Overview

Brief Summary

Biology

colonial, calcareous skeleton
  • UNESCO-IOC Register of Marine Organisms
Creative Commons Attribution 3.0 (CC BY 3.0)

© WoRMS for SMEBD

Source: World Register of Marine Species

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Distribution

Range Description

This species is widespread in the Indo-Pacific. It is found from the Red Sea and Madagascar, to Southeast Asia, southern Japan, Australia, the Coral Sea, to Pohnpei (Micronesia) and American Samoa. The type locality is likely the Red Sea (Fenner, pers. comm.).

Specific records: Red Sea, Gulf of Aden, Arabian Sea (Socotra), Madagascar, Lakshadweep, W Thailand, Vietnam, Indonesia, Philippines, Yap, Pohnpei (Micronesia), Papua New Guinea, Bismarck Sea, Great Barrier Reef, Solomon Islands (DeVantier and Turak pers. comm.).

Randall and Cheng (1984) give the range from Red Sea to the Ellice Islands, and New Hebrides to Taiwan.
Razak and Hoeksema (2003) give Indonesia, Australia west and east coast, Xisha Is, China, Guam, Japan, Philippines, South China Sea, Taiwan, Thailand, Vietnam.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Ecology

Habitat

Habitat and Ecology

Habitat and Ecology
This species is most abundant in shallow reef habitat at depths of less than 15 m.

Millepora species are generally found in inshore areas characterized by turbidity, and exhibit a tolerance for siltation. They often occur in clear offshore sites (Lovell pers. comm.)

Systems
  • Marine
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Depth range based on 2 specimens in 1 taxon.

Environmental ranges
  Depth range (m): 6.5 - 9

Graphical representation

Depth range (m): 6.5 - 9
 
Note: this information has not been validated. Check this *note*. Your feedback is most welcome.

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Conservation

Conservation Status

IUCN Red List Assessment


Red List Category
LC
Least Concern

Red List Criteria

Version
3.1

Year Assessed
2008

Assessor/s
Obura, D., Fenner, D., Hoeksema, B., Devantier, L. & Sheppard, C.

Reviewer/s
Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)

Contributor/s

Justification
The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Specific population trends are unknown but population reduction can be inferred from estimated habitat loss (Wilkinson 2004). This species is widespread and common throughout its range, is susceptible to bleaching but quick to recover, and therefore is likely to be more resilient to habitat loss and reef degradation because of an assumed large effective population size that is highly connected and/or stable with enhanced genetic variability. Therefore, the estimated habitat loss of 21% from reefs already destroyed within its range is the best inference of population reduction since it may survive in coral reefs already at the critical stage of degradation (Wilkinson 2004). This inference of population reduction over three generation lengths (30 years) does not meet the threshold of a threat category and this species is Least Concern. However, because of predicted threats from climate change and ocean acidification it will be important to reassess this species in 10 years or sooner, particularly if the species is also observed to disappear from reefs currently at the critical stage of reef degradation.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Population

Population
This species is considered common throughout its range (Hoeksma pers comm.).

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is more resilient to some of the threats faced by corals and therefore population decline is estimated using the percentage of destroyed reefs only (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage of destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on population decline and generation length estimates.

Population Trend
Stable
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Threats

Major Threats
This species is susceptible to bleaching. However, it is also somewhat weedy and quick to take over disturbed habitats (Hoeksma pers comm). This genus is generally not found in aquarium trade, but is sometimes collected for curio and jewellery trade. In Fiji, Millepora is not subject to crown of thorns starfish predation or disease (Lovell pers comm.).

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by disease, and a number of localized threats. The severity of these combined threats to the global population of each individual species is not known.

Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Management

Conservation Actions

Conservation Actions
These non-scleractinian corals are listed under Appendix I and II of CITES. There are no records in the CITES database of exports of non-scleractinians by weight. Parts of this species distribution fall within several Marine Protected Areas within its range.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Having timely access to national-level trade data for CITES analysis reports would be valuable for monitoring trends this species. The species is targeted by collectors for the aquarium trade and fisheries management is required for the species, e.g., Marine Protected Areas, quotas, size limits, etc. Consideration of the suitability of species for aquaria should also be included as part of fisheries management, and population surveys should be carried out to monitor the effects of harvesting.
Creative Commons Attribution Non Commercial Share Alike 3.0 (CC BY-NC-SA 3.0)

© International Union for Conservation of Nature and Natural Resources

Source: IUCN

Trusted

Article rating from 0 people

Default rating: 2.5 of 5

Wikipedia

Net fire coral

Like all fire corals, the net fire coral is a hydrozoan, consisting of a colony of polyps with a calcareous skeleton. Part of the metabolism of the fire coral relies on zooxanthellae included in their anatomy. They are found from the Red Sea to Samoa and South Africa.[1] They form fan-shaped colonies up to 60 cm across, but clumps may be several metres across. Coloured mustard to olive-yellow, the fans form in a single plane.

Feeding polyps snare plankton from the passing current along exposed portions of upper reef slopes up to 15 m depth, growing transverse to the prevailing current to ensure maximum exposure to passing foodstuff. The stinging nematocysts contain a toxin which causes painful burn-like wounds on contact. At worst, this may cause collapse in those with a severe allergic reaction. Skin irritation may continue for up to two weeks.

References[edit]

  1. ^ Lieske, E. and Myers, R.F. (2004) Coral reef guide; Red Sea London, HarperCollins ISBN 0-00-715986-2
Creative Commons Attribution Share Alike 3.0 (CC BY-SA 3.0)

Source: Wikipedia

Unreviewed

Article rating from 0 people

Default rating: 2.5 of 5

Disclaimer

EOL content is automatically assembled from many different content providers. As a result, from time to time you may find pages on EOL that are confusing.

To request an improvement, please leave a comment on the page. Thank you!