology. 32(1): 84-103. [11236]
  • 68. Roman, John Ross. 1980. Vegetation-environment relationships in virgin, middle elevation forests in the Adirondack Mountains, New York. Syracuse, NY: State University of New York. PhD. Dissertation. Dissertation Abstracts International. 41(3): 807-B. [21154]
  • 71. Reschke, Carol. 1990. Ecological communities of New York State. Latham, NY: New York State Department of Environmental Conservation, New York Natural Heritage Program. 96 p. [21441]
  • 79. Trimble, George R., Jr.; Patric, James H.; Gill, John D.; [and others]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Plant Associations

More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

K096 Northeastern spruce - fir forest
K097 Southeastern spruce - fir forest
K108 Northern hardwoods - spruce forest

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Ecosystem

More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

FRES10 White - red - jack pine
FRES11 Spruce - fir
FRES18 Maple - beech - birch
FRES19 Aspen - birch

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat: Cover Types

More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

5 Balsam fir
12 Black spruce
16 Aspen
17 Pin cherry
18 Paper birch
21 Eastern white pine
22 White pine - hemlock
23 Eastern hemlock
24 Hemlock - yellow birch
25 Sugar maple - beech - yellow birch
27 Sugar maple
30 Red spruce - yellow birch
31 Red spruce - sugar maple - beech
32 Red spruce
33 Red spruce - balsam fir
34 Red spruce - Fraser fir
35 Paper birch - red spruce - balsam fir
37 Northern white-cedar
60 Beech - sugar maple
107 White spruce
108 Red maple

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Soils and Topography

The soils where red spruce and its associates grow are mostly acid  Spodosols, Inceptisols, and sometimes Histosols with a thick mor humus and  a well-defined A2 horizon- characteristics  commonly associated with abundant rainfall, cool climates, and softwood  cover (11). Commonly, the pH of these soils ranges from 4.0 to 5.5. In  northern New England, red spruce is found predominantly on shallow till  soils that average about 46 cm (18 in) to a compact layer. It will grow on  many sites unfavorable for other species, such as organic soils overlying  rocks in mountainous locations, steep rocky slopes, thin soils, and wet  bottomland (26). On poorly drained soils, lack of aeration limits  growth (22).

    In the northern part of its range, red spruce grows at elevations from  near sea level to about 1370 m (4,500 ft) (22). In the southern  Appalachian Mountains it comes in at elevations as low as 1370 m (4,500  ft) and from there to about 1520 m (5,000 ft) it is mixed with hardwoods  and eastern hemlock (Tsuga canadensis). At 1520 m (5,000 ft)  balsam fir (Abies balsamea) joins with red spruce to form the  dominant spruce-fir climax type. In West Virginia, spruce-fir stands are  found as low as 980 m (3,200 ft). Above 1890 m (6,200 ft) in the southern  Appalachians, red spruce appears less frequently than Fraser fir (Abies  fraseri) (47). In the White Mountains of New Hampshire, balsam fir is  the predominant species above 1220 m (4,000 ft) but red spruce is well  represented from about 790 to 1010 m (2,600 to 3,300 ft) (27).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Climate

Red spruce grows best in a cool, moist climate. The climate of the  northeastern part of its range can be summarized as follows: annual  precipitation (total), 910 to 1320 mm (36 to 52 in); annual snowfall, 203  to 406 cm (80 to 160 in); days with snow cover, 100 to 140; January  temperature, -7° to -1° C (20° to 30° F) maximum and  -18° to -13° C (0° to 8° F) minimum; July temperature,  21° to 27° C (70° to 80° F) maximum, and 11° to  14° C (52° to 58° F) minimum; frost-free days, 90 to 150  (28). Red spruce attains maximum development in the higher parts  of the southern Appalachian Mountains where the atmosphere is more humid  and the rainfall heavier during the growing season than in other parts of  its range (47). Local extension of the range of red spruce, as along the  southern Maine coast, is related to marine exposure, which provides a cool  growing season and ample moisture supply (8).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Habitat & Distribution

Upper montane to subalpine forests; 0--2000m; St. Pierre and Miquelon; N.B., N.S., Ont., P.E.I., Que.; Conn., Maine, Md., Mass., N.H., N.J., N.Y., N.C., Pa., Tenn., Vt., Va., W.Va.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Dispersal

Establishment

Good seed production of red spruce usually begins after the tree is 30 years old. Heavy seed crops occur every three to eight years. Spruce seedlings have exceptionally slow growing, fibrous, shallow roots. Consequently, a critical survival factor in natural establishment is the depth of the organic layers on which the seed germinates. If the thickness of the layer exceeds two inches, the roots of spruce seedlings may not reach mineral soil and the moisture needed to carry them through dry periods. Red spruce is very shade tolerant, but requires nearly full sun light for optimum development.

Red spruce can be established in nurseries as easily as any of the other spruces. It is used some for reforestation in the northeast.

Public Domain

USDA NRCS Plant Materials Program

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associations

In Great Britain and/or Ireland:
Foodplant / parasite
hypophyllous telium of Chrysomyxa abietis parasitises live leaf of Picea rubens
Remarks: season: 3-5

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Associated Forest Cover

Pure stands of red spruce comprise the forest cover type Red Spruce  (Society of American Foresters Type 32). Red spruce is also a major  component in 5 and a minor component in 13 other forest cover types (10):

        5  Balsam Fir 
  12  Black Spruce 
  16  Aspen 
  17  Pin Cherry 
  18  Paper Birch 
  21  Eastern White Pine 
  22  White Pine-Hemlock 
  23  Eastern Hemlock 
  25  Sugar Maple-Beech-Yellow Birch 
  30  Red Spruce-Yellow Birch 
  31  Red Spruce-Sugar Maple-Beech 
  33  Red Spruce-Balsam Fir 
  34  Red Spruce-Fraser Fir 
  35  Paper Birch-Red Spruce-Balsam Fir 
  37  Northern White-Cedar 
  60  Beech-Sugar Maple 
107  White Spruce 
108  Red Maple

    Some of the shrubs associated with red spruce are: blueberry (Vaccinium  spp.), hobblebush (Viburnum lantanoides), witherod (V.  cassinoides), rhodora (Rhododendron canadense), lambkill (Kalmia  angustifolia), mountain-holly (Nemopanthus mucronata), speckled  alder (Alnus rugosa), red raspberry (Rubus idaeus var.  strigosus), creeping snowberry (Gaultheria hispidula), wintergreen  (G. procumbens), fly honeysuckle (Lonicera canadensis), gooseberry  (Ribes spp.), witch-hazel (Hamamelis virginiana), downey  serviceberry (Amelanchier arborea), beaked hazel (Corylus  cornuta), and Canada yew (Taxus canadensis).

    A number of mosses and herbs are also found growing in red spruce forest  types. Certain mosses, herbs, and shrubs, however, have been shown to be  related to site quality of red spruce (22). The three main  associations, Hylocomium/Oxalis, Oxalis/Cornus, and Viburnum/0xalis,  in that order, indicate increasing site productivity and increasing  hardwood competition. Similar site types in the higher elevations of the  Appalachian Mountains of North

    Carolina include Hylocomium/Oxalis on north-facing slopes above  1520 m (5,000 ft), Oxalis/Dryopteris at high elevations and all  exposures, and the best site type for red spruce and Fraser fir, Viburnum/Vaccinium/Dryopteris  (47).

    The Oxalis/Cornus association is considered the best for growing  conditions in the northern part of the range. On these sites the soil is  rich enough for red spruce but not fertile enough for the tolerant  hardwoods to offer serious competition (22).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Diseases and Parasites

Damaging Agents

The shallow root system, thin bark, and  flammable needles of red spruce make trees of all ages very susceptible to  fire damage (11). The acreage of red spruce originally present in the  southern Appalachians has been reduced to a fraction of what it once was  by fire and clearcutting (22). Many former spruce sites are occupied by  inferior tree species, blackberries, and ferns after 20 years (47).

    The most important insect enemy of red spruce is the spruce budworm,  Choristoneura fumiferana. Although red spruce is much less  vulnerable to damage than balsam fir or white spruce, largely due to later  bud flushing in the spring (3), much damage and mortality occur in stands  containing large quantities of mature balsam fir. Blum and McLean (4)  suggest that factors such as stand age, species composition, density, and  vigor contribute to the vulnerability of spruce-fir stands to budworm  damage and suggest steps to alleviate damage. Additional, detailed  information may also be found in Sanders, et al. (42) for  spruce-fir stands in the Northeast, the Lake States, and Canada.

    The eastern spruce beetle, Dendroctonus rufipennis, damages  mature trees of red spruce. Two species of sawflies, the European spruce  sawfly, Diprion hercyniae, and the native yellowheaded spruce  sawfly, Pikonema alaskensis, have severely defoliated red spruce  in localized areas (22). The eastern spruce gall adelgid, Adelges  abietis, can be a serious pest on spruce when abundant. The pine leaf  adelgid, Pineus pinifoliae, forms unsightly but relatively  harmless conelike galls on red and black spruce (Picea mariana), which  are alternate hosts (46).

    Red spruce has few diseases. Needle cast caused by Lirula macrospora  may result in severe defoliation of the lower crown and a subsequent  reduction of growth. Phellinus pini and Phaeolus schweinitziithe most destructive of red spruce wood-rotting fungi, are usually  confined to overmature or damaged trees. Climacocystis borealis causes  butt rot in overmature trees (22). Trees are occasionally attacked by Armillaria  mellea and Inonotus tomentosa.

    All along the eastern Appalachian mountain chain, from the New England  states to Georgia, growth has declined in high-elevation red spruce since  the 1960's (25). In recent years, this decline has been accompanied by  increased mortality and crown damage in high-elevation red spruce.  Apparently, no significant natural biotic or abiotic causal agents have  been identified, although it has been hypothesized that interaction among  naturally occurring insect and disease factors and anthropogenic air  pollutants, or air pollutants acting alone, are at the root of the  problem. Sulphur dioxide (S02), nitrogen oxides (NOx), and  volatile organic compounds are the pollutants of primary concern;  secondary pollutants such as ozone and nitric and sulfuric acids are also  believed to be important factors (29).

    Growth decline and mortality in low-elevation red spruce in northern New  England, while increasing in some areas, appear to be within the normal  ranges for trees and forests of various ages, compositions, and density.  However, some foliar symptoms have been detected in both red spruce and  white pine, particularly from ozone exposure.

    Red spruce is occasionally infected with eastern dwarf mistletoe, Arceuthobium  pusillum, a parasite causing growth reduction, tree mortality, and  degradation of wood quality (24).

    Mice and voles have been found to consume and store significant amounts  of spruce seeds in preference to those of balsam fir, suggesting one  reason for the low ratio of spruce to fir seedlings commonly found in  naturally regenerated stands (1,23). Wildlife damage to the terminal buds  of young spruce, presumably by birds, also has been noted (2). Some injury  and mortality are also caused occasionally by porcupines, bears, deer, and  yellow-bellied sapsuckers (11). Red squirrels clip twigs and terminals and  eat reproductive and vegetative buds (41).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

General Ecology

Fire Management Considerations

More info for the terms: competition, fire exclusion, fire management, fuel, natural, prescribed fire, tree

Some managers believe that prescribed fire may be a useful silvicultural
tool for managing red spruce on some sites. On such sites, the exposed
mineral soil must have plentiful moisture, soil temperatures must be
moderate, and competition must be minimal [65]. In general, however,
fires in red spruce habitat are of little silvicultural value [87].
Slash burning following logging kills advance reproduction and creates
rank postfire vegetation that delays any new seedling establishment
[39].

The fire management plan for Acadia National Park, Maine, dictates the
suppression of natural fires. Prescribed fires may be used on occasion
to reduce fuels [61]. Patterson and others [60] estimated fuel loadings
for a number of stands in Acadia National Park that contained red
spruce. They concluded that fire exclusion was probably resulting in
increased fuel loads.

Alexander [4] compiled slash fuel indices for red spruce and compared
actual fire spread, intensity, and slash and organic layer depletions
with those predicted by the Canadian Forest Fire Danger Rating System.
Freeman and others [24] developed equations to determine average crown
weight per tree as a function of tree height and diameter for use in a
method to predict slash weight after logging red spruce.
  • 87. Wright, Henry A.; Bailey, Arthur W. 1982. Fire ecology: United States and southern Canada. New York: John Wiley & Sons. 501 p. [2620]
  • 4. Alexander, Martin E. 1984. Prescribed fire behavior and impact in an eastern spruce-fir slash fuel complex. Canadian Forestry Service Research Notes. 4(1): 3-10. [8661]
  • 24. Freeman, Duane R.; Loomis, Robert M.; Roussopoulos, Peter J. 1982. Handbook for predicting slash weight in the Northeast. Gen. Tech. Rep. NC-75. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. 23 p. [18582]
  • 39. Korstian, Clarence F. 1937. Perpetuation of spruce on cut-over and burned lands in the higher Southern Appalachian Mountains. Ecological Monographs. 7(1): 125-167. [11233]
  • 60. Patterson, William A., III; Saunders, Karen E.; Horton, L. J. 1983. Fire regimes of the coastal Maine forests of Acadia National Park. OSS 83-3. Boston, MA: U.S. Department of the Interior, National Park Service, North Atlantic Region, Office of Scientific Studies. 259 p. In cooperation with: U.S. Department of Agriculture, Forest Service, State and Private Forestry, Broomall, PA. [21108]
  • 61. Patterson, William A., III; Saunders, Karen E.; Horton, L. J.; Foley, Mary K. 1985. Fire management options for coastal New England forest: Acadia National Park and Cape Cod National Seashore. In: Lotan, James E.; Kilgore, Bruce M.; Fischer, William C.; Mutch, Robert W., technical coordinators. Proceedings--symposium and workshop on wilderness fire;1983 November 15-18; Missoula, MT. Gen. Tech. Rep. INT-182. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: 360-365. [10236]
  • 65. Randall, Arthur G. 1976. Natural regeneration in two spruce-fir clearcuts in eastern Maine. Research Life Sciences. [University of Maine]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Plant Response to Fire

More info for the terms: duff, ferns, heath, shrubs, succession, tree

Red spruce does not sprout. Seed germination is greater on burned areas
with exposed mineral soil than in duff; mortality, however, is also
greater due to increased surface temperature and drought [63].

Burned red spruce or spruce-fir stands are initially restocked by aspen
(Populus spp.) or birch (Betula spp.) via wind-disseminated seed; paper
birch (Betula papyrifera)-aspen stands are particularly diagnostic of
fire in upland red spruce forests [52]. Red spruce seedlings appear a
few years after fire, developing as an understory in the aspen-birch
complex, and eventually penetrate the overstory after 50 or 60 years.
Birch and aspen become decadent after 75 to 80 years and red spruce or
red spruce and balsam fir regain dominance if left undisturbed
[49,52,65]. On better sites, northern hardwoods, chiefly sugar maple
and American beech, may replace red spruce, and in some areas, balsam
fir will dominate the late postfire succession. Postharvest/postfire
restocking by red spruce is extremely slow where the organic layers are
destroyed by severe fire (particularly where harvest has been heavy)
[49].

In Nova Scotia, mature spruce forests have few herbs and shrubs in the
understory. After a fire, herbs increase in the first 6 years and
dominate for 40 or more years while conifers slowly establish [54].
After fire in the southern Appalachians, blackberry (Rubus ursinus) and
red raspberry colonize the site. Pin cherry and yellow birch follow.
Blackberry and raspberry are too competitive for red spruce and must be
shaded out by the hardwoods before red spruce can establish [39].

In West Virginia, postlogging and postfire succession in red spruce
forests follows a similar pattern: ferns and raspberry are followed by
other shrubs, then hardwoods (particularly hawthorn [Crataegus spp.]),
and eventually spruce. In many areas, this successional pattern has
been extremely slow; heaths or barrens form that do not appear as if
they will ever return to forest [13]. Martin [54] studied
postlogging/postfire succession in Nova Scotia and found that red spruce
was present on most sites after the second postfire year, becoming more
numerous and dominant in the later seres. He concluded that repeated
heavy cuttings and light fires on the poorer soils of the southern
upland of Nova Scotia encourages the invasion of heath plants, which
limits the rate and amount of tree regeneration.
  • 13. Core, Earl L. 1929. Plant ecology of Spruce Mountain, West Virginia. Ecology. 10(1): 1-13. [9218]
  • 39. Korstian, Clarence F. 1937. Perpetuation of spruce on cut-over and burned lands in the higher Southern Appalachian Mountains. Ecological Monographs. 7(1): 125-167. [11233]
  • 49. Little, Silas. 1974. Effects of fire on temperate forests: northeastern United States. In: Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 225-250. [9859]
  • 52. Lorimer, Craig G. 1980. The use of land survey records in estimating presettlement fire frequency. In: Stokes, Marvin A.; Dieterich, John H., technical coordinators. Proceedings of the fire history workshop; 1980 October 20-24; Tucson, AZ. Gen. Tech. Rep. RM-81. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 57-62. [16043]
  • 54. Martin, J. Lynton. 1956. An ecological survey of burned-over forest land in southwestern Nova Scotia. Forestry Chronicle. 32: 313-336. [8932]
  • 63. Place, I. C. M. 1955. The influence of seed-bed conditions on the regeneration of spruce and balsam fir. Bulletin 117. Ottawa, Canada: Department of Northern Affairs and National Resources, Forestry Branch, Forest Research Division. 87 p. [14274]
  • 65. Randall, Arthur G. 1976. Natural regeneration in two spruce-fir clearcuts in eastern Maine. Research Life Sciences. [University of Maine]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Immediate Effect of Fire

More info for the terms: litter, tree

Red spruce is easily killed by fire [49]. Surface or ground fires that
consume the litter and organic layers covering the superficial roots of
red spruce are almost certain to severely injure the roots [39]. Fire
kills mature trees by exposing roots, subjecting the tree to water
stress and/or windthrow, which may result in the eventual death of the
tree [39,87].
  • 87. Wright, Henry A.; Bailey, Arthur W. 1982. Fire ecology: United States and southern Canada. New York: John Wiley & Sons. 501 p. [2620]
  • 39. Korstian, Clarence F. 1937. Perpetuation of spruce on cut-over and burned lands in the higher Southern Appalachian Mountains. Ecological Monographs. 7(1): 125-167. [11233]
  • 49. Little, Silas. 1974. Effects of fire on temperate forests: northeastern United States. In: Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 225-250. [9859]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Post-fire Regeneration

More info for the terms: root crown, secondary colonizer

Tree without adventitious-bud root crown
Secondary colonizer - off-site seed

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Fire Ecology

More info for the terms: avoidance, fire frequency, frequency, natural, resistance, severity, tree

Red spruce forests persist without fire. Red spruce is easily killed by
fire due to its thin bark, shallow roots, flammable needles, and lack of
self-pruning [9,23,39]. Its slow early growth rate delays the formation
of a corky layer, which increases the fire susceptibility of young trees
[39]. In a study based on a survey of foresters, Starker [76] rated the
fire resistance of 22 New England tree species based on fire mortality
and fire avoidance (occurrence in habitat that does not burn very
often). Red spruce was not resistant in terms o fire mortality but
moderately or very resistant in terms of fire avoidance, and was ranked
13th overall.

Red spruce habitat is subject to few fires; fires that occurred in
presettlement times were usually of low severity [1]. Saunders [73]
noted that old-timers claimed that forest fires would stop when they
reached the spruce-fir forest boundary. Electrical storms are common in
this area but are usually accompanied by sufficient rain, and fuels are
usually moist [32]. Severe surface fires probably occurred
infrequently, during periods of prolonged drought, and usually affected
forests that were breaking up due to wind, ice storm damage, or similar
events that generate surface fuels [25,32,60,61,87].

The estimated natural fire return intervals for the northeastern United
States and adjacent Canada range from 330 to 3,300 or more years
[25,32,51,52,84]. Estimates of natural fire frequency have been
complicated by human activities. Logging in these forests has resulted
in an increase in fire frequency and intensity, particularly in logging
slash [18,32,52]. The catastrophic fires of the 19th and 20th centuries
can be attributed to human activities [21,32,52]. However, even with
the increase in fires due to human activity, most fires are small and
quickly suppressed. There should be sufficient time between fires for
red spruce to regain dominance on most sites unless deliberately and/or
repeatedly burned.

It has been suggested that, in presettlement forests, the increase of
dead fuels following spruce budworm outbreaks increased the likelihood
of fire [21,25,32]. Such outbreaks are more common in
balsam-fir-dominated forests than in red-spruce-dominated forests, but
the two species usually occur together, in varying proportions.

Before settlement by Europeans, forests in northern New England, the
Adirondack Mountains, and the hillier sections of southern New England
and Pennsylvania were not deliberately burned by Native Americans as
were other areas in the northeastern United States [18].
  • 87. Wright, Henry A.; Bailey, Arthur W. 1982. Fire ecology: United States and southern Canada. New York: John Wiley & Sons. 501 p. [2620]
  • 1. A. D. Revill Associates. 1978. Ecological eff. of fire and its mgmt. in Canada's national parks: a synthesis of the literature. Vols 1&2. Lit. Rev. & Annot. Bibliography. Ottawa, ON: Parks Canada, National Parks Branch, Natural Resources Division. 345 p. [3416]
  • 23. Frank, Robert M.; Blum, Barton M. 1978. The selection system of silviculture in spruce-fir stands--procedures, early results, and comparisons with unmanaged stands. Res. Pap. NE-425. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 15 p. [8772]
  • 25. Furyaev, V. V.; Wein, Ross W.; MacLean, David A. 1983. Fire influences in Abies-dominated forests. In: Wein, Ross W.; MacLean, David A., eds. The role of fire in northern circumpolar ecosystems. Scope 18. Chichester; New York: John Wiley & Sons: 221-234. [14610]
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]
  • 18. Day, Gordon M. 1953. The Indian as an ecological factor in the northeastern forest. Ecology. 34(2): 329-346. [15744]
  • 21. Flieger, B. W. 1971. Forest fire and insects: the relations of fire to insect outbreak. In: Proceedings, annual Tall Timbers fire ecology conference; 1970 August 20-21; Fredericton, NB. No. 10. Fredericton, NB: Tall Timbers Research Station: 107-114. [18936]
  • 32. Heinselman, Miron L. 1981. Fire intensity and frequency as factors in the distribution and structure of northern ecosystems. In: Mooney, H. A.; Bonnicksen, T. M.; Christensen, N. L.; [and others]
  • 39. Korstian, Clarence F. 1937. Perpetuation of spruce on cut-over and burned lands in the higher Southern Appalachian Mountains. Ecological Monographs. 7(1): 125-167. [11233]
  • 51. Lorimer, Craig G. 1977. The presettlement forest and natural disturbance cycle of northeastern Maine. Ecology. 58: 139-148. [9711]
  • 52. Lorimer, Craig G. 1980. The use of land survey records in estimating presettlement fire frequency. In: Stokes, Marvin A.; Dieterich, John H., technical coordinators. Proceedings of the fire history workshop; 1980 October 20-24; Tucson, AZ. Gen. Tech. Rep. RM-81. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 57-62. [16043]
  • 60. Patterson, William A., III; Saunders, Karen E.; Horton, L. J. 1983. Fire regimes of the coastal Maine forests of Acadia National Park. OSS 83-3. Boston, MA: U.S. Department of the Interior, National Park Service, North Atlantic Region, Office of Scientific Studies. 259 p. In cooperation with: U.S. Department of Agriculture, Forest Service, State and Private Forestry, Broomall, PA. [21108]
  • 61. Patterson, William A., III; Saunders, Karen E.; Horton, L. J.; Foley, Mary K. 1985. Fire management options for coastal New England forest: Acadia National Park and Cape Cod National Seashore. In: Lotan, James E.; Kilgore, Bruce M.; Fischer, William C.; Mutch, Robert W., technical coordinators. Proceedings--symposium and workshop on wilderness fire;1983 November 15-18; Missoula, MT. Gen. Tech. Rep. INT-182. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: 360-365. [10236]
  • 73. Saunders, Paul Richard. 1979. The vegetational impact of human distubance on the spurce-fir forests of the southern Appalachian Mountains. Durham, NC: Duke University. 188 p. Dissertation. [21409]
  • 76. Starker, T. J. 1934. Fire resistance in the forest. Journal of Forestry. 32: 462-467. [82]
  • 84. Wein, Ross W.; Moore, Janice M. 1979. Fire history and recent fire rotation periods in the Nova Scotia Acadian Forest. Canadian Journal of Forest Research. 9: 166-178. [9705]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Successional Status

More info on this topic.

More info for the terms: climax, cover, hardwood, tree

Facultative Seral Species

On shallow, acidic, glacial till soils, red spruce is considered climax.
It is usually subclimax on fertile, well-drained slopes and on abandoned
fields and pastures where is is replaced by shade-tolerant hardwoods
such as sugar maple and beech. Other types, such as red spruce-balsam
fir and red spruce-yellow birch are usually climax [20].

Red spruce is tolerant of shade. Seedlings of red spruce can establish
in as little as 10 percent of full sunlight, but for optimum growth, at
least 50 percent of full sunlight is needed [9,75,81]. Growth tends to
be suppressed in shade, but such suppression can persist for many years
without killing the tree. For example, suppressed understory
individuals may be 4 to 5 feet (1.2-1.5 m) tall, and be more than 50
years old. In comparison, open-grown red spruce can reach sawtimber
size at 50 years [9,29].

Red spruce responds to canopy removal even after many years of
suppression. The taller and older a seedling or sapling is, the greater
is its response to release, up to about 55 years of age after which
response to release starts to decline. However, the amount of response
does not revert to seedling levels until the tree is around 100 years of
age. Umbrella-shaped saplings 40 to 80 years old that have been
suppressed will respond to release after a delay of several years, and
in fact have an advantage because they are taller than smaller,
healthier saplings which respond more quickly to canopy opening. More
than half of mature red spruce second growth arises from larger but
suppressed advance growth, as opposed to having arisen from small
advance growth or new seedlings [16]. Upon release, 60-year-old red
spruce growth exceeds that of same-age balsam fir and therefore tends to
dominate the canopy [56].

Leak [44] defined red spruce in New Hampshire as a dominating climax
species on shallow, dry, wet, or poorly areated soils; it is a minor
component in young stands but increases markedly over time until it is a
canopy dominant. He estimated that, if undisturbed, red spruce can
reach densities of 70 to 80 percent in a minimum of 250 years. Red
spruce is a long-lived species and, once established, persists as a
dominant for a long time.

Davis [16] observed young spruce-fir stands in coastal Maine originating
in open sites and as the understory to early seral hardwoods such as
paper birch. The young, open-grown stands may be dominated by white
spruce, red spruce, or balsam fir in any proportions. A spruce-fir
stand originating as understory tends to be dominated by red spruce
and/or balsam fir, though white spruce is often present. Moore [58]
found red spruce forests to be even-aged in groups, indicating that
establishment and/or canopy achievement tends to occur in openings.

Red spruce and red spruce-fir cover types are self-maintaining. Stand
composition may vary with stand age. Both red spruce and its two fir
associates (balsam and Fraser) are shade tolerant, and both spruce and
fir reproduction are found under spruce-fir canopies [6,16]. In the
Catskill Mountains of New York, balsam fir reproduction predominated
under both spruce and balsam fir stands. Both red spruce and balsam fir
reproduction occurred at low densities under hardwood stands (mostly
yellow birch) [55]. McIntosh and Hurley [55] do not believe that red
spruce forests form a self-perpetuating climax in this area. Their
conclusion may be biased, however, since balsam fir outcompetes red
spruce in early stages, but is usually overtopped or outcompeted by red
spruce in more mature forests [16]. Flieger [21] described 350-year-old
stands of red spruce which were characterized by irregular stocking and
variable crown heights and widths, with at least two age classes
apparent. Most virgin red spruce forests are uneven-aged, indicating
that the forests did no originate following stand-destroying
disturbances, and that red spruce is able to reproduce under its own
canopy [52].
  • 20. Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p. [905]
  • 6. Benzie, John W.; Blum, Barton M. 1989. Silviculture of northeastern conifers. In: Burns, Russell M., compiler. The scientific basis for silvicultural and management decisions in the National Forest System. Gen. Tech. Rep. WO-55. Washington, DC: U.S. Department of Agriculture, Forest Service: 18-30. [10243]
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]
  • 16. Davis, Ronald B. 1966. Spruce-fir forests of the coast of Maine. Ecological Monographs. 36(2): 79-94. [8228]
  • 21. Flieger, B. W. 1971. Forest fire and insects: the relations of fire to insect outbreak. In: Proceedings, annual Tall Timbers fire ecology conference; 1970 August 20-21; Fredericton, NB. No. 10. Fredericton, NB: Tall Timbers Research Station: 107-114. [18936]
  • 29. Hart, Arthur C. 1959. Silvical characteristics of red spruce. Paper No. 124. Durham, NH: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 18 p. [21152]
  • 44. Leak, William B. 1991. Secondary forest succession in New Hampshire, USA. Forest Ecology and Management. 43: 69-86. [16683]
  • 52. Lorimer, Craig G. 1980. The use of land survey records in estimating presettlement fire frequency. In: Stokes, Marvin A.; Dieterich, John H., technical coordinators. Proceedings of the fire history workshop; 1980 October 20-24; Tucson, AZ. Gen. Tech. Rep. RM-81. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 57-62. [16043]
  • 55. McIntosh, R. P.; Hurley, R. T. 1964. The spruce-fir forest of the Catskill Mountains. Ecology. 45(2): 314-326. [14886]
  • 56. Meyer, Walter H. 1929. Yields of second-growth spruce and fir in the Northeast. Tech. Bull. No. 142. Washington, DC: U.S. Department of Agriculture. 52 p. [21142]
  • 58. Moore, Barrington. 1922. Humus and root systems in certain northeastern forests in relation to reproduction and competition. Journal of Forestry. 20: 233-254. [21731]
  • 75. Shirley, Hardy L. 1943. Is tolerance the capacity to endure shade?. Journal of Forestry. 41: 339-345. [21147]
  • 81. Vezina, P. E.; Pech, Gy. 1964. Solar radiation beneath conifer canopies in relation to crown closure. Forest Science. 10(4): 443-451. [21148]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Regeneration Processes

More info for the terms: duff, tree

Red spruce reproduces exclusively by seed. The first cone crop is
usually produced when the crown first reaches direct light [27,39].
Therefore, red spruce can bear cones as early as 15 to 20 years of age;
cone production peaks about 15 years later. In dense, even-aged stands,
full cone crops are rare until the trees are 40 to 50 years old [39].
Good seed crops are produced every 3 to 8 years, with light crops in
intervening years. Cones are dropped shortly after they are mature [9].
The seeds are wind or rain disseminated. The maximuim distance for
dispersal by wind is approximately 201 feet (61 m) [27]. Seeds do not
exhibit dormancy. Most germinate the spring following dispersal;
occasionally germination will occur in the fall soon after seeds drop
from the tree. Seeds are usually not viable after 1 year. Germination
is largely controlled by moisture availability. Seeds will germinate in
almost any medium except sod. Seeds that germinate in thick duff are
subject to overheating and/or drought mortality. Drought and
frost-heave are the major causes of seedling mortality the first year
[9].

Successful reproduction appears to depend more on seedling survival than
on germination requirements [9]. Seedling establishment is usually best
on shallow, less fertile soils that discourage competitive hardwoods
[87]. The primary roots of red spruce seedlings do not penetrate litter
and forest duff to any depth [38]. Red spruce seedlings have a root
system of finely branched rootlets and no strong laterals; they depend
entirely on the humus for nutrients and water [57].
  • 87. Wright, Henry A.; Bailey, Arthur W. 1982. Fire ecology: United States and southern Canada. New York: John Wiley & Sons. 501 p. [2620]
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]
  • 27. Govindaraju, Diddahally R. 1988. Life histories, neighbourhood sizes, and variance structure in some North American conifers. Biological Journal of the Linnean Society. 35: 69-78. [9760]
  • 38. Klein, Richard M.; Perkins, Timothy D.; Tricou, Jeffery; [and others]
  • 39. Korstian, Clarence F. 1937. Perpetuation of spruce on cut-over and burned lands in the higher Southern Appalachian Mountains. Ecological Monographs. 7(1): 125-167. [11233]
  • 57. Moore, Barrington. 1917. Some factors influencing the reproduction of red spruce, balsam fir, and white pine. Journal of Forestry. 15(7): 827-853. [14402]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Growth Form (according to Raunkiær Life-form classification)

More info on this topic.

More info for the term: phanerophyte

Phanerophyte

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life Form

More info for the term: tree

Tree

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reaction to Competition

Red spruce is classified as shade  tolerant in the United States and tolerant or very tolerant in Canada.  Opinions differ as to whether red spruce is more tolerant than balsam fir,  but the relative tolerance may vary with soil fertility and climate (22).

    The species' chief competition comes from balsam fir and hardwoods that  produce heavy shade, like beech and maple. Competition from aspen, birch,  and other thin-crowned species is not so severe. Red spruce prunes itself  about as well as most softwoods in dense stands. As much as one-third of  the live crown may be pruned artificially without seriously affecting  radial growth (5).

    A number of studies have demonstrated the ability of red spruce to  respond to release after many years of suppression. The vigor of this  response does decline somewhat with age, however, and older trees may  require about 5 years to recover before showing accelerated growth (7).  Reduction of growth to about 2.5 cm (1 in) of diameter in 25 years, for a  duration of 100 years, represents about the limit of suppression for red  spruce. Many of its associated tree species such as balsam fir and hemlock  may outgrow red spruce after release (22).

    Red spruce may be grown successfully using even-age silvicultural  prescriptions (11,12). Red spruce is very shallow-rooted, however, making  it subject to windthrow, a major silvicultural constraint in the  management of the species. As a general rule, it is recommended that no  more than one-fourth to one-half of the basal area be removed in the  partial harvest of a spruce-fir stand, depending on site, to avoid  excessive windthrow damage.

    Most of the major forest cover types previously listed in which red  spruce is a component are considered either climax or subclimax.

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Rooting Habit

Spruce and fir are shallow-rooted, with most of  the feeding roots in the duff and the top few centimeters of mineral soil  (11). The average rooting depth for all sites in Maine was found to be 33  cm (13 in), with a maximum of 56 cm (22 in) (22).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Life History and Behavior

Cyclicity

Phenology

More info on this topic.

Red spruce vegetative buds begin growth from May 26 to June 3 [8].
Needles are shed early in summer [12]. Reproductive cones open in late
April to early May [29,72]. Red spruce cones mature the first autumn
from mid-September to mid-October [29,39]. Dissemination of seeds
begins soon after cones are ripe and continues until March [29].
  • 8. Blum, Barton M. 1988. Variation in the phenology of bud flushing in white and red spruce. Canadian Journal of Forest Research. 18: 315-319. [8662]
  • 12. Chandler, Robert F.; Jr. 1943. Amount and mineral nutrient content of freshly fallen needle litter of some northeastern conifers. Proceedings, Soil Science of America Society. 8: 409-411. [21599]
  • 29. Hart, Arthur C. 1959. Silvical characteristics of red spruce. Paper No. 124. Durham, NH: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 18 p. [21152]
  • 39. Korstian, Clarence F. 1937. Perpetuation of spruce on cut-over and burned lands in the higher Southern Appalachian Mountains. Ecological Monographs. 7(1): 125-167. [11233]
  • 72. Safford, L. O. 1974. Picea A. Dietr. spruce. In: Schopmeyer, C. S., ed. Seeds of woody plants in the United States. Agric. Handb. 450. Washington, DC: U.S. Department of Agriculture, Forest Service: 587-597. [7728]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Reproduction

Vegetative Reproduction

Red spruce rarely, if ever, layers  (15,22,45). Recently developed techniques facilitate propagation from stem  cuttings under controlled conditions, particularly juvenile cuttings  (7,9,38,45).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seedling Development

Most red spruce seeds germinate the spring  following dispersal; some, however, may germinate in the fall soon after  dropping from the tree. Germination is epigeal. On favorable seedbeds the  usual spring germination period is from late May to early July. On duff,  which is more subject to surface drying than most other seedbed materials,  some seeds may lose viability by midsummer, and some may show delayed  germination well into August (22). Little if any viable seeds remain in  the forest floor beyond 1 year (13).

    Adequate moisture is the chief factor controlling germination of red  spruce. Germination takes place on almost any medium (mineral soil, rotten  wood, or shallow duff) except sod. Mineral soil is an excellent seedbed  for germination. Generally ample moisture is available and soil  temperatures are moderate. Litter and humus are poorer seedbeds because  they are likely to be hotter and drier than mineral soil (11). On thicker  duff, germination may be poor also because moisture conditions are less  favorable. Temperatures of 20° to 30° C (68° to 86° F)  are generally favorable for germination. Seeds will not germinate  satisfactorily at temperatures below 20° C (68° F) and are  permanently injured by long exposure to temperatures higher than 33°  C (92° F) (22).

    Germination and initial establishment proceed best under cover.  Seedlings can become established under light intensities as low as 10  percent of full sunlight; however, as they develop, they require light  intensities of 50 percent or more for optimum growth. Seedlings starting  in the open undergo heavy mortality when soil surface temperatures reach  46° to 54° C (115° to 130° F) even for a short time  (11). Drought and frost heaving are major causes of mortality the first  year. Crushing by hardwood litter and snow are also causes of seedling  mortality. Winter drying in some years and locations can cause severe  leader damage and dieback.

    Natural reproduction depends more on seedling survival than on  requirements for germination. Spruce seedlings have an exceptionally  slow-growing, fibrous, shallow root system. Consequently, a critical  factor in their survival and establishment is the depth of the 01 organic  layers of the soil profile. When the combined thickness of these layers  exceeds 5 cm (2 in), spruce seedlings may not reach mineral soil and the  moisture necessary to carry them through dry periods. Red spruce seedlings  and the commonly associated balsam fir seedlings are similar in many ways  and are controlled by the same factors, but as a rule spruce is the  weaker, slower growing species during the establishment period (22).

    Seedlings that have attained a height of about 15 cm (6 in) can be  considered established. Once established, their early growth is determined  largely by the amount and character of overhead competition. Dense growth  of bracken (Pteridium aquilinum), raspberry, and hardwood sprouts  are the chief competition for seedlings on heavily cutover lands; but red  spruce survives as much as 145 years of suppression and still responds to  release (11,39).

    Compared to its associates, red spruce is one of the last species to  start height growth in the spring, usually beginning the first week in  June and ending 9 to 11 weeks later. Radial growth usually begins about  the second week of June and continues through August (22).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Seed Production and Dissemination

Good seed crops occur every 3  to 8 years, with light crops during intervening years (22). Red  spruce cones number about 140/liter (5,000/bu), which yields 454 to 680 g  (1.0 to 1.5 lb) of seeds. The number of cleaned seeds per kilogram ranges  between 220,000 and 637,000 (100,000 and 289,000/lb), with an average of  about 306,000 (139,000/lb) (41).

    Red spruce seeds fall about 1.2 m (4 ft) per second in still air; the  following formula determines distance of travel for wind- disseminated  spruce seeds at various heights (47):

    D = Sh (1.47v)

    Where D = distance in feet which seed will travel, S = number of  seconds required for seed to fall from a height of h (ft) on a  tree, and v = velocity of the prevailing wind in miles per hour.

    Randall (37), in a study of seed dispersal into clearcut areas,  stated that at a distance of 100 m (5 chains or 330 ft) from the timber  edge, the number of spruce seeds trapped were more than adequate for  regeneration in a good seed year and adequate in an average year. Most of  the spruce in the surrounding stands was red spruce.

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Flowering and Fruiting

Red spruce is monoecious; male and  female flower buds open in May in axils of the previous year's shoots on  different branches of the same tree. The pendant male flowers are bright  red; female flowers are erect and bright green tinged with purple (21).  Although cone buds differentiate as early as July preceding flowering  in the following spring, they are difficult to distinguish until  September. For experienced workers they provide a possible means of  identifying seed years at that time. The cones mature from about  mid-September to early October, the autumn following flowering (41).  Cones are 3 to 4 cm (1.3 to 1.5 in) long, light reddish brown, with  rigid, rounded scales often slightly toothed on the edges. Cones are  receptive to pollen when fully open, a condition which lasts for only a  few days.

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Growth

Growth and Yield

Red spruce is a medium-size tree at maturity,  reaching 30 to 61 cm (12 to 24 in) in d.b.h. and 18 to 23 m (60 to 75 ft)  in height in the Northeast, and up to 35 m (115 ft) in the Appalachian  Mountains. Its maximum age is about 400 years (22). The American Forestry  Association lists a tree 133 cm (52.5 in) in d.b.h. and 33.5 m (110 ft)  tall in Great Smoky National Park in North Carolina as the largest living  red spruce.

    The rate of red spruce's growth is strongly influenced by light  conditions. Although trees can live in dense shade for many years, once  they reach sapling to pole stage nearly full sunlight is beneficial.  Understory trees no more than 1.2 or 1.5 m (4 to 5 ft) tall may be more  than 50 years old, whereas trees of the same age in the open may be  approaching small sawtimber size (22).

    Under favorable conditions, red spruce may reach an average d.b.h. of 10  cm (4 in) and height of 7 m (23 ft) in 20 years, and be over 23 cm (9 in)  in d.b.h. and 19 m (62 ft) tall in 60 years (22).

    Diameter growth of red spruce has been related to vigor, live crown  ratio (ratio of live crown to total height), live crown length, and  initial diameter at breast height (6,32). High vigor red spruce with a  live crown ratio of 0.5 or better averaged 4.3 cm (1.7 in) of diameter  growth in 10 years. Growth rates of trees with smaller crown ratios and  less vigorous trees decreased progressively to an average of 0.8 cm (0.3  in) in 10 years for trees of low vigor or with crown ratios smaller than  0.4 (22). A tree classification for red spruce is shown in table 1 (11). 

    Table 1- Classification of red spruce trees (11).          Tree class 
(rating as 
growing stock)   
 
Vigor   
 
Crown class  Live 
crown 
ratio¹   
Average 10-year growth in d.b.h.                    cm  in      A, superior 
  I 
  Dominant and 
  Intermediate  0.6+   4.6   1.8 
      B, good   I 
  Dominant and 
  Intermediate  0.3 to 0.5   3.3   1.3       C, acceptable  II   Overtopped 
  Intermediate 
  Dominant  0.6+ 
0.6+ 
0.6+  2.3   0.9       D, inferior    Intermediate  0.3 to 0.5  1.5  0.6      E, undesirable 
  III   Intermediate 
All others   0.3+ 
0.3 or less  0.5   0.2       ¹Ratio of live crown to total  height.        In one study (40), average net annual growth in softwood stands (66 to  100 percent softwood species) that can be expected from stands receiving  minimal silvicultural input was found to be about 3.5 m³/ha (50 ft³/acre).  In mixed-wood stands (21 to 65 percent softwood species) this dropped to  about 2.8 m³/ha (40 ft³/acre), although the majority of the  growth was contributed by softwoods. A further breakdown of the data shows  the contributions of spruce, most of which was assumed to be red spruce,  to be 51 percent in softwood stands and 39 percent in mixed-wood stands.

    Yields per acre, in total volumes of all trees larger than 1.5 cm (0.6  in) in d.b.h. (inside bark and including stump and top but not butt  swell), are given in table 2 (33).

    Table 2- Yield of red spruce by age class and site index  (adapted from 33)            Site index¹               
Age  12.2 m 
or 40 ft  15.2 m 
or 50 ft  18.3 m 
or 60 ft  21.3 m 
or 70 ft            yr  m³/ha      20  6  8  11  14      40  94  132  164  200      60  244  335  422  507      80  308  424  533  640      100  332  456  575  691      yr  ft³/acre      20  80  120  160  200      40  1,350  1,890  2,350  2,850      60  3,490  4,780  6,030  7,240      80  4,400  6,060  7,610  9,150      100  4,740  6,250  8,210  9,870      ¹Base age 50 years when age  is measured at d.b.h.- total tree age is estimated to be 65 years at the  time.        These yields are normal yields from even-aged stands growing primarily  on old fields. Therefore, they are higher than yields that might be  expected from more irregular stands such as those developing after cutting  (22).

    Site index has not been of great utility in rating the potential  productivity of spruce-fir sites because of the tolerance of the species  and its ability to survive in a suppressed state. Site index at base age  50 years is as good a measure of productivity as any of several growth  functions, however (39). Recently, polymorphic site index curves were  developed for even-aged spruce and fir stands in northern Maine; they  should be valuable for estimating site productivity (20).

    Other yield tables for the Northeast (48) take into consideration stand  density, composition, and time since cutting. These tables give  merchantable volume of spruce and fir combined in trees 15.2 cm (6 in) in  d.b.h. and larger from a 0.3 m (1 ft) stump to a 7.6 cm (3 in) top,  diameter inside bark, and are somewhat conservative. Yields of  merchantable volume for different stand densities from 10 to 50 years  after cutting, where 90 percent of the trees are spruce and fir growing on  predominantly softwood sites, are given in table 3.

    Table 3- Merchantable yield of red spruce (adapted from  48)            Density index (regional average 100)              Years since cut  50  100  150              m³/ha      10  17.1  24.4  29.5      20  29.8  37.7  43.3      30  43.5  52.0  58.0      40  58.1  67.3  73.4      50  73.8  83.1  89.7        ft³/acre      10  245  349  422      20  425  539  618      30  622  743  828      40  830  961  1,049      50  1,054  1,187  1,281              The development of stand projection growth models that permit computer  simulation of red spruce tree growth for various management practices and  silvicultural treatments over a range of stand conditions has flourished  in recent years. For example, the model FIBER was developed in the  Northeast (43) for spruce-fir, northern hardwood and a range of Mixedwood  forest types between the two. Such models have proved very useful for  forest management planning.

    In recent years, interest in total biomass yield and productivity has  increased, and in the future is likely to become more important in  management considerations. As an example, above-ground biomass and  productivity values of typical red spruce stands in Canada are given in  table 4 for stands in a steady state, across a moisture regime catena  (17).

    Table 4- Aboveground biomass and annual production of  all tree components and foliage for red spruce at latitude 45° 30' N.  (adapted from 17)          Moisture regime   
Biomass  Annual 
Production              t/ha  tons/acre  t/ha  tons/acre      Dry  121.3  54.1  4.5  2.0      Fresh  263.2  117.4  8.7  3.9      Moist  461.3  205.8  9.9  4.4      Wet  164.1  73.2  3.8  1.7
  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology and Genetics

Genetics

Successful interspecific crosses with Picea rubens as male or  female parents have been reported or confirmed for P. mariana, P.  omorika, P. glehnii, P. orientalis, and P. koyamai (15); P.  sitchensis (14); P. glauca, P. mexicana (16); P. lutzii Little (P. sitchensis x P. glauca), P.  maximowiczii, and P. likiangensis (19).

    Crossability of P. rubens with P. omorika is good with  P. mexicana and P. likiangensis moderate; with P.  mariana, P. orientalis, P. maximowiczii, and P. glehnii fair  to poor; and with P. koyamai, P. sitchensis, P. x lutzii,  and P. glauca very poor. Several species fail to cross with P.  rubens (15,16,18,19).

    Hybrids between P. rubens and P. mariana occur to some  extent in nature, but parental species remain phenotypically pure in their  characteristic habitats (15,30,31,34,35).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Molecular Biology

Barcode data: Picea rubens

The following is a representative barcode sequence, the centroid of all available sequences for this species.


Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Statistics of barcoding coverage: Picea rubens

Barcode of Life Data Systems (BOLDS) Stats
Public Records: 7
Specimens with Barcodes: 8
Species With Barcodes: 1
Creative Commons Attribution 3.0 (CC BY 3.0)

© Barcode of Life Data Systems

Source: Barcode of Life Data Systems (BOLD)

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

National NatureServe Conservation Status

Canada

Rounded National Status Rank: N5 - Secure

United States

Rounded National Status Rank: N5 - Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

NatureServe Conservation Status

Rounded Global Status Rank: G5 - Secure

Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

© NatureServe

Source: NatureServe

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

IUCN Red List Assessment


Red List Category
LC
Least Concern

Red List Criteria

Version
3.1

Year Assessed
2013

Assessor/s
Farjon, A.

Reviewer/s
Thomas, P. & Stritch, L.

Contributor/s

Justification
Athough Picea rubens underwent a period of decline during the 19th and 20th centuries, the major part of that decline happened outside of the three generation time period used to assess past declines. Additionally, while it occupies a more limited range than the other northern spruces in North America, its extent of occurrence is still very extensive and far beyond the thresholds for a threatened category. There is no current indication of decline, and it is actually expanding again in many parts of its range. It is therefore assessed as Least Concern
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Status

Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g. threatened or endangered species, state noxious status, and wetland indicator values).

Public Domain

USDA NRCS Plant Materials Program

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population

Population
Locally dominant.

Population Trend
Increasing
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Major Threats
Picea rubens was extensively exploited for its timber during the 19th and early 20th centuries, especially in the southern part of its range in the Appalachian Mountains. During this period it was also significantly affected by fires and the clearance of forests for agriculture. More recently (the last 100 years), this species has been affected by atmospheric pollutants and acid deposition. However, a recent survey of this species across its natural range in the USA found that there was no significant decline and that in most areas it was expanding its area of occupancy (Nowacki 2010).
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Pests and potential problems

Red spruce has several insect enemies, the most important being spruce budworm. Budworm damage may be heavy in stands that contain a large percentage of balsam fir. Some stands of red spruce may be susceptible to damage by the eastern spruce beetle, European spruce sawfly and yellow-headed spruce sawfly. Disease problems are minor in management of red spruce.

The overall health of red spruce stands seems to be declining due to pollution factors. Weakened trees are more susceptible to insects and disease.

Public Domain

USDA NRCS Plant Materials Program

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
This species is known from a number of National Parks and other protected areas.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management considerations

More info for the terms: litter, natural, presence, seed tree, selection, tree

Silviculture: Various silvicultural systems may be used to manage red
spruce. Single tree selection, group selection, shelterwood, and strip
clearcut are all practical harvesting methods. Red spruce is subject to
windthrow; partial cuttings are recommended not to exceed half of the
basal area, and a lighter harvest is usually better. Seed tree cuts are
not recommended [6,9]. Frank and Blum [23] recommend a selection
silviculture where net growth is maximized by a 10-year, intensive
selection system. Clearcuts are contraindicated for many soil types and
fertility levels [35].

Postharvest red spruce regeneration is entirely dependent on advance
reproduction. If seedlings are not present at the time of logging, any
new spruce seedlings will be quickly overtopped and suppressed by faster
growing hardwoods [17]. The presence of leaf litter may beenefit for
regeneration. Harvesting during the dormant season or allowing
harvested trees to dry on site has been recommended to increase litter
[35]. Loucks [53] noted that in the Maritime Provinces of Canada, red
spruce regeneration is usually good following partial cuts but may be
lacking in clearcuts.

The extent of red spruce forests has decreased following extensive
logging practices and subsequent fire [3]. In the mountains of central
West Virginia, it is estimated that approximately 500,000 acres (200,000
ha) of red spruce present in the late 19th century had been reduced to
less than 60,000 acres (24,000 ha) by 1975, and as little as 17,500
acres (7,000 ha) in 1978 [10,73].

Management for wildlife: Harvest practices have an effect on the
resulting stand structure, and therefore on the numbers and species of
birds that use red spruce habitats. Crawford and Titterington [15]
identified five seral stages and the corresponding bird species, and
made associated recommendations for management of spruce-fir stands.
They also determined that spruce budworm infestation increases both the
number and diversity of birds. Dense, young stands of red spruce
support a higher population of birds but with less diversity than in
older forests.

Insects and disease: Red spruce is relatively free from insects and
diseases until it is mature. Mature trees are susceptible to the
following insects: spruce budworm (Choristoneura fumiferana), eastern
spruce beetle (Dendroctonus rufipennis), European spruce sawfly (Diprion
hercyniae), yellowheaded spruce sawfly (Pikonema alaskensis), and
eastern spruce gall adelgid (Adelges abietis) [9,22,23,30]. Diseases of
red spruce have been detailed [9,22,23,30,47].

Red spruce decline: Throughout its range, growth rates of red spruce
have declined and mortality has increased [36]. This decline is
apparently more severe at higher elevations, in older stands, and on
more exposed sites. This decline is not limited to red spruce; balsam
fir and associated white and black spruce appear to be affected also
[85]. A number of studies on the causes of red spruce decline have
failed to make a definitive case for any single cause. There may be no
single cause or the complexity of the situation may not lend itself to a
clear cause-effect relationship [36,42,47]. The combination of climatic
stress and atmospheric pollution is probably the major cause of this
decline, according to a number of researchers [19,36,41,42]. Numerous
other causes have been proposed as well, including a natural cycle of
dieback and recovery [3, 36,]. A survey of the extent and identifiable
causes of mortality and decline was published in 1985 [85].
  • 22. Frank, Robert M.; Bjorkbom, John C. 1973. A silvicultural guide for spruce-fir in the northeast. NE-6. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 29 p. [8686]
  • 23. Frank, Robert M.; Blum, Barton M. 1978. The selection system of silviculture in spruce-fir stands--procedures, early results, and comparisons with unmanaged stands. Res. Pap. NE-425. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 15 p. [8772]
  • 3. Adams, Harold S.; Stephenson, Steven L. 1989. Old-growth red spruce communities in the mid-Appalachians. Vegetatio. 85: 45-56. [11409]
  • 6. Benzie, John W.; Blum, Barton M. 1989. Silviculture of northeastern conifers. In: Burns, Russell M., compiler. The scientific basis for silvicultural and management decisions in the National Forest System. Gen. Tech. Rep. WO-55. Washington, DC: U.S. Department of Agriculture, Forest Service: 18-30. [10243]
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]
  • 10. Bones, James T. 1978. The forest resources of West Virginia. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. [Pages unknown]
  • 15. Crawford, Hewlette S.; Titterington, Richard W. 1979. Effects of silvicultural practices on bird communities in upland spruce- fir stands. In: DeGraaf, Richard M.; Evans, Keith E., compilers. Management of north central and northeastern forests for nongame birds: Proceeding of the workshop; 1979 January 23-25; Minneapolis, MN. Gen. Tech. Rep. NC-51. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: 110-119. [18083]
  • 17. Davis, William C. 1991. The role of advace growth in regeneration of red spruce and balsam fir in east central Maine. In: Simpson, C. M, ed. Proceedings of the conference on natural regeneration management; 1990 March 27-28; Fredericton, NB. Fredericton, NB: Forestry Canada, Maritimes Region: 157-168. [17197]
  • 19. DeHayes, D. H.; Waite, C. E.; Ingle, M. A.; Williams, M. W. 1990. Winter injury susceptibility and cold tolerance of current and year-old needles of red spruce trees from several provenances. Forest Science. 36(4): 982-994. [13608]
  • 30. Hawksworth, F. G.; Shigo, A. L. 1980. Dwarf mistletoe on red spruce in the White Mountains of New Hampshire. Plant Disease. 64(9): 880-882. [21149]
  • 35. Hornbeck, J. W.; Smith, C. T.; Martin, Q. W.; [and others]
  • 36. Johnson, Arthur H.; McLaughlin, Samuel B. 1986. The nature and timing of the deterioration of red spruce in the northern Appalachian Mountains. In: Acid deposition: long term trends. [Place of publication unknown]
  • 41. LeBlanc, David C.; Raynal, Dudley J.; White, Edwin H.; Ketchledge, Edwin H. 1987. Characterization of historical growth patterns in declining red spruce trees. In: Jacoby, G. C., Jr.; Hornbeck, J. W., eds. International symposium on ecological aspects of tree-ring analysis; [Date of conference unknown]
  • 42. LeBlanc, David C.; Raynal, Dudley J. 1990. Red spruce decline on Whiteface Mountain, New York. II. Relationships between apical and radial growth decline. Canadian Journal of Forest Research. 20(9): 1415-1421. [13609]
  • 47. Leopold, Donald J.; Reschke, Carol; Smith, Daniel S. 1988. Old-growth forests of Adirondack Park, New York. Natural Areas Journal. 8(3): 166-189. [13998]
  • 53. Loucks, O. L. 1959. A forest classification for the Maritime Provinces. Proceedings, Nova Scotian Institute on Science. 25: 86-167. [15408]
  • 73. Saunders, Paul Richard. 1979. The vegetational impact of human distubance on the spurce-fir forests of the southern Appalachian Mountains. Durham, NC: Duke University. 188 p. Dissertation. [21409]
  • 85. Weiss, Melvyn J.; McCreery, Lew R.; Millers, Imants; [and others]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Red spruce has not generally received intensive management in the northeast. It can be harvested by partial cutting or clear cutting depending upon local markets and silvicultural conditions. Weeding and releasing, if needed, should be done at an early age, 10 to 15 years.

Public Domain

USDA NRCS Plant Materials Program

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Relevance to Humans and Ecosystems

Benefits

Cover Value

More info for the term: cover

Red spruce provides thermal and loafing cover for spruce grouse in
winter [62].
  • 62. Pielou, E. C. 1988. The world of northern evergreens. Ithaca, NY: Cornell University Press. 174 p. [9362]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Value for rehabilitation of disturbed sites

Red spruce is occasionally used for revegetation of coal mine sites in
West Virginia, primarily at high elevations, but it is of limited value
for this purpose [82].
  • 82. Vogel, Willis G. 1981. A guide for revegetating coal minesoils in the eastern United States. Gen. Tech. Rep. NE-68. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 190 p. [15575]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Importance to Livestock and Wildlife

Spruce grouse browse the leaves and twigs of red spruce [62]. Mice and
voles consume and store significant amounts of spruce seeds, preferring
red and white spruce to balsam fir [2]. Birds (particularly crossbills
or grosbeaks) will clip the terminal buds of young spruce, as will
porcupines, bears, snowshoe hares, and, rarely, deer [7,55,78]. Red
squirrels clip twigs and terminal buds and also eat reproductive and
vegetative buds [7,72].

In the southern part of its range, red spruce forests are used by only a
few wildlife species. Many of these species are usually only found
farther north, such as snowshoe hare, wood warblers and other songbirds,
rodents, and salamanders [79].
  • 2. Abbott, Herschel G. 1962. Tree seed preferences of mice and voles in the Northeast. Journal of Forestry. 60: 97-99. [20402]
  • 7. Blum, Barton M. 1977. Animal damage to young spruce and fir in Maine. Res. Note NE-321. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 4 p. [13653]
  • 55. McIntosh, R. P.; Hurley, R. T. 1964. The spruce-fir forest of the Catskill Mountains. Ecology. 45(2): 314-326. [14886]
  • 62. Pielou, E. C. 1988. The world of northern evergreens. Ithaca, NY: Cornell University Press. 174 p. [9362]
  • 72. Safford, L. O. 1974. Picea A. Dietr. spruce. In: Schopmeyer, C. S., ed. Seeds of woody plants in the United States. Agric. Handb. 450. Washington, DC: U.S. Department of Agriculture, Forest Service: 587-597. [7728]
  • 78. Telfer, Edmund S. 1972. Browse selection by deer and hares. Journal of Wildlife Management. 36(4): 1344-1349. [12455]
  • 79. Trimble, George R., Jr.; Patric, James H.; Gill, John D.; [and others]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wood Products Value

Red spruce is one of the more important timber species in the
northeastern United States. The wood is light in weight, straight
grained, and resilient. It is used for paper, construction lumber, and
is highly preferred for musical instruments [9,29].
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]
  • 29. Hart, Arthur C. 1959. Silvical characteristics of red spruce. Paper No. 124. Durham, NH: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 18 p. [21152]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Other uses and values

Red spruce gum was formerly collected and processed for chewing gum [29].
  • 29. Hart, Arthur C. 1959. Silvical characteristics of red spruce. Paper No. 124. Durham, NH: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 18 p. [21152]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Palatability

Red spruce is unpalatable to white-tailed deer [78].
  • 78. Telfer, Edmund S. 1972. Browse selection by deer and hares. Journal of Wildlife Management. 36(4): 1344-1349. [12455]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Special Uses

The wood of red spruce, white spruce (Picea glauca), and black  spruce cannot be distinguished with certainty by either gross  characteristics or minute anatomy, and all three are usually marketed  simply as eastern spruce. Chief uses are for lumber and pulpwood, with  limited amounts going into poles piling, boatbuilding stock, and cooperage  stock (36) Flakeboard and plywood have been made from spruce in recent  years. It is also the preferred wood for piano sounding boards, guitars,  mandolins, organ pipes, and violin bellies (21).

    Forest cover types that include red spruce support a wide variety of  wildlife. They are particularly important as winter cover for deer and, to  a certain extent, moose. Small game includes ruffed grouse, snowshoe hare,  and woodcock. Many song birds and fur bearers also frequent these forest  types (44).

    A unique use of red spruce was spruce gum, an exudate that accumulates  on trunk wounds. This was the raw material for a flourishing chewing-gum  industry in Maine during the last half of the 19th century and early years  of this century (21).

  • Burns, Russell M., and Barbara H. Honkala, technical coordinators. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods.   Agriculture Handbook 654 (Supersedes Agriculture Handbook 271,Silvics of Forest Trees of the United States, 1965).   U.S. Department of Agriculture, Forest Service, Washington, DC. vol.2, 877 pp.   http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm External link.
Creative Commons Attribution Non Commercial 3.0 (CC BY-NC 3.0)

Barton M. Blum

Source: Silvics of North America

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Uses

Red spruce is one of the most important forest trees in the northeast. The wood is light, soft, narrow-ringed and faintly tinged with red. It is the most common species of eastern spruce lumber. Because of its resonance, it is especially adapted to sounding boards in musical instruments. It makes up a large percentage of spruce pulpwood produced in the northeast. It is used as a Christmas tree also.

Red spruce provides food and cover for various mammals and birds. The spruce grouse feeds on the buds and foliage; red squirrels eat buds and seeds; varying hare browse twigs and foliage; porcupines feed upon the bark. Red spruce seeds make up 25 to 50 percent of the diet of white-winged crossbills. Red spruce can be an important cover tree in northern New England deer yards.

Public Domain

USDA NRCS Plant Materials Program

Source: USDA NRCS PLANTS Database

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Picea rubens

Picea rubens (red spruce) is a species of spruce native to eastern North America, ranging from eastern Quebec to Nova Scotia, and from New England south in the Adirondack Mountains and Appalachians to western North Carolina.[3][4][5]

This species is also known as yellow spruce, West Virginia spruce, eastern spruce as well as he-balsam.[6]

The symbol for red spruce is PIRU [7]

Physical description[edit]

Foliage and cones

Red spruce is a perennial,[8] shade-tolerant, late successional.[9] coniferous tree which under optimal conditions grows to 18–40 metres (59–131 ft) tall with a trunk diameter of about 60 centimetres (24 in), though exceptional specimens can reach 46 m (151 ft) tall and 30 cm (12 in) diameter. It has a narrow conical crown. The leaves are needle-like, yellow-green, 12–15 millimetres (0.47–0.59 in) long, four-sided, curved, with a sharp point, and extend from all sides of the twig. The bark is gray-brown on the surface and red-brown on the inside, thin, and scaly. The wood is light, soft, has narrow rings, and has a slight red tinge.[10] The cones are cylindrical, 3–5 centimetres (1.2–2.0 in) long, with a glossy red-brown color and stiff scales. The cones hang down from branches.[3][4][5][11]

Habitat[edit]

Dense red spruce forest in its native habitat at the summit of Spruce Knob, West Virginia

Red spruce grows at a slow to moderate rate, lives for 250 to 450+ years, and is very shade-tolerant when young.[12] It is often found in pure stands or forests mixed with eastern white pine, balsam fir, or black spruce. Along with Fraser fir, red spruce is one of two primary tree types in the southern Appalachian spruce-fir forest, a distinct ecosystem found only in the highest elevations of the Southern Appalachian Mountains.[13] Its habitat is moist but well-drained sandy loam, often at high altitudes. Red spruce can be easily damaged by windthrow and acid rain.

Notable red spruce forests can be seen at Gaudineer Scenic Area, a virgin red spruce forest located in West Virginia, the Canaan Valley, Roaring Plains West Wilderness, Dolly Sods Wilderness, Spruce Mountain and Spruce Knob all also in West Virginia and all sites of former extensive red spruce forest. Some areas of this forest, particularly in Roaring Plains West Wilderness, Dolly Sods Wilderness as well as areas of Spruce Mountain are making a rather substantial recovery.

Related species[edit]

It is closely related to black spruce, and hybrids between the two are frequent where their ranges meet.[3][4][5]

Uses[edit]

Red spruce is used for Christmas trees and is an important wood used in making paper pulp. It is also an excellent tonewood, and is used in many higher-end acoustic guitars and violins as well as musical soundboard. The sap can be used to make spruce gum.[11] Leafy red spruce twigs are boiled as a part of making spruce beer. Also it can be made into spruce pudding. It can also be used as construction lumber and is good for millwork and for crates.[14]

Red spruce is the provincial tree of Nova Scotia.[4]

Damaging Factors[edit]

Like most trees, red spruce has a slight insect problem. Their insect enemy is the spruce budworm although it is a bigger problem for white spruce and balsam fir.[15] Other issues that have been damaging red spruce has been the increase in acid rain and current climate change.[16]

Conservation[edit]

The Central Appalachian Spruce Restoration Initiative (CASRI)[17] seeks to unite diverse partners with the goal of restoring historic red spruce ecosystems across the high-elevation landscapes of central Appalachia.

The partners that make up this diverse group are Appalachian Mountain Joint Venture, Appalachian Regional Reforestation Initiative, Canaan Valley National Wildlife Refuge, Natural Resources Conservation Service, The Mountain Institute, The Nature Conservancy, Trout Unlimited, U.S. Forest Service Northern Research Station, U.S. Forest Service Monongahela National Forest, West Virginia Division of Natural Resources, West Virginia Division of Forestry, West Virginia Highlands Conservancy, West Virginia State Parks, and West Virginia University.[18]

Prior to the late 1800s there were 600,000 ha of red spruce in West Virginia. In the late 1800s and early 1900s, a vast amount of logging began in the state and the number of red spruce dwindled down to 12,000 ha. Restoration silviculture is being used to help restore the population of the lost red spruce.[19]

See also[edit]

References[edit]

  1. ^ Conifer Specialist Group 1998 (2006). Picea rubens. 2006. IUCN Red List of Threatened Species. IUCN 2006. www.iucnredlist.org. Retrieved on 6 July 2007.
  2. ^ "The Plant List: A Working List of All Plant Species". 
  3. ^ a b c Farjon, A. (1990). Pinaceae. Drawings and Descriptions of the Genera. Koeltz Scientific Books ISBN 3-87429-298-3.
  4. ^ a b c d Flora of North America: Picea rubens
  5. ^ a b c Gymnosperm Database: Picea rubens
  6. ^ http://www.na.fs.fed.us/pubs/silvics_manual/Volume_1/picea/rubens.htm
  7. ^ "red spruce". Virginia Tech. Retrieved 27 February 2014. 
  8. ^ "Red Spruce (Rubens)". Garden Guides. Retrieved 27 February 2014. 
  9. ^ Dumais, D; Prevost, M (June 2007). "Management for red spruce conservation in Quebec: The importance of some physiological and ecological characteristics - A review". Forestry Chronicle 83 (3): 378–392. doi:10.5558/tfc83378-3. Retrieved 27 February 2014. 
  10. ^ "Red Spruce". USDA NRCS. Retrieved 26 February 2014. 
  11. ^ a b Atlantic Forestry Centre: Red Spruce
  12. ^ http://www.ldeo.columbia.edu/~adk/oldlisteast/#spp
  13. ^ Peter White, "Boreal Forest," Encyclopedia of Appalachia (Knoxville, Tenn.: University of Tennessee Press, 2006), pp. 49-50.
  14. ^ "Red Spruce". The Wood Database. Retrieved 27 February 2014. 
  15. ^ Blum, Barton. "Red Spruce". Encyclopedia of Life. Retrieved 27 February 2014. 
  16. ^ Houle, Daniel (2012). "Compositional vegetation changes and increased red spruce abundance during the Little Ice Age in a sugar maple forest of north-eastern North America". Plant Ecology 213 (6): 1027–1035. doi:10.1007/s11258-012-0062-0. Retrieved 27 February 2014. 
  17. ^ Burks, Evan (2010), "Return of the Red Spruce", Wonderful West Virginia; Vol. 74, No. 12 (Dec issue), pp 6-11.
  18. ^ Bove, Jennifer. "Appalachian Red Spruce Forest". Retrieved 27 February 2014. 
  19. ^ Rentch, James; T. Schuler; M. Ford; G. Nowacki (September 2007). "Red Spruce Stand Dynamics, Simulations, and Restoration Opportunities in the Central Appalachians". Restoration Ecology 15 (3): 440–452. doi:10.1111/j.1526-100x.2007.00240.x. Retrieved 27 February 2014. 
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Notes

Comments

Throughout the Appalachians, trees of Picea rubens are dying, possibly as a consequence of environmental pollution. In eastern Canada this species hybridizes to a limited extent with P . mariana (A.G. Gordon 1976). 

 Red spruce ( Picea rubens ) is the provincial tree of Nova Scotia.

Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA

Source: Missouri Botanical Garden

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Names and Taxonomy

Taxonomy

The accepted scientific name for red spruce is Picea rubens Sarg. There
are no subspecies, varieties, or forms [48,64].

Natural hybrids with black spruce (P. mariana) have been reported
[9,48].
  • 9. Blum, Barton M. 1990. Picea rubens Sarg. red spruce. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 1. Conifers. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 250-259. [13388]
  • 48. Little, Elbert L., Jr. 1979. Checklist of United States trees (native and naturalized). Agric. Handb. 541. Washington, DC: U.S. Department of Agriculture, Forest Service. 375 p. [2952]
  • 64. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606]

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Common Names

red spruce
yellow spruce
West Virginia spruce
eastern spruce
he-balsam
blue spruce

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Synonyms

Picea rubra (Du Roi) Link
Picea australis Small
Picea nigra var. rubra Engelmann.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!